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Abstract

Experiencewith wired networkshasprovidesguidance
aboutwhat level of detail is appropriatefor simulation-
basedprotocolstudies.Wirelesssimulationsraisemany
new questionsaboutapproriatelevels of detail in sim-
ulation modelsfor radio propagationand energy con-
sumption.Thispaperdescribesthetrade-offsassociated
with addingdetail to simulationmodels. We evaluate
theeffectsof detail in five casestudiesof wirelesssim-
ulationsfor protocoldesign. Ultimately the researcher
must judgewhat level of detail is requiredfor a given
question,but we suggesttwo approachesto copewith
varying levels of detail. Whenerror is not correlated,
networking algorithmsthat arerobust to a rangeof er-
rorsareoftenstressedin similar waysby randomerror
as by detailedmodels. We also suggestvisualization
techniquesthat canhelp pinpoint incorrectdetailsand
managedetailoverload.

1 Introduction

Selectingthecorrectlevel of detail (or level of abstrac-
tion) for a simulationis a difficult problem. Too little
detailcanproducesimulationsthataremisleadingor in-
correct,but addingdetail requirestime to implement,
debug,andlaterchange,it slowsdownsimulation,andit
candistractfrom theresearchproblemat hand.Design-
ing simulationsto studya protocol inherentlyinvolves
�
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makingchoicesin which protocoldetailsto implement
or use.

Although a numberof network simulationpackages
areavailable,they do not remove this burdenfrom the
designer. In customsimulators,researcherstypically in-
cludeonly theminimumpossibledetailsoutsidetheim-
mediateareaof study. Existingsimulators(suchasOp-
net,ns-2[5], Parsec[2], andSSF[8]) provide detailed
protocolimplementations,but whatlevel of detail is re-
quiredin new protocols,or in adaptingexisting proto-
colsto modelnew hardware?Somesimulatorseasethe
cost of changingabstractionwith multiple, selectable
levels of detail (for example,ns [17]), but the design
choicemuststill bemade.

Choicesaboutdetailareparticularlydifficult for wire-
lessnetwork simulations.Wide experiencewith theim-
portantcomponentsof wired networksover the last 30
yearsallowssignificantabstraction.For example,point-
to-pointlinks areoftenrepresentedasasimplyby band-
width and delay with a queue; framing, coding, and
transmissionerrors are simply ignoredor mathemati-
cally modeled.The youngerfield of wirelessnetwork-
ing provideslessguidanceon whatabstractionsareap-
propriate. Low-level detailscanhave a large effect on
performance,but detailedsimulationscan be very ex-
pensive(for example,radiopropagation).

This paperexploresthequestionof what level of de-
tail is neededfor simulationsof network protocolsin
wirelessdomains. We begin by looking at the trade-
offs in differentlevelsof detail in simulations.We then
considerfive casestudies: energy consumptionin ad
hoc routing, datadiffusion, radio-basedoutdoorlocal-
ization, communications-driven robot following algo-
rithms, andvisualizationof wirelesssimulations. The
contribution of this paperis two-fold: first, by examin-

1



ing theeffectsof detailsonwirelesssimulationswehelp
the networking simulationcommunity judge the rele-
vanceof simulationstudies. Second,we identify two
differentwayssimulationresultscanbe spoiledby too
little detail,andtwo caseswherefairly abstractsimula-
tionssuccessfullymodelreal-world behavior.

2 Trade-offs of Detail in Wireless
Simulation

We next considerthe trade-offs of more detailedor
abstractsimulations.

A commongoal is to infuse the simulationwith as
muchdetail aspossibleto provide a “realistic” simula-
tion. This approachis attractive: a fully realisticsimu-
lation ought to be ableto reproducethe resultsof lab-
oratoryexperimentsor network useby end-users.Fail-
ing to implementdetailsguaranteesthat they won’t be
reflectedin a simulation;for examplea wirelesspropa-
gationmodelthatdoesn’t considerconcurrenttransmis-
sionswill notmodelthehiddenterminaleffect. Further-
more,detailsat multiple protocollevels canreveal im-
portantinteractionsbetweenlayers.For example,router
synchronizationwasfirst studiedin simulation[14].

