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Abstract

Experiencewith wired networks hasprovidesguidance
aboutwhatlevel of detailis appropriatdor simulation-
basedprotocolstudies Wirelesssimulationsraisemary
new questionsaboutapproriatelevels of detailin sim-
ulation modelsfor radio propagationand enegy con-
sumption.This paperdescribeshetrade-ofs associated
with addingdetail to simulationmodels. We evaluate
the effectsof detailin five casestudiesof wirelesssim-
ulationsfor protocoldesign. Ultimately the researcher
mustjudge what level of detail is requiredfor a given
guestion,but we suggestwo approacheso copewith
varying levels of detail. Whenerroris not correlated,
networking algorithmsthat arerobustto a rangeof er
rors areoften stressedn similar waysby randomerror
as by detailedmodels. We also suggestvisualization
techniqueghat can help pinpointincorrectdetailsand
managedetailoverload.

1 Introduction

Selectingthe correctlevel of detail (or level of abstrac-
tion) for a simulationis a difficult problem. Too little
detailcanproducesimulationghataremisleadingor in-
correct, but adding detail requirestime to implement,
delug,andlaterchangeit slowsdown simulation,andit
candistractfrom theresearctproblemat hand.Design-
ing simulationsto study a protocolinherentlyinvolves
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makingchoicesin which protocoldetailsto implement
or use.

Although a numberof network simulationpackages
are available,they do not remove this burdenfrom the
designerin customsimulatorsyesearchertypically in-
cludeonly the minimumpossibledetailsoutsidetheim-
mediateareaof study Existingsimulators(suchasOp-
net,ns-2[5], Parsec[2], and SSF[8]) provide detailed
protocolimplementationshut whatlevel of detailis re-
quiredin new protocols,or in adaptingexisting proto-
colsto modelnew hardware?Somesimulatorseasethe
cost of changingabstractionwith multiple, selectable
levels of detail (for example,ns [17]), but the design
choicemuststill bemade.

Choicesaboutdetailareparticularlydifficult for wire-
lessnetwork simulations.Wide experiencewith theim-
portantcomponent®f wired networks over the last 30
yearsallows significantabstraction For example point-
to-pointlinks areoftenrepresentedsasimply by band-
width and delay with a queue; framing, coding, and
transmissiorerrors are simply ignored or mathemati-
cally modeled. The youngerfield of wirelessnetwork-
ing provideslessguidanceon whatabstractionsareap-
propriate. Low-level detailscan have a large effect on
performancebut detailedsimulationscan be very ex-
pensve (for example radiopropagation).

This paperexploresthe questionof whatlevel of de-
tail is neededfor simulationsof network protocolsin
wirelessdomains. We begin by looking at the trade-
offs in differentlevelsof detailin simulations.We then
considerfive casestudies: enegy consumptionin ad
hoc routing, datadiffusion, radio-basedutdoorlocal-
ization, communications-dvien robot following algo-
rithms, andvisualizationof wirelesssimulations. The
contrikution of this paperis two-fold: first, by examin-



ing theeffectsof detailsonwirelesssimulationswe help
the networking simulation community judge the rele-
vanceof simulationstudies. Second,we identify two
differentwayssimulationresultscanbe spoiledby too
little detail,andtwo casesvherefairly abstracsimula-
tionssuccessfullymodelreal-world behavior.

2 Trade-offsof Detail in Wireless
Simulation

We next considerthe trade-ofs of more detailedor
abstracsimulations.

A commongoal is to infuse the simulationwith as
muchdetail aspossibleto provide a “realistic” simula-
tion. This approachs attractie: afully realisticsimu-
lation oughtto be ableto reproducethe resultsof lab-
oratoryexperimentsor network useby end-usersFail-
ing to implementdetailsguaranteeshat they won't be
reflectedin a simulation;for examplea wirelesspropa-
gationmodelthatdoesnt considerconcurrentransmis-
sionswill notmodelthehiddenterminaleffect. Further
more, detailsat multiple protocollevels canrevealim-
portantinteractionsbetweerayers.For example,router
synchronizatiomwasfirst studiedin simulation[14].

