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1 The Intuition

Consider the following multiple-choice questions:

About how many children are there in the average family?
a) 1 b) 10 c) 100

About how many children are there in the average elementary school
classroom?

a) 1 b) 10 c) 100

For both of these questions we want to say, “None of the above.”
Now consider the following revisions of those questions:

About how many children are there in the average family?
a) 1 b) 3 c) 10 d) 30 e) 100

About how many children are there in the average elementary school
classroom?

a) 1 b) 3 c) 10 d) 30 e) 100

We have no trouble answering the first with b and the second with d.
Now consider the question

About how many oranges are there in a basket full of oranges?

Our first reaction to this question is that there’s no way of telling. We don’t know
how big the basket is, and for that matter we don’t know how big the oranges are.
The packing of oranges in a basket will also depend on the shape of the basket. But
suppose we are given the choices

a) 1 b) 3 c) 10 d) 30 e) 100
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It turns out that when forced to pick one of these answers, well over half the people
asked pick 10 and most of the rest pick 30. No one picks 1 or 100.

We are generally not able to come up with precise values for quantities we
encounter in everyday life. We can easily come up with order-of-magnitude esti-
mates, but these estimates are so imprecise as to be uselessly uninformative in most
instances. However, people find it nearly as easy to come up with half-order-of-
magnitude estimates and these are very often just as informative as they need to
be.

This suggests that there is some cognitive basis for thinking in terms of half
orders of magnitude (HOMs). For scales that are isomorphic to the integers or to
the reals, precise values are often not available. We need coarser-grained structures
on scales. Qualitative physics (deKleer, 1985; Forbus, 1988) has used the division of
scales into negative, zero, and positive regions, but this is often too little structure.
There has been work on order-of-magnitude reasoning (Raiman, 1986), where scales
are partitioned in a way that changes in one region have no effect on quantities in
higher regions; for example, adding a stamp to a letter does not change its weight
enough for more postage to be required. This is an improvement over the tripartite
division, but is still too little structure for many contexts. In this paper, I propose
half orders of magnitude as a more refined intermediate structure on scales, one
that often is just the right sort of structure one needs. We want a rough logarithmic
categorization scheme for quantities, in which the categories are large enough that
aggregation operations have reasonably predictive results and normal variation does
not cross category boundaries, but are small enough that our interactions with
objects is predictable from their category. Often the most appropriate estimate of
a quantity is to a half order of magnitude.

Let us consider one more example to prime our intuitions before proceeding. The
coins and bills in many currencies are available in half order of magnitude denomina-
tions. In the United States, for example, it would not be enough to have only coins
for $.01 and $.10, and bills for $1.00, $10.00, and $100.00. It takes too many of each
to make the next larger. In addition, American currency provides the nickel ($.05),
the quarter ($.25), and the $5 and $20 bills as intermediate denominations. These
are roughly at half-order-of-magnitude levels. There have been other intermediate
denominations—coins for $.02 and $.50 and $2 bills—but these fell out of use. $50
bills are in circulation, but not in numbers anything like the numbers of $20 bills.1

In Section 2, I examine what an arithmetic of HOMs would be like. In Section
3, I argue that there are certain natural HOMs, anchored on persons, that play an

1The new euro currency has been constructed essentially as a binary system, with denominations
at the 1, 2, and 5 levels. It will be interesting to see if this lasts, or if one of the intermediate values
begins to drop out.
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important role in our lives; it is there we will see how to calculate the number of
oranges in a basket. In Sections 4, 5 and 6, I examine three very different ways in
which HOMs impact on lexical semantics—in the uses of “several”, “where”, and
the “approximately” sense of “about”.

2 Shallow Defeasible HOM Arithmetic

One of the reasons for making estimates is that it allows us to do rough calculations.
These are necessarily shallow, because each arithmetic operation increases the likely
error, and they are defeasible in that we readily accept corrections when more precise
measurements are made available. Nevertheless, they are often adequate for the
purposes at hand. In this section, we will look at the operations of addition and
multiplication and ask what the most reasonable rough calculations would be. That
is, given two quantities where we know only their HOMs, what would be the best
estimate for the HOMs of their sum and their product.