Yet a “fully realistic” simulation is not possible—
doesonestopat thenetwork layer?they physicallayer?
electronsor photons?Simulationdesignersmust limit
thelevel of detailsomewhere.Thechallengeis to iden-
tify what level of detail doesnot affect answersto the
designquestionsat hand.For example,we know of no
network simulatorthatconsidersdetailsof a CPU’s in-
structionsetor memoryhierarchy—thesedo not affect
designquestionsrelevant to wirelesssimulations. Yet
thesedetailsare critical to othernetworking problems
suchasvery rapidrouting[11].

Thereare several reasonsto avoid excessive detail.
Simulationrun-timeis adverselyaffectedby detail. Im-
plementationanddebuggingtime is increased,andun-
detectedbugs in distant layers can produceinaccura-
cies. Even if debugged,protocol detailschangeover
time. For example,an extremelydetailedimplementa-
tion of WaveLAN from a few yearsagowould todaybe
supercededby the 802.11standardtoday. Sometimes
getting all the details may be impossible,if they are
left open(or implementation-dependent)in the specifi-
cation, or when trying to predict future behavior with
protocolsnot yet implementedor standardized.Finally,
for many of thesereasonssimulationsoften mix lev-
els of detail in differentcomponents.A very detailed,
microsecond-level MAC simulationmay be forced to

usea moreabstractpropagationmodel(becauseall ob-
jects in the terrain were not specified)and an older
TCP implementation(perhapsnot including SACK or
recentlystandardizedextensions).Simulationswith de-
tailedhardwaremodelsmayhaveabstract(perhapsran-
domized)scenariosof node placement,transmission,
andmovement.

Thereareseveral reasonsfor intentionallychoosing
a high level of abstractionfor simulation. Distillation
of a researchquestionto its essencecan provide in-
sight not colored by arbitrary details of specific pro-
posedsolutions. For example, althoughmultiple re-
sourcereservationandquality-of-serviceprotocolshave
beenproposed,BreslauandShenkerusea very abstract
servicemodelto focuson the centralissueof the ben-
efits of reservations[6]. When exploring a new area
wheremany issuesareunclear, the needto quickly ex-
plore a variety of alternatives can be more important
than a detailedresult for a specificscenario. For this
kind of nimble simulation,relativecomparisonsof alter-
nativesareoften moreimportantthana singledetailed
quantitative result.A moreabstractsimulationcanalso
maketheeffectsof achangein algorithmdistinct,where
they would be obscuredby othereffectsin a morede-
tailedsimulation.Finally, omissionof simulationdetail
can improve performanceby multiple ordersof mag-
nitude [17]. Memory and run-time improvementsdue
canoffer resultssooner, or allow largeror longerexper-
iments,revealingdifferentaspectsof protocolbehavior.
For example,therelativeperformanceof adhocrouting
protocolsdifferswith largenumbersof nodes[10].

Theprimary risk of simulationabstractionis theun-
known. Would additionaldetailchangetheconclusions
of the simulationstudy? This problemis particularly
challengingwhenenteringa relatively unexploredarea
whereresearcher’s intuitions may be underdeveloped.
Validation of simulationsagainstmore detailedsimu-
lationsandexperimentalmeasurementscananswerthis
question.But thecostof validationis fairly high: careful
experimentsrequire implementingthe detailsin ques-
tion or purchasingsufficienthardwarefor real-world ex-
periments.

Over time, the resultsof validationexperimentswill
allow thecommunityto build anunderstandingof what
detailsareimportant. The communityhasbegun shar-
ing this information through workshopssuch as the
DARPA/NIST Network Simulation Validation Work-
shop[9]. Wenext considerseveralcasestudiesthathave
arisenin our researchasfurtherexamples.

Table1 summarizesthe caseswe examine,the rele-
vantdetailsthatwereconsidered,andhow thosedetails
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Case Relevant detail Effects
energy-conciousad-hocrouting( � 3) energy consumptionmodel(idle behavior) incorrectresults
datadiffusion( � 3) MAC protocol inapplicableresults
localization( � 4.1) radiopropagationmodel correctresults,applicationinsensitive to detail
robotfollowing ( � 4.2) radiopropagationmodel correctresults,applicationrobustto error
protocolvisualization( � 5) packet visualizationstrategy utility of visualization

Table1: Casestudiesexaminedin thispaperandhow detailaffectedstudyresults.

affectedthe resultsof the simulationstudy. We found
thatchoiceof detail hadseveraldifferentresultson the
studies. Lack of detail causedwrong answersin two
ways,eitherbecausethey weresimply incorrect, wrong
or actively misleading,or becausethey wereinapplica-
ble: technicallycorrectbut providing ananswerto part
of the designspacethat may not be sensibleor rele-
vant. In two othercases,relatively abstractapproaches
werefoundto producecorrectresults,eitherbecausethe
application was insensitive to the detailsat hand, the
outputsof the applicationhad an existing component
of noisethat swampedany variationadditionaldetails
provide, or becausethe application was robust to de-
tails,thealgorithmwasself-correctingto errors.Finally,
for thecaseof visualizationwe foundtheapproachesto
handlingdetailsimply affect theusefulnessof thevisu-
alization.