Yet a “fully realistic” simulationis not possible—
doesonestopatthenetwork layer?they physicallayer?
electronsor photons? Simulationdesigneramust limit
thelevel of detailsomavhere. The challengeis to iden-
tify whatlevel of detail doesnot affect answergto the
designquestionsat hand. For example,we know of no
network simulatorthat considerdletailsof a CPU’s in-
structionsetor memoryhierarchy—theselo not affect
designquestionsrelevant to wirelesssimulations. Yet
thesedetailsare critical to other networking problems
suchasveryrapidrouting[11].

Thereare several reasongo avoid excessve detail.
Simulationrun-timeis adwerselyaffectedby detail. Im-
plementatioranddeluggingtime is increasedand un-
detectedbugs in distantlayers can produceinaccura-
cies. Evenif dehugged,protocol details changeover
time. For example,an extremely detailedimplementa-
tion of WaveLAN from a few yearsagowould todaybe
supercededy the 802.11standardtoday Sometimes
getting all the details may be impossible,if they are
left open(or implementation-dependerit) the specifi-
cation, or whentrying to predict future behavior with
protocolsnot yetimplementedr standardizedFinally,
for mary of thesereasonssimulationsoften mix lev-
els of detail in differentcomponents.A very detailed,
microsecond-leel MAC simulation may be forced to

usea moreabstracipropagatiormodel(becauseall ob-

jects in the terrain were not specified)and an older

TCP implementation(perhapsnot including SACK or

recentlystandardize@xtensions).Simulationswith de-

tailedhardwaremodelsmayhave abstrac{perhapgan-

domized) scenariosof node placement,transmission,
andmovement.

Thereare several reasondor intentionally choosing
a high level of abstractionfor simulation. Distillation
of a researchquestionto its essencecan provide in-
sight not colored by arbitrary details of specific pro-
posedsolutions. For example, although multiple re-
sourceresenationandquality-of-serviceprotocolshave
beenproposedBreslauandShenler usea very abstract
servicemodelto focuson the centralissueof the ben-
efits of resenations[6]. When exploring a new area
wheremary issuesareunclear the needto quickly ex-
plore a variety of alternatves can be more important
than a detailedresultfor a specificscenario. For this
kind of nimble simulation relative comparisonsf alter
nativesare often moreimportantthana single detailed
guantitatve result. A moreabstrackimulationcanalso
maletheeffectsof achangean algorithmdistinct,where
they would be obscuredy othereffectsin a morede-
tailed simulation.Finally, omissionof simulationdetail
canimprove performanceby multiple ordersof mag-
nitude[17]. Memory and run-timeimprovementsdue
canoffer resultssooneyor allow largeror longerexper
iments,revealingdifferentaspectof protocolbehavior.
For example therelative performancef adhocrouting
protocolsdifferswith largenumbersof nodeq10].

The primary risk of simulationabstractioris the un-
known. Would additionaldetail changethe conclusions
of the simulationstudy? This problemis particularly
challengingwhenenteringa relatively unexploredarea
whereresearches intuitions may be underdeeloped.
Validation of simulationsagainstmore detailedsimu-
lationsandexperimentaimeasurementsananswetthis
guestion Butthecostof validationis fairly high: careful
experimentsrequireimplementingthe detailsin ques-
tion or purchasingsufficienthardwarefor real-world ex-
periments.

Over time, the resultsof validationexperimentswill
allow the communityto build anunderstandingf what
detailsareimportant. The communityhasbegun shar
ing this information through workshopssuch as the
DARPA/NIST Network Simulation Validation Work-
shop[9]. We next consideiseveralcasestudieghathave
arisenin ourresearclasfurtherexamples.

Table 1 summarizeghe caseswe examine,the rele-
vantdetailsthatwereconsideredandhow thosedetails



Case Relevant detail
enepgy-conciousad-hocrouting (§3)
datadiffusion (§3) MAC protocol

localization(§4.1)
robotfollowing (§4.2)
protocolvisualization(§5)

enegy consumptiormodel(idle behaior)

radio propagatiormodel
radio propagatiormodel
pacletvisualizationstratgy

Effects

incorrectresults

inapplicableresults
correctresults,applicationinsensitve to detail
correctresults,applicationrobustto error
utility of visualization

Tablel: Casestudiessxaminedin this paperandhow detail affectedstudyresults.

affectedthe resultsof the simulationstudy We found
that choiceof detail hadseveral differentresultson the
studies. Lack of detail causedwrong answersin two
ways,eitherbecausehey weresimply incorrect, wrong
or actively misleading,or because¢hey wereinapplica-
ble: technicallycorrectbut providing ananswerto part
of the designspacethat may not be sensibleor rele-
vant. In two othercasesrelatively abstractapproaches
werefoundto producecorrectresults eitherbecauséhe
application was insensitive to the detailsat hand, the
outputsof the applicationhad an existing component
of noisethat swampedary variation additionaldetails
provide, or becausehe application was robust to de-
tails, thealgorithmwasself-correctingo errors.Finally,
for the caseof visualizationwe foundthe approacheto
handlingdetail simply affect the usefulnes®f the visu-
alization.