The square root of 10 is about 3.16. The geometric mean between that and 1 is
about 1.8, and between it and 10 is about 5.5. Suppose we divide the positive reals
up into HOM intervals as follows:

. . ., [.55,1.8], [1.8,5.5], [5.5,18], [18,55], [55,180], . . .

The first of these intervals is the numbers close to 1, the second those close to
√

10
(think of this interval as representing “several”), the third those close to 10, and so
on. More generally, we divide the positive reals into the intervals [10h− 1

4 , 10h+ 1
4 ], h a

positive multiple of .5. Each of these intervals may be called an HOM, and referred
to as the HOM around 10h.

Now suppose all we know about quantities is their half order of magnitude. What
sort of operations may we perform on them and how certain are our conclusions?

It is reasonable to assume that quantities are uniformly distributed throughout
an HOM, since we have no knowledge to the contrary, and that is what we will
assume for the remainder of this section.

We first consider the case of adding two numbers from the same HOM S, the
HOM around 10h. Suppose we add two arbitrary numbers from S. What HOM is
the sum most likely to belong to, and what is the probability of this.

Consider Figure 1. If x and y correspond to a point in the shaded triangle, their
sum will lie in S. If they correspond to a point in the other part of the square, their
sum will be one half order of magnitude higher than S. Thus, the probability of x
and y adding up to a number in S is the ratio of the area of the triangle to the area
of the square. Each side of the triangle is 10h+ 1

4 −2 ·10h− 1
4 . The area of the triangle

is thus
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When we discard all information about a quantity other than its HOM, we lose
information, and when we perform addition on two such quantities, we lose more
information. We could have defined a logarithmic scale with some base other than√

10, which, after all, was chosen because of the accidental fact that we use a decimal
number system. It is reasonable to ask what base would be optimal in the sense
that the least information is lost in doing addition. Hobbs and Kreinovich (2001)
show that the optimal base with respect to addition is about 3.9. This is reasonably
close to

√
10 in view of the fact that we approximate an HOM with values from 2

to 5 in everyday problems.

10h1

10h2

10h1-.25 10h1+.25

10h2-.25

10h2+.25

xy = 10h1+h2-.25

xy = 10h1+h2+.25

Figure 3: Product of two half orders of magnitude.

Now let us consider multiplication. (See Figure 3.) Of all the pairs of numbers
in the region defined by

10h1− 1
4 ≤ x ≤ 10h1+ 1

4 , 10h2− 1
4 ≤ y ≤ 10h2+ 1

4

those whose products do not fall into the HOM around 10h1+h2 are those under the
curve defined by

xy = 10h1+h2− 1
4

and those over the curve defined by

xy = 10h1+h2+ 1
4
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That is, the probability P that the product of a number from the HOM around 10h1

and a number from the HOM around 10h2 is a number in the HOM around 10h1+h2

is

P = A+B
C

where

A = 10h2+ 1
4 (10h1 − 10h1− 1

4 )− 10h1+h2− 1
4

∫ 10h1

10h1− 1
4

dx
x

B = 10h1+h2+ 1
4

∫ 10h1+1
4

10h1
dx
x − 10h2− 1

4 (10h1+ 1
4 − 10h1)

and

C = (10h2+ 1
4 − 10h2− 1

4 )(10h1+ 1
4 − 10h1− 1

4 )

A is the area of the shaded region up to 10h1 , B is the area of the shaded region
after 10h1 , and C is the area of the whole rectangle. The probability P then works
out to

P = 10
1
4−2+10−

1
4 + 10

1
4−10

− 1
4

4
ln10

10
1
2−2+10−

1
2

≈ .7037

Thus, there is about a 70% chance that the product of a number in the HOM around
10h1 and a number in the HOM around 10h2 will be in the HOM around 10h1+h2 . So
it is a reasonable estimate if there is corroborating evidence, and the best estimate
even if there isn’t.