3 Energy Consumption in Ad Hoc
Routing

Our first casestudy considersenergy consumption
whenroutingdatain adhocnetworks.We examinetwo
recentstudiesin this area:an evaluationof datadiffu-
sion[18], anda studyof anenergy-saving variationsof
on-demandadhocroutingprotocols[24]. Choiceof ap-
propriatemodelsof radioenergyconsumptionandMAC
protocolsmake cancompletelychangetheconclusions
of thesestudies.

Several modelsof energy consumptionfor wireless
communicationhavebeenusedin literature:� Successfullysentor receivedpacketsincur an en-

ergy cost.

� MAC-level costscan be considered—MAC-level
retransmissions,CTS/RTS,andpacketsthatareun-
successfullysentor receivedincura cost.

� Energyconsumedwhile listening(or “idle”, having
the radio poweredon but not actively sendingor
receiving) canalsobemodeled.

� Non-radiosystemcostscanbeconsidered(display,
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Figure1: Comparisionof energy consumedfor four ad
hocroutingprotocolswith differentenergy models(left,
black bars are without consideringenergy consumed
whenlistening; right, grey barsincludethis consump-
tion).

CPU,diskdrive).

� Batteryinternals(non-linearity, temperaturesensi-
tivity, batterymemory, etc.)canbeconsidered.

Selectingthe right level of detail dependson the re-
searchquestionbeing considered. For most research
questionsaboutnetworking protocols,non-radiocom-
ponents(for example,thedisplay)canbefactoredoutas
afixedoverhead,althoughin somecasesCPU-intensive
work must be considered(for example, software ra-
dios [4], or MPEGplayout). Similarly, for roughcom-
parisonsof protocols,detailedbatterymodelsare not
required—areasonablesimplifying assumptionis that
memoryor temperaturewill affectall protocolsequally.

We have foundmodelingidle time makesa largedif-
ferencein protocol comparisons. We studiedenergy
consumptionof four ad hoc routing protocols(AODV,
DSR, DSDV, and TORA) with a simple traffic model
whereafew nodessenddataoveramulti-hoppath[24].
Usingasimpleenergymodelthatdoesnotconsideridle-
time costs,we found thaton-demandprotocolssuchas
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AODV andDSRconsumemuchlessenergy thana pri-
ori protocolssuchasDSDV andTORA/IMEP (theleft,
black bars in Figure 1). A priori protocolsare con-
stantly expendingenergy pre-computingroutes,while
nodesthat do not sourcedatado not usetheseroutes.
Thesedifferencesvanish, however, when we adopt a
moredetailedenergy modelthatconsidersidle-timeen-
ergy consumption.WaveLAN radioshave a 1:1.05:1.4
ratioof idle:receive:sendenergycosts[23]. With thisra-
dio modelall ad hoc routingprotocolsconsideredcon-
sumeroughlythesameamountof energy (within a few
percent). In this scenario,idle time completelydomi-
natessystemenergy consumption,so an insufficiently
detailedenergy model(not consideringidle time) com-
pletelychangesthestudyresults.

This example illustratesthe casewhere insufficient
detail can producean incorrect result. Not modeling
idle energy consumptionindicatesminimal differences
betweenadhocroutingprotocols,while addingidle en-
ergy shows cleardifferences.Futurewirelessnetwork-
ing researchsshouldincludethesedetailsin theirpower
modelsandshouldusecarewheninterpretingprior pub-
lishedresultsthatuseoverly simplifiedmodels.

Choiceof MAC protocolis alsocloselytied with ra-
dio energyconsumption.Wehavestudieddatadiffusion
protocols,evaluatingthepowerconsumptionof datadif-
fusionascomparedto simplefloodingandanidealized
multicast [18]. The goal of theseexperimentswas to
provideenergy-conservingprotocolsfor long-livedsen-
sornetworks. Again we hadtroublewith inappropriate
modelsof radio energy consumption;all protocolsbe-
havedsimilarly whenidle costswereconsidered.In this
case,theproblemwasaninappropriateMAC protocol.