3 Energy Consumption in Ad Hoc
Routing

Our first casestudy considersenegy consumption
whenroutingdatain ad hocnetworks. We examinetwo
recentstudiesin this area: an evaluationof datadiffu-
sion[18], anda studyof anenepgy-sasing variationsof
on-demanadhocroutingprotocols[24]. Choiceof ap-
propriatemodelsof radioenegy consumptiorandMAC
protocolsmake cancompletelychangethe conclusions
of thesestudies.

Several modelsof enegy consumptionfor wireless
communicatiorhave beenusedin literature:

e Successfullysentor receved pacletsincur anen-

ergy cost.

e MAC-level costscan be considered—MA-level
retransmission&, TS/RT'S, andpacletsthatareun-
successfullysentor recevedincur a cost.

e Enegyconsumeadvhile listening(or “idle”, having
the radio poweredon but not actively sendingor
receving) canalsobemodeled.

¢ Non-radiosystemcostscanbeconsidereddisplay
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Figurel: Comparisiornof enegy consumedor four ad
hocroutingprotocolswith differentenegy models(left,
black bars are without consideringenegy consumed
whenlistening; right, grey barsinclude this consump-
tion).

CPU,diskdrive).

e Batteryinternals(non-linearity temperaturesensi-
tivity, batterymemory etc.)canbe considered.

Selectingthe right level of detail dependwon the re-
searchquestionbeing considered. For most research
guestionsaboutnetworking protocols,non-radiocom-
ponentgfor example thedisplay)canbefactoredbutas
afixedoverheadalthoughin somecase<CPU-intensie
work must be considered(for example, software ra-
dios[4], or MPEG playout). Similarly, for roughcom-
parisonsof protocols,detailedbattery modelsare not
required—areasonablesimplifying assumptioris that
memoryor temperaturevill affectall protocolsequally

We have found modelingidle time makesa large dif-
ferencein protocol comparisons. We studied enegy
consumptiorof four ad hoc routing protocols(AODV,
DSR, DSDV, and TORA) with a simple traffic model
whereafew nodessenddataover a multi-hop path[24].
Usingasimpleenegy modelthatdoesnotconsideiidle-
time costs,we found that on-demandrotocolssuchas



AODV andDSR consumenuchlessenegy thana pri-
ori protocolssuchasDSDV and TORA/IMEP (theleft,
black barsin Figure 1). A priori protocolsare con-
stantly expendingenegy pre-computingroutes, while
nodesthat do not sourcedatado not usetheseroutes.
Thesedifferencesvanish, however, when we adopta
moredetailedenegy modelthatconsidersdle-timeen-
ergy consumption.WaveLAN radioshave a 1:1.05:1.4
ratioof idle:receve:sendenegy costg23]. With thisra-
dio modelall ad hoc routing protocolsconsidered:on-
sumeroughly the sameamountof enegy (within afew
percent). In this scenario,idle time completelydomi-
natessystemenegy consumptionso an insufficiently
detailedenegy model(not consideringdle time) com-
pletely changeshe studyresults.

This exampleillustratesthe casewhereinsuficient
detail can producean incorrect result. Not modeling
idle enegy consumptiorindicatesminimal differences
betweeradhocrouting protocols while addingidle en-
ergy shaws cleardifferences.Futurewirelessnetwork-
ing researchshouldincludethesedetailsin their power
modelsandshouldusecarewheninterpretingprior pub-
lishedresultsthatuseoverly simplifiedmodels.

Choiceof MAC protocolis alsocloselytied with ra-
dio enegy consumptionWe have studieddatadiffusion
protocols gvaluatingthepowerconsumptiorof datadif-
fusionascomparedo simplefloodingandanidealized
multicast[18]. The goal of theseexperimentswasto
provide enegy-conservingprotocolsfor long-livedsen-
sor networks. Again we hadtroublewith inappropriate
modelsof radio enegy consumption;all protocolsbe-
havedsimilarly whenidle costswereconsideredIn this
casethe problemwasaninappropriateMAC protocol.