These results allow us to draw arithmetic inferences when we know quantities
only approximately. Of course, the arithmetic we do must necessarily be shallow.
After one or two operations, the probabilities become too low and the estimates
are unreliable. However, this is sufficient for many practical applications, such as
estimating the number of oranges in a basket.

3 Natural HOMs

The average adult human is about six feet or 180 cm tall. Certainly the vast majority
of people are within one foot or 30 cm of that. Let us take this “Person Size”
as the basis for a system of half orders of magnitude in everyday life. The half
orders of magnitude above and below this correspond to functionally characterizable
categories of objects and spaces, and part of what we know about the types of objects
in our world is the natural HOM category they typically fall into.

Among the entities of Person Size are the major items of furniture, such as
chairs, sofas, benches, tables, counters, and single beds. They can be moved by one
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person, but with difficulty. A space of this size can accommodate only one person
comfortably.

One HOM below this measures about two feet or 60 cm in linear dimension.
Entities of about this size can be held in two arms. They include baskets, cardboard
boxes, sacks, TV sets, microwave ovens, laptops, bookshelves, dogs, and watermel-
ons. A person’s horizontal dimensions are of this HOM, which is why hugs are
possible.

One HOM below this measures about eight inches or 20 cm. Entities of about
this size can be held in one hand. Books, footballs, cantelopes, and desk telephones
fall into this category.

One HOM below this measures about three inches or 8 cm. Entities in this
category can be manipulated with the fingers. Examples are pens, mice (of both
kinds), oranges, hamburgers, cell phones, and cups.

One HOM below this measures about one inch or 2.5 cm. It includes things that
can be bitten, such as french fries, the chunks we cut our meat into before eating
it, peppermint candies, erasers, and AA batteries. They can be manipulated easily
with two fingers and a thumb.

One HOM below this measures one quarter inch or 1 cm, and includes things
that must be handled with care between two fingers, such as diamonds, M&Ms, and
thumb tacks.

One HOM below this is the size of a grain of rice, and we have little everyday
experience with individual entities whose size is below this. (A speck of dust in your
eye is an exception.)

One HOM above Person Size measures about twenty feet or six meters in linear
dimension. Individual persons can move around in spaces of this size, and several
people can fit into this space and engage in a joint activity that does not require
much movement. Individual offices and typical rooms in houses are in this natural
HOM category. Cars are at the lower end of the category.

The measures and typical examples of HOMs above this are as follows:

8



20 yards/meters house, restaurant, small yard, 10-100 people
60 yards/meters commercial building, bank, post office, large yard
200 yards/meters small factory, small bridge, field
600 yards/meters large factory, large bridge, dam
1 mile/1.5 km town, airport
3 miles/5 km small city
10 miles/15 km large city, small county
30 miles/50 km large county
100 miles/150 km small state
300 miles/500 km large state, small nation
1000 miles/1500 km typical large European nation
3000 miles/5000km the United States, China

Part of what we know about physical objects is the natural HOM category it
typically belongs to. This, together with defeasible HOM arithmetic, is why we
know that a basket full of oranges has about ten oranges in it, a living room full of
people has about 10 people in it, and a hamburger is not eight feet in diameter. A
basket has a natural HOM of two feet, and an orange a natural HOM of 3 inches.
This is two HOMs difference, so there are about 10 oranges in a basket.

We can also define basic HOM categories for time, anchored on the units of time:
1 second, 5 seconds, 15 seconds, 1 minute, 5 minutes, 15 minutes, 1 hour, 3 hours,
12 hours, 1 day, 3 days, 1 week, 1 month, 3 months, 1 year, and so on. We know
for various types of events which HOM categories they fall into. Thus, a cough lasts
one second, a lecture lasts one hour, and a course lasts three months. We know that
if we are told that John missed a course because he coughed, this requires elaborate
explanation.