Figure2 shows thecomparisionof datadiffusionand
two alternatives,with a TDMA-lik eenergy model(Fig-
ure 2(a)) and an 802.11energy model (Figure 2(b)).
(Becauseat this time we did not have a TDMA model
in our simulator, we approximatedit by adjustingthe
energy model. We plan to redotheseexperimentswith
differentmodelMAC models.)As shown in thefigure,
choiceof theMAClayerproducesverydifferentconclu-
sionswhencomparingthealgorithms,Figure2(b) sug-
geststhereis nosignificantdifference,while Figure2(a)
showsa noticabledifference.

In this case,the conclusionis somewhat more sub-
tle. Resultsof simulationswith 802.11protocolsarenot
technicallywrong, but they are inappropriate. While
one could usean 802.11MAC for theseapplications,
thatwouldbepoordesignchoicesincelong-livedsensor
networksneedanenergy-conservingMAC likeTDMA.
Becausethedetailsareinappropriate,they resultin con-

clusions(the algorithmsareall equivalent)that are in-
correctfor a well-designedsystem.

Theseexamplessuggestthatidle-timeandMAC pro-
tocols are important details for wirelesscommunica-
tion studieswith PC-like network nodes.We have not
seenevidencethat further details(power consumption
of othersystemcomponentsor modelsof batteryinter-
nals) alter researchresultsin this domain. Additional
experienceis neededto validatethis assumption.These
assumptionsmay not hold for studiesof increasingly
tiny (dust-mote-sized)nodes[21]. We hypothesizethat
asnodeand radio power consumptionshrinks,andas
nodelifetime increases,additionaldetailswill become
important.

4 Radio Propagation Models

Our next two studiesconsiderthe problemsof radio-
basedlocalization(determininga node’s location)and
robot following. In both cases,we found the level of
detailof theradiopropagationmodelimportant.

Evenmorethanenergy models,many levelsof detail
areemployedin radiopropagationmodelswith a single
senderandreceiver:

� The simplest models consideronly propagation
distancefrom senderto receiver with a fixed for-
mulafor signalloss.

� Slightly moredetailedmodelsmight usedifferent
models for near and far receivers (for example,
theFriis andtwo-raygroundreflectionapproxima-
tions).

� A statisticalapproximationof shadowing might be
added.

� A more detailedmodel might considersignal at-
tenuationfrom large obstacles,perhapsmodling
line-of-sightcommunicationdifferentlyfrom indi-
rectcommunication.

� Very detailedmodelswould considerantennage-
ometries(orientation,distanceoff ground)andper-
form detailedradio ray-tracingto estimatereflec-
tion.

In addition,modelsmayor maynot take in therelative
powerof interferingtransmissions.

Radiopropagationvariesgreatly, especiallyindoors,
motiving very detailedpropagationmodels. Unfortu-
nately, accuratemodelsbecomevery computationally
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Figure2: Comparisonof datadiffusionalternativeswith TDMA-lik eenergymodel(left) and802.11-likeenergymodel
(right). (From[18], Figures4aand6c.)

expensive andrequiremuchmoredetail aboutthe en-
vironmentthanis typically available.

An attractive alternative is to couplea simplemodel
with somelevelof statisticalloss,but therehasbeenlim-
ited experiencewith how lessdetailedmodelschange
network behavior. We have evaluatedthis questionin
two casestudies,onewhereaverysimplemodelproved
surprisinglyeffective in a restricteddomain,andthena
robotics-inspiredapproachto designingsoftwareto be
robustto modelerror.

4.1 Radio-based outdoor localization

Sometimessimple radio propagationmodels can be
quite effective for the purposesof a problem. We are
exploring thetaskof spatial localization, determininga
node’s approximatelocation,usingonly radio connec-
tivity to a setof beaconswith well known locations[7].
This approachwould be importantfor nodestoo small
or inexpensiveto useGPS.