Figure2 shavs the comparisiorof datadiffusionand
two alternatves,with a TDMA-lik e enegy model(Fig-
ure 2(a)) and an 802.11 enegy model (Figure 2(b)).
(Becauseat this time we did not have a TDMA model
in our simulatoy we approximatedt by adjustingthe
enegy model. We planto redotheseexperimentswith
differentmodelMAC models.)As shavn in the figure,
choiceof theMAC layerproducewerydifferentconclu-
sionswhencomparingthe algorithms,Figure 2(b) sug-
gestghereis nosignificantdifferencewhile Figure2(a)
shows a noticabledifference.

In this case,the conclusionis somevhat more sub-
tle. Resultsof simulationswith 802.11protocolsarenot
technicallywrong, but they are inappropriate. While
one could usean 802.11MAC for theseapplications,
thatwould be poordesignchoicesincelong-livedsensor
networksneedanenegy-conservingAC like TDMA.
Becausdhedetailsareinappropriatethey resultin con-

clusions(the algorithmsare all equivalent)that arein-
correctfor awell-designedystem.

Theseexamplessuggesthatidle-timeandMAC pro-
tocols are important details for wirelesscommunica-
tion studieswith PC-like network nodes. We have not
seenevidencethat further details (power consumption
of othersystemcomponent®r modelsof batteryinter-
nals) alter researchresultsin this domain. Additional
experienceas neededo validatethis assumptionThese
assumptionsnay not hold for studiesof increasingly
tiny (dust-mote-sizedhodeg[21]. We hypothesizeéhat
asnodeandradio power consumptionshrinks,and as
nodelifetime increasesadditionaldetailswill become
important.

4 Radio Propagation Models

Our next two studiesconsiderthe problemsof radio-
basedlocalization (determininga nodes location) and
robot following. In both caseswe found the level of
detail of theradiopropagatiormodelimportant.

Evenmorethanenegy models,mary levelsof detail
areemployedin radio propagatiormodelswith a single
sendelndrecever:

e The simplest models consideronly propagation
distancefrom senderto recever with a fixed for-
mulafor signalloss.

¢ Slightly more detailedmodelsmight usedifferent
modelsfor near and far recevers (for example,
theFriis andtwo-ray groundreflectionapproxima-
tions).

o A statisticalapproximatiorof shadeving might be
added.

e A more detailedmodel might considersignal at-
tenuationfrom large obstacles,perhapsmodling
line-of-sightcommunicatiordifferently from indi-
rectcommunication.

o Very detailedmodelswould considerantennage-
ometrieqorientation distanceoff ground)andper
form detailedradio ray-tracingto estimatereflec-
tion.

In addition,modelsmay or may not take in therelative
power of interferingtransmissions.
Radiopropagationvariesgreatly especiallyindoors,
motiving very detailedpropagationmodels. Unfortu-
nately accuratemodelsbecomevery computationally
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Figure2: Comparisorof datadiffusionalternatveswith TDMA-lik eenegy model(left) and802.11-likeenegy model

(right). (From[18], Figures4aand6c.)

expensve and require much more detail aboutthe en-
vironmentthanis typically available.

An attractive alternatie is to couplea simple model
with somelevel of statisticaloss,but therehasbeenim-
ited experiencewith how lessdetailedmodelschange
network behaior. We have evaluatedthis questionin
two casestudiespnewhereavery simplemodelproved
surprisinglyeffective in arestricteddomain,andthena
robotics-inspiredapproacho designingsoftwareto be
robustto modelerror.

4.1 Radio-based outdoor localization

Sometimessimple radio propagationmodels can be
quite effective for the purposef a problem. We are
exploring thetaskof spatial localization, determininga
nodes approximateocation, using only radio connec-
tivity to a setof beaconsvith well known locationg[7].
This approachwould be importantfor nodestoo small
or inexpensveto useGPS.