Rieger (1974) proposed encoding this kind of knowledge about the typical du-
rations of events. Dahlgren (1988) proposed encoding this kind of knowledge about
the size of everyday objects and using it to disambiguate prepositional phrase at-
tachment ambiguities, as in

John drove down a street in a car.

4 “Several”

The most obvious place to look for a notion of half orders of magnitude in the
English lexicon is the word “several”.

I examined 25 occurrences of the word “several” in a wide variety of texts,
including news articles, scientific articles, a novel, poetry, song lyrics, and transcripts
of a meeting. For each instance, using my knowledge of the world and the context,
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I made an estimate of the range of numbers that might be counted as “several” in
that context. For example, in

Several women walked into the cafe.

I picture between three and five women. The statement would be misleading if the
real number were two or if it were more than six.

When we use the word, there is generally an implicit comparison set from which
the referenced entities are drawn. For example, the women who walk into the cafe
must be drawn from the set of women who were in the neighborhood.

It was found that if the comparison set had an HOM of ten or fewer members,
the word “several” referred to three to five. The above sentence is an example. If
the comparison set had an HOM of thirty or more, “several” could refer to three to
eight. For example, in the sentence

About 80,000 people lost their long-distance service and several commu-
nities lost their 911 emergency phone.

my intuition is that as many as eight or so communities could have lost their 911
emergency phone.

This characterization covered 24 of the 25 examples. In 13 of 25 cases the
comparison set was small and “several” meant three to five. In 11 of 25 examples,
the comparison set was large and “several” meant three to eight. The one exception
was a reference to

. . . criminal investigation of GE and several of its employees.

My feeling was that “several” could cover a range from three to about twelve.
Of course in a more rigorous study we would want to test a number of subjects,

who were not theory-laden, and see what agreement there was among them.

5 “Where”

I examined 74 occurrences of the word “where” in the same corpus, seeking con-
straints on what can be where. The natural HOMs turned out to be a convenient
way of characterizing that data.

Syntactically, the word “where” occurs adverbially, nominally, as a relative
clause, and as a question, but in all of these, it places a figure X at or in a ground
Y . When it occurs as a relative clause, as in

farms where corn is grown

10



the head noun Y is the ground, and the relative clause is the figure X—the corn is
grown at the farm. When it occurs adverbially, as in

Where corn is grown, farmers have prospered.

the “where” phrase names a ground Y such that both the complement of “where”
and the modified clause are figures X located at Y —there is a Y such that corn is
grown there and farmers have prospered there. When it occurs nominally, as in

The Midwest is where corn is grown.

the “where” phrase again names a ground Y such that the complement of “where”
is a figure X located at Y . In “where” questions, as in

Where is corn grown?

the answer is a ground Y such that the event described by the rest of the sentence
is a figure X located at Y .

The figure and the ground are very often not physical objects but properties
of physical objects, or events, conditions, activities, or situations involving physical
objects. Thus, only 7 of the 74 examples concerned the physical location of a physical
object. But 61 more of the 74 examples involved properties, events, conditions,
activities, or situations of physical objects. Only 6 of the 74 involved abstractions at
abstractions. When the figure and ground were properties, events, activities, and so
forth of physical objects, I assumed their spatial extent was the same as the spatial
extent of the physical objects.

I then asked for each of these 68 examples what the sizes of the figure and the
ground were.

In 36 of the 68 cases, the figure and the ground were of the same HOM, as in

Right here beside me is where you belong.

In 13 cases, the ground was one HOM larger than the figure, as in

the counter where slabs of meat were kept
The front room was where Marvin stayed.

In 5 cases, the ground was two HOMs larger than the figure, as in

the houses where the workers live

Thus, in 54 of 68 cases, the ground was at least as big as the figure and no more
than two HOMs larger.

There were 11 cases where the ground was more than two half orders of magni-
tude larger than the figure. One was a reference to a jewel (one-quarter inch) hidden
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in a chest (two feet). In this case, the disparity in size was one factor in the figure’s
being hidden.