Radiopropagationis a critical aspectof this kind of
network-basedlocalization. We beganthis work using
a simple,idealizedradiomodel—weassumeeachradio
hasanidentical,sphericalpropagation.Weselectedthis
modelbecauseit wassimpleto reasonaboutandeval-
uatemathematically. We expectedthat this model, at
best,would allow us to selectalgorithmsandestablish
performancebounds.To our surprise,it comparesquite
well to experimentallymeasuredpropagationin open,
outdoorareas.Not sounsurprisingly, it doesnot model

indoorpropagationwell atall.

We evaluatethe effectivenessof this modelboth by
comparingits accuracy to experimentalmeasurements
and then by consideringits effect on our estimatesof
localizationaccuracy. First, to compareits accuracy to
measurements,we evaluatedpropagationbetweentwo
Radiometrixradiopacket controllers(modelRPC-418)
operatingat 418 MHz. A nodeperiodically sent27-
bytebeacons;we definea 90%packet receptionrateas
“connected”andempiricallymeasuredan8.94mspher-
ical rangefor our simplemodel. To evaluatehow well
thissimplemodelcomparesto a real-world scenariowe
placedaradioin thecornerof anemptyparkinglot then
measuredconnectivity at1mintervalsovera10msquare
quadrant.Figure3 comparesthesemeasurementswith
connectivity aspredictedby the model. Among the 78
points measured,the simple sphericalmodel matches
correctlyat 68 pointsandmismatchesat 10, all at the
edgeof therange.Errorwasnevermorethan2m.

Although we have evaluatedthe accuracy of our ra-
dio model,a moreimportantmetricis theinfluencethat
modelhason theaccuracy of localizationandour eval-
uationof alternative localizationalgorithms.We evalu-
atedournetwork localizationalgorithmsby placingbea-
consat thecornersof a 10msquarein anoutdoorpark-
ing lot. We thenestimateda node’s positionat 1m in-
tervalswithin thissquarebothexperimentallyandusing
our sphericalmodel. Localizationalgorithmstypically
evaluatetheerrorbetweenpredictedandactualposition.
Figure4 shows this metric from the modelandexperi-
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ment.They trackeachotherclosely, includingplateaus
is the error levels, althoughsphericalmodel is consis-
tently slightly optimistic.

From theseexperimentswe concludethat very sim-
ple propagationmodelscanbe effective whensimulat-
ing protocolsin restricteddomains.Wecautionthatthis
approximationis not appropriatefor indoors(aswould
beexpected)wherereflectionandocclusionis common.
Our indoorsmeasurementsof propagationrangevaried
widely from 4.6–22.3mdependingon walls andexact
nodelocationsandorientations.Thevalidatedoutdoor
modelallows us to explorea muchwider rangeof sce-
nariosthroughsimulationthan could be donethrough
physicalexperimentation.

More generally, this example shows that in some
casesapplication-level metrics(suchaslocalizationer-
ror) are not strongly influencedby lack of detail in
lower-level simulationcomponents.In this case,it is
becausethis approachto proximity-basedlocalization
hasan inherrentmeasurementerror that is muchlarger
than the inaccuratyour simpleoutdoorradio propaga-
tion model. We concludethat when the applicationis
insensitive to detail, abstractsimulationscanbe effec-
tively applied.

4.2 Radio-based robot following

A centralchallengeto practicalroboticsis copingwith
errorin roboticinteractionswith therealworld. Robotic
sensorsarenoisy andactuators(wheels,etc.) often in-
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Figure4: A comparisonof localizationerrorwith spher-
ical andexperimentalpropagation.

accurate. One approachto accommodatethesemany
sourcesof environmentalerror is to designvery robust
algorithms. Insteadof trying to develop very detailed
modelsthephysicsof robotmovement,oneapproachto
roboticssimulationis to employ a simple model with
large amountsof randomerror [19]. We believe this
philosophyis alsoapplicablein networking: network-
ing algorithmsmustberobustto network dynamics;ro-
bustalgorithmscanoftenallow randomerrorto replace
detailedmodelsin simulation.(Whenerroris notcorre-
lated.)

We evaluatethis hypothesisin a hybrid scenario:we
have designedand simulatedan algorithm to get one
robot to follow anotherat constantdistance[12]. The
lead robot circles a large rectangularcorridor while
emittingperiodicradiobeacons.Thefolloweradjustsits
speedto keepa constantdistancewith the leader. The
followerlistensto beaconmessagesandincreasesspeed
when the loss rate is high and decreasesit when loss
rateis low. This algorithmassumesa short-rangeradio
wherelossratecorrespondsto distance.Figure5 shows
anidealizedradiopropagationmodel.