Radio propagationis a critical aspectof this kind of
network-basedocalization. We beganthis work using
asimple,idealizedradiomodel—weassumesachradio
hasanidentical,sphericapropagationWe selectedhis
modelbecauseét wassimpleto reasonaboutand eval-
uate mathematically We expectedthat this model, at
best,would allow usto selectalgorithmsand establish
performancdounds.To our surprisejt comparegjuite
well to experimentallymeasuredpropagationin open,
outdoorareas.Not so unsurprisinglyit doesnot model

indoorpropagatiorwell atall.

We evaluatethe effectivenessof this modelboth by
comparingits accurag to experimentalmeasurements
andthen by consideringits effect on our estimatesof
localizationaccurag. First,to compareits accurag to
measurementsye evaluatedpropagationbetweentwo
Radiometrixradio paclet controllers(modelRPC-418)
operatingat 418 MHz. A node periodically sent27-
byte beaconswe definea 90% paclet receptionrateas
“connected’andempirically measure@n 8.94mspher
ical rangefor our simple model. To evaluatehow well
this simplemodelcomparego areal-world scenariove
placedaradioin the cornerof anemptyparkinglot then
measuredonnectvity at1mintervalsoveralOmsquare
guadrant.Figure3 compareghesemeasurementwith
connectvity aspredictedby the model. Amongthe 78
points measuredthe simple sphericalmodel matches
correctlyat 68 points and mismatchesat 10, all at the
edgeof therange.Error wasnever morethan2m.

Although we have evaluatedthe accurag of our ra-
dio model,a moreimportantmetricis theinfluencethat
modelhason the accuray of localizationandour eval-
uationof alternatve localizationalgorithms.We evalu-
atedour network localizationalgorithmsby placingbea-
consatthe cornersof a 10msquaren anoutdoorpark-
ing lot. We thenestimateda nodes positionat 1m in-
ternvalswithin this squarebothexperimentallyandusing
our sphericalmodel. Localizationalgorithmstypically
evaluatetheerrorbetweerpredictedandactualposition.
Figure4 shaws this metric from the modeland experi-
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ment. They track eachotherclosely including plateaus
is the error levels, althoughsphericalmodelis consis-
tently slightly optimistic.

From theseexperimentswe concludethat very sim-
ple propagatiormodelscanbe effective whensimulat-
ing protocolsin restricteddomains We cautionthatthis
approximationis not appropriatefor indoors(aswould
beexpectedwherereflectionandocclusionis common.
Our indoorsmeasurementsf propagatiorrangevaried
widely from 4.6-22.3mdependingon walls and exact
nodelocationsandorientations. The validatedoutdoor
modelallows usto explore a muchwider rangeof sce-
nariosthroughsimulationthan could be donethrough
physicalexperimentation.

More generally this example showvs that in some
casesapplication-leel metrics(suchaslocalizationer
ror) are not strongly influencedby lack of detail in
lower-level simulationcomponents.In this case,it is
becausehis approachto proximity-basedlocalization
hasaninherrentmeasuremengrror thatis muchlarger
thanthe inaccuratyour simple outdoorradio propaga-
tion model. We concludethat whenthe applicationis
insensitive to detail, abstractsimulationscan be effec-
tively applied.

4.2 Radio-based robot following

A centralchallengeto practicalroboticsis copingwith
errorin roboticinteractionswith therealworld. Robotic
sensorsarenoisy andactuator§wheels,etc.) oftenin-
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Figure4: A comparisorof localizationerrorwith spher
ical andexperimentalbpropagation.

accurate. One approachto accommodatehesemary

sourcef ervironmentalerroris to designvery robust
algorithms. Insteadof trying to develop very detailed
modelsthe physicsof robotmovementoneapproacho

roboticssimulationis to employ a simple modelwith

large amountsof randomerror [19]. We believe this
philosophyis also applicablein networking: network-

ing algorithmsmustberobustto network dynamicsyo-

bustalgorithmscanoftenallow randomerrorto replace
detailedmodelsin simulation.(Whenerroris notcorre-
lated.)

We evaluatethis hypothesisn a hybrid scenario:we
have designedand simulatedan algorithmto get one
robotto follow anotherat constantdistance[12]. The
lead robot circles a large rectangularcorridor while
emittingperiodicradiobeaconsThefolloweradjuststs
speedo keepa constantdistancewith the leader The
followerlistensto beacormessageandincreasespeed
whenthe loss rate is high and decrease# whenloss
rateis low. This algorithmassumes short-rangeadio
wherelossratecorrespondso distance Figure5 shavs
anidealizedradio propagatiormodel.