The other 10 cases involved the activities of persons, groups of persons, or or-
ganizations, where these activities may take the persons to a wide set of locations
within the ground, or where some property specifically of the ground is relevant to
the activity.

the town where he lives
the laws of New York, where the business is based.

In these cases we can say that the spatial extent of the activity is greater than the
spatial extent of the participants, and the former lies within two HOMs of the size
of the ground.

Finally, there were 3 cases out of 68 where the HOM size of the ground was
smaller than the HOM size of the figure. All three were in poems. One was
metaphorical and concerned having a person in one’s heart. One involved a global
property of the person, beauty, being located in a body part, the eyes. The other
involved a person’s image being located in a painting.

What this exercise has shown is that overwhelmingly the figure and the ground
are of comparable approximate sizes, where comparable means that the ground is
from zero to two half orders of magnitude larger than the figure.

6 “About”, “Approximately”, and “Nearly”

I examined 86 examples of the word “about” in the same corpus. 52 of these were
the “topic” sense of “about”, as in

He didn’t know what they were talking about.

These uses will concern us no further.
Six of the examples involved a physical neighborhood, perimeter, or circuit

around a physical entity, as in

the town and all the country about

Eight more involved a quality, activity, or event of a physical entity, whose spatial
extent could be estimated. In all 14 of these physical cases of “Y about X”, the
relative sizes of X and Y were similar to the cases of “where”, described above. Y
was either the same HOM as or one or two HOMs larger than X. In the above
example, if the town is one mile in diameter, “the country about” probably refers
to a region of about ten miles in diameter. In
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Her face had a tense quality about it.

the spatial extent of the tense quality is either coincident with the face or extends
not much beyond it.

The remaining twenty examples involved the “approximately” sense of “about”.
This sense can also be best analyzed in terms of half orders of magnitude.

When we describe a quantity as “about N”, there is first of all an implicit
precision g. Suppose the number of attendees at a meeting was 920. Then the first
two of the following sentences is true, the third one false.

There were about 1000 people at the meeting.
There were about 900 people at the meeting.
There were about 980 people at the meeting.

In the first, we are using a precision of, say, 200, 250 or 500. In the second, we are
using a precision of 100. In the third, we are using a precision of 10.

We have strong coarse-grained intuitions about what range of numbers an “about”
statement is and is not true for. For example, in

About 80,000 people lost their long-distance service.

my intuition is that the real number lies between 77,000 and 84,000. It is certainly
not 87,000, and probably not 75,000.

Each of the twenty examples I labelled with an interval in which the real number
most likely lay. (In a proper study, I would have asked a number of subjects to make
these judgments.) I took these judgments to be the data to be explained.

The general characterization of these uses of “about” is as follows: If X is about
N , then N = n×g, for some integer n and some HOM g, its precision, and N− 1

2g <
X < N + 1

2g. In “about 900”, n = 9 and g = 100. A reasonable guess about X
is that is between 850 and 950. In “about 980”, n = 98 and g = 10. A reasonable
guess about X is that it is between 975 and 985.

There are a number of complications. The HOM between 1 and 10 will be some-
thing between 2 and 5. Generally, 5 is chosen because of its divisibility properties.
Sometimes 2 is chosen. 3 would perhaps be better, being closer to

√
10, but it does

not have good divisibility properties. Between 10 and 100, sometimes 25 is chosen,
having good divisibility properties and being close to 10

3
2 .

It is not always obvious what g should be. In “about 1000”, if g is 500, X could
be between 750 and 1250. If g is 250, X could be between 875 and 1125. If g is
200, X could be between 900 and 1100. If g is 100, X could be between 950 and
1050. For each of these, it is easy to imagine contexts in which it is the appropriate
choice. The example “There were about 1000 people at the meeting” would be true
for 920 people if g is 500, 250, or 200, but not if it is 100.
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Some complications arise. When g is 5, even multiples of g are likely to grab
larger regions. Thus, “about 35” is probably from 33 to 37, while “about 40” is from
37 to 43.