Indoor radiopropagationis muchlessthanidealdue
to multipath reflections. To investigatetheseeffects
withoutextremelydetailedmodelsof theinteriorof our
building,weaddarandomerrorcomponentbasedonan
“ �	��
 percent-error��
 ” model.With thismodel,apacket
is alwaysreceivedby nodeswithin radius � , but we add
a randomerror to this radiusbeforethresholding.This
erroris uniformly chosenwithin somepercentageof ac-
tualdistance;for example,at25%error, ��������
����������
where � is a randomnumberbetween��� and1. Fig-
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ure6 showsour adjustedpropagationmodelat 0, 5, 15,
and50%errorlevels.Notethat0%erroris actuallybet-
ter thanour idealizedpropagationmodel.

Weevaluatethequalityof distancekeepingwith each
of theseerrormodelsin Figure7. Weweresurprisedthat
distancekeepingperformanceis essentiallythesamefor
all propagationmodels.This arguesthat,for this exper-
iment,additionaldetail in thepropagationmodelwould
not offer additionalinsight into the trackingalgorithm.
This result is independentof the underlyingmodel for
two reasons.First, the algorithmis robust to error; its
decisionsare simple and return it to steadydistance.
Second,ourexpectationsin evaluatingthisalgorithmal-
low error; reasonablyclosefollowing (within a meter)
mostof thetime (90%)is good.

This experimentsuggeststhatqualitative evaluations
of applications are robust to error cantolerateabstract
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Figure7: Cumulative distribution of error in following
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modelsof underlyinglayers. We would like to further
verify thisclaimby repeatingthisexperimentwith phys-
ical robots.

This result is not specific to robotics; we have ob-
served similar resultsin experimentsinvolving wired
networksandtheSRMprotocol[15]. SRMhasthesame
propertiesasour robot-following algorithm:it usesran-
domizedalgorithmsto repair lost messages,andit can
be evaluatedby countingnumbersof duplicaterepair
messages.We have foundthat thenumberof duplicate
repairsis similarbothwith detailedhop-by-hopnetwork
simulationsandwith abstractsimulationsthat simulate
only end-to-enddelay[17].

5 Visualization of Wireless
Simulations

Finally, we considertheeffect of detailsin visualiza-
tion. We havedevelopednam asa generictool for visu-
alizing theoutputof network simulations[13]. We find
visualizationa very importanttool for protocoldebug-
ging, but thereis needto control the amountof detail
presentedto the user. In this suggestionwe examine
wayswe usevisualizationto control details,andways
thatvisualizationis helpfulatselectingtheright level of
detailfor wirelesssimulation.

Easy-to-usevisualizationaloneprovidesa hugestep
providing a large amountof detailedinformation in a
manageablefashion. Visual representationsof packet
flow succinctly capturehigh-level information about
traffic rates,congestion,sourcesand destinations,and
interactionsfor many nodesandlinks. Determiningthe
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sameinformationfrom textualpacket tracesfor asingle
nodeor link is muchmoredifficult. Oncehot spotsor
problemareasarevisually identified,tracescanbe ex-
aminedto extractspecificinformation.We stronglyen-
couragesimulationauthorsto visualizetheir protocols
early in developmentto aid debugging,andtheuseof a
generictool likenamcanreducethis effort.

Recentwork in datadiffusionprovidesoneexample
of the importanceof visualization[18]. Our early ex-
perimentswith datadiffusionemployedaveryhightraf-
fic load (a largefractionof network capacity).This re-
sultedin MAC-layertimeoutsandanomalousbehavior
completelyunrelatedto the protocolwe werestudying
simply becausewe wereout of anacceptableoperating
region. This statuswould have quickly andeasilybeen
determinedfrom a protocolvisualization,but was lost
in theaggregatestatisticswe considered.

Evenwith visualizations,thedetailcanbecomeover-
whelming. We areexploring two ways to control this
detail in nam.First, we provide differentkindsof visu-
alizationfor differentkindsof wirelesscommunication.
Second,we allow the userto control the level of detail
nampresents.