Indoorradio propagatioris muchlessthanideal due
to multipath reflections. To investigatetheseeffects
without extremelydetailedmodelsof theinterior of our
building, we addarandomerrorcomponenbasecnan
“(r + percent-errg?” model. With this model,a paclet
is alwaysrecevedby nodeswithin radiusr, but we add
arandomerrorto this radiusbeforethresholding.This
erroris uniformly choserwithin somepercentagef ac-
tual distancefor example,at25%error, ' = r + .25ru
wherewu is a randomnumberbetween—1 and1. Fig-
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ure 6 shavs our adjustedpropagatiormodelat 0, 5, 15,
and50%errorlevels. Notethat0% erroris actuallybet-
terthanour idealizedpropagatiormodel.

We evaluatethe quality of distancekeepingwith each
of theseerrormodelsin Figure7. Weweresurprisedhat
distancekeepingperformanceés essentiallythe samefor
all propagatiormodels.This arguesthat, for this exper
iment,additionaldetailin the propagatiormodelwould
not offer additionalinsight into the trackingalgorithm.
This resultis independenbf the underlyingmodelfor
two reasons.First, the algorithmis robustto error; its
decisionsare simple and return it to steadydistance.
Secondpurexpectationsn evaluatingthisalgorithmal-
low error; reasonablyclosefollowing (within a meter)
mostof thetime (90%)is good.

This experimentsuggestshat qualitative evaluations
of applications are robust to error cantolerateabstract
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Figure7: Cumulative distribution of errorin following
distancdor thefour radiomodels.

modelsof underlyinglayers. We would like to further
verify this claim by repeatinghis experimentwith phys-
ical robots.

This resultis not specificto robotics; we have ob-
sened similar resultsin experimentsinvolving wired
networksandthe SRM protocol[15]. SRMhasthesame
propertiesasour robot-following algorithm:it usesran-
domizedalgorithmsto repairlost messagesandit can
be evaluatedby counting numbersof duplicaterepair
messagesWe have foundthatthe numberof duplicate
repairsis similar bothwith detailedhop-by-hometwork
simulationsandwith abstractsimulationsthat simulate
only end-to-endlelay[17].

5 Visualization of Wireless
Simulations

Finally, we considerthe effect of detailsin visualiza-
tion. We have developednam asa generictool for visu-
alizing the outputof network simulationsg[13]. We find
visualizationa very importanttool for protocoldehug-
ging, but thereis needto control the amountof detail
presentedo the user In this suggestionve examine
wayswe usevisualizationto control details,andways
thatvisualizationis helpful at selectingheright level of
detailfor wirelesssimulation.

Easy-to-usevisualizationaloneprovidesa hugestep
providing a large amountof detailedinformationin a
manageabldashion. Visual representationsf paclet
flow succinctly capture high-level information about
traffic rates,congestionsourcesand destinationsand
interactiongor mary nodesandlinks. Determiningthe



sameinformationfrom textual paclettracedor asingle
nodeor link is muchmoredifficult. Oncehot spotsor

problemareasare visually identified, tracescanbe ex-

aminedto extractspecificinformation. We stronglyen-
couragesimulationauthorsto visualizetheir protocols
earlyin developmento aid delugging,andthe useof a
generictool like namcanreducethis effort.

Recentwork in datadiffusion providesone example
of the importanceof visualization[18]. Our early ex-
perimentswith datadiffusionemployedavery hightraf-
fic load (a large fraction of network capacity). This re-
sultedin MAC-layertimeoutsandanomalousehaior
completelyunrelatedto the protocolwe were studying
simply becauseave wereout of anacceptableperating
region. This statuswould have quickly andeasilybeen
determinedrom a protocol visualization,but was lost
in the aggreyatestatisticswe considered.

Evenwith visualizationsthe detailcanbecomeover-
whelming. We are exploring two waysto control this
detailin nam. First, we provide differentkinds of visu-
alizationfor differentkinds of wirelesscommunication.
Secondwe allow the userto control the level of detail
nampresents.