When N is a multiple of 10, it is often difficult to know if g is 5 or 10. In general,
if n is less than 5, g is more likely to be 5. If n is greater than 5, g is more likely to
be 10. For example, “about 30” is probably between 27 and 33, while “about 60” is
between 55 and 65.

Another complication is that X often gets rounded down, simply because of the
way numbers are represented. 86,000 simply looks more like 80,000 than 90,000, so
it is conceivable that 86,000 would be considered “about 80,000”, whereas 74,000
would not.

This fact can be manipulated. My intuition about the sentence

An industry spokesman said about 19,000 animals were killed in testing
in the past decade, mostly mice and rats.

is that the actual number of animals could be anywhere from 18,600 to 19,800. The
spokesman is trying to minimize the stated number, which is why he picked a g of
1000 rather than 10,000, and rounding down would help as well.

Finally, it should be said that the variation of X from N must be causally
irrelevant. Someone might be “about 21” and still not be able to buy a drink.

All of these complications, however, are minor.
With these caveats, everyone of the twenty examples in the corpus fell roughly

within the limits given by the formula.
I also looked at 10 examples of “approximately” and 13 examples of “nearly”.

Two of the “approximately” examples involved algebraic formulas.

For R À 0, we have approximately S = e−R0 .

The other 8 all fit the pattern for “almost”.
All 13 of the uses of “nearly” fit the pattern for “almost”, except that “nearly”

also conveys the information that the real number is less than the estimate.
Two examples of “nearly” provided data about the real value. The first was

Advancing issues outnumbered declining ones by nearly 2 to 1 on the
NYSE, with 1,097 up, 581 down and 484 unchanged.

It is reasonable to assume g is .5. If the ratio had been near 1.5, the author would
probably have said “3 to 2”; it is unlikely that a larger number would have been
used for the denominator. The real number is 1.89, well within the window of width
g. The other sentence was
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The number of filings soared by 29 percent in January, to 71,970, and
experts predict that nearly 900,000 bankruptcies will be filed nation-
wide in 1991.

Assuming the rate of bankruptcies per month would be constant over the year, then
in twelve months there would be 863,640 of them. If the precision g in the experts’2

prediction is 100,000, then this value is well within the window of width g.
It would be interesting to try to derive this formula of usage from the charac-

terization of the spatial uses of “about”. Under what circumstances would we be
willing to say X is N as opposed to X is about N? That would in a sense tell us the
“spatial extent” of N . For example, if 901 people attended the meeting, we might
be perfectly happy saying that the attendance was 900 rather than about 900. If
the “spatial extent” of N is conceived of as one half order of magnitude less than g,
then an “about” neighborhood around N of 1

2g each direction is exactly what one
would expect.

7 Future Directions

One of the things we know about common physical objects is their approximate
sizes. In this paper I have proposed a system for characterizing the approximate
sizes of objects—half orders of magnitude, anchored on Person Size. HOMs provide a
logarithmic scale which is coarse enough that aggregation operations have reasonably
predictable results and yet which is fine enough that our interactions with objects
can be predicted from knowledge of their HOM category. By examining the uses of
the words “several”, “where”, “about”, “approximately”, and “nearly”, I have shown
that this system has utility in several very different linguistic contexts. Moreover, I
sketched a kind of defeasible arithmetic that allows us to draw reasonable shallow
conclusions from our approximate knowledge of the size and number of things.

There are a number of other words whose uses may be illuminated by an ex-
amination in this framework. There is the spatial sense of the word “near”. What
are the common relations between figure and ground when something is described
as near something else? Are there HOM differences in the uses of “at” and “in”?
How effective would HOM congruence be in disambiguating prepositional phrase
attachment ambiguities? Does this framework illuminate the uses of quantitative
adjectives? What about characterizations of shape for objects without rough radial
symmetry, such as “tall”? It may be that for an object to be called tall, its height
must be a half order of magnitude greater than its width. These questions await
further work.

2Presumably experts in multiplication.
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