Namhastwo waysto visualizewirelesscommunica-
tions. First, we canvisualizepacket flow asrectangles
thatareanimatedandmove directly from thesourceto
destination(the lines from node1 to nodes2 and3 in
Figure8). This representationhasevolved from nam’s
use to visualize wired point-to-point networks where
packetsflow on links. This approachclearly identifies
the senderand receiver of the packet, the directionof
packet flow, and the time of transmissionand receipt.
However, thisvisualizationdoesnoteasilyadaptto sup-
port broadcasttraffic. Representinga broadcastpacket
asmultiple rectanglesvisually suggestsmultiple pack-
ets.This approachalsodoesnot easilyshow whencon-
currenttransmissionsfromdifferentnodesinterferewith
eachother.

An alternatevisualizationapproachis to show wire-
less packets as expandingcircles (the circles in Fig-
ure8). This clearly shows thepacket sourceandinter-
ferencewith otherpackets,but it doesnot show desti-
nations. If the rings disappearor fadewith distance,it
alsoshows nominalradiorange.Currentlywe useboth
approachesin nam: unicastpacketsaresentusingrect-
angles,while broadcastsaresentwith expandingcircles.

In addition to choosingbetweentwo visualization
methods,we allow the userto control the level of de-
tail presented.Weareaddingsupportfor bothtransport-
andMAC-level tracecollection in ns. Transport-level
tracesshow packets traveling from sourcesto destina-

Figure8: Wirelessvisualizationin nam

tions;MAC-level tracesaddMAC-layerretransmitsand
losses. Usersof namcanalsoselectandfilter dataat
run-time, focusingon datafor a particularsender, re-
ceiver, flow, packet-type,or similar characteristics.

6 Related Work

Thewired networking world hasdependedon yearsof
experienceto guide detail in networking simulations.
Ahn et al. werethe first to suggestexplicitly usingab-
stractrepresentationsof packet trainsto speedsimula-
tion [1]. Huangetal. haveexaminedtheuseof selective
levelsof detailor abstractionin wired multicastsimula-
tions,anddemonstratedthatabstractioncausesminimal
changestoSRMevaluations[17]. Ourworkdiffersfrom
this work in focusingon the relatively unexploredarea
of fidelity of wirelesssimulations.

Thedifficulty of radiopropagationhaslongforcedthe
wirelessnetworkingcommunityto multiplelevelsof de-
tail. Recentlythe communityhasfocusedon theques-
tion of validationandlevelsof detailin wirelesssimula-
tionsat eventssuchastheDARPA/NIST Network Sim-
ulation Validation Workshop[9, 16]. Although some
studieshave comparedwirelesssimulationswith real-
world experiments(for example,Johnson[20] for wire-
lessad hoc routing), thereis still relatively little expe-
riencein this area.Our work builds on this prior work
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by examiningfive differentcasestudiesin wirelessnet-
working.

Of course,simulationvalidationhasits rootsin gen-
eral simulationandotherdomains. Somerecentwork
in the areaincludesdefenseapplications[22, 3]. Our
work canbethoughtof asapplyingthesetechniquesin
thecontext of wirelessnetworking. Our work is similar
to Jakobi’s work in roboticssimulations[19] in thatwe
areexploring the substitutionof randomizednoisefor
systematicenvironmentalnoise.Unlikehiswork weare
investigatingthathypothesisfor wirelessnetworking.

7 Conclusions

Choosingthe right level of detail for network simula-
tion is difficult. Sincethe networking communityhas
lessexperiencein thewirelessdomainthanwith wired
networks,choosingabstractionsthereis evenmoredif-
ficult.

Therearerisksboth in simulatingwith too muchde-
tail or too little. Too muchdetailresultsin slow simula-
tionsandcumbersomesimulators.A very detailedsim-
ulationmayaccuratelypredicttoday’sperformance,but
it may not predicttomorrows protocolvariationsor be
easilyadaptto quickly explorealternatives.Simulations
which lack necessarydetailscanresultin misleadingor
incorrectanswers.Researchersmustchosetheir level of
simulationdetailwith care.

We have offeredseveralcasestudiesin wirelessnet-
work simulationto offer guidancefor whendetail is or
is notrequired.Evenwhenexamplesarenotdirectlyap-
plicable,similarvalidationapproachesmaybe.Wehave
alsosuggestedtwo approachesto copewith varyinglev-
els of detail. Whenerror is not correlated,networking
algorithmsthatarerobust to a rangeof errorsareoften
stressedin similar waysby randomerrorasby detailed
models.Finally, visualizationtechniquescanhelp pin-
point incorrectdetailsandcontroldetailoverload.
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