Nam hastwo waysto visualizewirelesscommunica-
tions. First, we canvisualizepaclet flow asrectangles
thatareanimatedandmove directly from the sourceto
destination(the lines from node 1 to nodes2 and 3 in
Figure8). This representatiomasevolved from nam’s
useto visualize wired point-to-point networks where
pacletsflow on links. This approaciclearly identifies
the senderandreceier of the paclet, the direction of
paclet flow, andthe time of transmissiorand receipt.
However, this visualizationdoesnot easilyadaptto sup-
port broadcastraffic. Representing broadcaspacket
asmultiple rectanglesvisually suggestsnultiple pack-
ets. This approachalsodoesnot easilyshav whencon-
currenttransmissionfrom differentnodesnterferewith
eachother

An alternatevisualizationapproachs to shav wire-
less paclets as expandingcircles (the circles in Fig-
ure 8). This clearly shows the paclet sourceandinter-
ferencewith otherpaclets, but it doesnot shav desti-
nations. If the rings disappeanor fadewith distance,t
alsoshavs nominalradiorange.Currentlywe useboth
approachef nam: unicastpacketsaresentusingrect-
angleswhile broadcastaresentwith expandingcircles.

In addition to choosingbetweentwo visualization
methods,we allow the userto control the level of de-
tail presentedWe areaddingsupportfor bothtransport-
and MAC-level tracecollectionin ns. Transport-leel
tracesshowv pacletstraveling from sourcesto destina-
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Figure8: Wirelessvisualizationin nam

tions; MAC-level tracesaddMA C-layerretransmitand
losses. Usersof nam can also selectandfilter dataat
run-time, focusingon datafor a particularsendey re-
ceiver, flow, paclet-type,or similar characteristics.

6 Reated Work

The wired networking world hasdependean yearsof

experienceto guide detail in networking simulations.
Ahn et al. werethe first to suggesexplicitly usingab-
stractrepresentationsf paclet trainsto speedsimula-
tion[1]. Huangetal. have examinedtheuseof selectve

levelsof detail or abstractiorin wired multicastsimula-
tions,anddemonstratethatabstractiorcausesninimal

changeso SRMevaluationd17]. Ourwork differsfrom

this work in focusingon the relatively unexploredarea
of fidelity of wirelesssimulations.

Thedifficulty of radiopropagatiorhaslongforcedthe
wirelessnetworkingcommunityto multiple levelsof de-
tail. Recentlythe communityhasfocusedon the ques-
tion of validationandlevelsof detailin wirelesssimula-
tionsat eventssuchasthe DARPA/NIST Network Sim-
ulation Validation Workshop[9, 16]. Although some
studieshave comparedwirelesssimulationswith real-
world experimentqfor example,Johnsorj20] for wire-
lessad hoc routing), thereis still relatively little expe-
riencein this area. Our work builds on this prior work



by examiningfive differentcasestudiesin wirelessnet-
working.

Of course simulationvalidationhasits rootsin gen-
eral simulationand otherdomains. Somerecentwork
in the areaincludesdefenseapplicationg[22, 3]. Our
work canbethoughtof asapplyingthesetechniquesn
the context of wirelessnetworking. Our work is similar
to Jakobi’s work in roboticssimulations[19] in thatwe
are exploring the substitutionof randomizednoisefor
systemati@nvironmentalnoise.Unlike hiswork we are
investigatinghathypothesidor wirelessnetworking.

7 Conclusions

Choosingthe right level of detail for network simula-
tion is difficult. Sincethe networking communityhas
lessexperiencein the wirelessdomainthanwith wired
networks, choosingabstractionshereis evenmoredif-
ficult.

Therearerisksbothin simulatingwith too muchde-
tail or too little. Too muchdetailresultsin slow simula-
tionsandcumbersomaimulators.A very detailedsim-
ulationmayaccuratelypredicttoday’s performancebut
it may not predicttomorrons protocol variationsor be
easilyadaptto quickly explorealternatves.Simulations
whichlack necessargetailscanresultin misleadingor
incorrectanswersResearchemnustchosetheir level of
simulationdetail with care.

We have offeredseveral casestudiesin wirelessnet-
work simulationto offer guidancefor whendetailis or
is notrequired.Evenwhenexamplesarenotdirectly ap-
plicable,similarvalidationapproachemaybe. We have
alsosuggestetivo approache® copewith varyinglev-
els of detail. Whenerroris not correlated networking
algorithmsthatarerobustto a rangeof errorsare often
stressedn similar waysby randomerrorasby detailed
models. Finally, visualizationtechniquesanhelp pin-
pointincorrectdetailsandcontroldetail overload.
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