
1

Abstract 1

We discuss the performance effects of using per-
transaction TCP connections for HTTP access, and the
proposed optimizations of avoiding per-transaction re-
connection and TCP slow-start restart overheads. We
analyze the performance penalties of the interaction of
HTTP and TCP. Our observations indicate that the
proposed optimizations do not substantially affect Web
access for the vast majority of users, who typically see
end-to-end latencies of 100-250 ms and use low
bandwidth lines. Under these conditions, there are only 1-
2 packets in transit between the client and server, and the
optimizations reduce the overall transaction time by only
11%. Rates over 200 Kbps are required in order to
achieve at least a 50% reduction in transaction time,
resulting in a user-noticeable performance enhancement.

Note: This document first appeared on the web in June
1996, and was revised to its current form in August 1996,
as http://www.isi.edu/lsam/publications/http-perf/. This is
an archive of that version, with updated references only.

1: Introduction

There have been several recent discussions about the
performance problems of HTTP over TCP. This Web page
continues that discussion with a description of the perfor-
mance benefits of the proposed approaches. We discuss
the evolution of the HTTP protocol, and the potential for
inefficiencies. We then present analysis of these ineffi-
ciencies in current Web systems. We have found that,
except for users with Ethernet-speed end-to-end links

between the client and server, the performance enhance-
ments proposed in [16] and [9] have limited benefit. The
proposed application-layer persistent connection mecha-
nisms achieve only a 11-27% reduction in response time
for low bandwidth access, whereas we consider a 50%
reduction in response time the minimum for substantial
user benefit (i.e., the transaction is twice as fast). We con-
clude that such mechanisms are of limited benefit, and
observe that they may interfere with emerging Internet
services.

2: HTTP

The HTTP protocol was originally developed to reduce
the inefficiencies of the FTP protocol [14], [1]. The goal
was fast request-response interaction without requiring
state at the server. To see the performance advantage of
HTTP over FTP, we can compare the process of file
retrieval transactions in each protocol. Both protocols use
TCP, a reliable, connection-oriented transport protocol
[13].

In FTP, a client opens a TCP connection with the server
for control (Figure 1). Once that connection is established,
a request for a file is sent on that channel. The server then
opens a separate TCP connection for the file transfer, and
returns the file in that other connection. Each connection
requires one round-trip time (RTT) to open. The request
takes 1/2 a RTT to get to the server, and the response takes
another 1/2 RTT to return, in addition to the transmission
time of the file. The overall time required for an FTP
transaction is:

1 RTT control-channel OPEN
0.5 RTT send request on control-channel
1 RTT file-channel OPEN
0.5 RTT file starts to arrive

on file-channel
Ftrans time to transmit the file

3 RTT + Ftrans
= time to get the first file in FTP

1. This work is supported by the Defense Advanced Research Projects
Agency through FBI contract #J-FBI-95-185 entitled “Large-Scale
Active Middleware”. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Department of the Army, the Defense Advanced Research Projects
Agency, or the U.S. Government.

Analysis of HTTP Performance

Joe Touch, John Heidemann, and Katia Obraczka
Aug. 16, 1996

USC / Information Sciences Institute
{touch, johnh, katia}@isi.edu

USC/ISI Research Report 98-463 / Dec. 1998

2

This is shown in Figure 1, below. The control channel
interaction is shown in dashed lines (red), annotated on the
left, and the file channel is shown in solid lines (blue),
annotated on the right. The file transfer itself is in grey.

FIGURE 1. FTP File Transfer (first file)

Subsequent transactions to the same server may take
less time, because the control channel is already open. A
new TCP connection is required for each transaction in
conventional use (block and compressed modes do not
require this, but are not commonly used). The interaction
is shown in Figure 2.

FIGURE 2. FTP File Transfer (subsequent files)

0.5 RTT send request on control-channel
1 RTT file-channel OPEN
0.5 RTT file starts to arrive on file-chan
Ftrans time to transmit the file

2 RTT + Ftrans
= time to get next files in FTP

HTTP uses a single TCP connection for the entire trans-
action, achieving FTP’s best response time, even for the
first file requested. Further, HTTP doesn’t require the con-
trol-channel to be maintained at the server or client, so is
stateless and simpler to implement. The transaction is also
shown in Figure 3.

FIGURE 3. HTTP File Transfer

1 RTT channel OPEN
0.5 RTT send request
0.5 RTT file starts to arrive
Ftrans time to transmit the file

2 RTT + Ftrans
= time to get a file in HTTP

3: Potential Protocol Inefficiencies

There are inefficiencies in using HTTP over TCP. TCP
establishes a connection prior to transferring any data,
namely the request. TCP also includes a congestion avoid-
ance mechanism [7]. In both cases, these mechanisms are
restarted for each file request, possibly resulting in exces-
sive overheads.

User Server

FTP get file

FTP OK
TCP syn

TCP syn+ack

TCP ack

file rec’d

TCP DATA

TCP syn

TCP syn+ack
TCP ack

TIME

User Server

FTP get file

FTP OK
TCP syn

TCP syn+ack

TCP ack

file rec’d

TCP DATA

User Server

HTTP get file

file rec’d

TCP DATA

TCP syn

TCP syn+ack
TCP ack

3

3.1: Connection Establishment

A minimal reliable transfer could occur with as little as
one round-trip of overhead, plus the file transmission time,
as shown in Figure 4.

FIGURE 4. Optimal Transaction

1 RTT channel OPEN and send request,
file starts to arrive

Ftrans time to transmit the file

1 RTT + Ftrans
= time to get a file optimally

TCP does not support the minimal transaction because
the initial request cannot be delivered to the server until
the connection has been established, which takes 1.5
RTTs, from the server’s perspective (Figure 5) [13]. This
is true even if the request is enclosed with the initial
“SYN” OPEN packet; delivery of the request at the server
is stalled until the third packet of the exchange arrives.

FIGURE 5. Delayed request deliver

3.2: Congestion Management

TCP also employs two congestion management mecha-
nisms, one called “slow-start”, and the other called “con-
gestion avoidance” [7]. Slow-start prevents overwhelming

the network when a connection begins by limiting the ini-
tial send window size, and allowing that window to grow
in moderation to positive feedback. Congestion avoidance
incorporates the negative feedback of packet loss, and
modulates the send window as a result. Here were focus
on best-case behavior, and so are primarily concerned with
the slow-start mechanism.

In slow-start, when a connection opens, only one packet
is sent until an ACK is received. For each ACK received,
the number of packets that can be sent is increased by one.
For each round-trip, the number of outstanding packets
doubles, until a set of thresholds have been reached.

The packet size is negotiated. The default is 536 bytes
in TCP, although many implementations round this down
to 512. Hosts on Ethernets typically use 1460 for local
connections. Where implemented, MTU discovery will
allow Ethernet-sized MTUs on wide-area connections
[10].

Slow-start occurs when a connection is initialized,
when a packet is lost, or may occur when there is a signifi-
cant idle period in the connection. The latter is described
in [8], and implemented in 4.4BSD and derivatives,
although it has not been adopted by earlier BSD-TCP
users (for example, SunOS 4).

4: Alternative Protocol Mechanisms

There have been several proposals to address the poten-
tial inefficiencies of using HTTP over TCP. These include
persistent-connection HTTP, Transaction TCP, and
(recently) sharing TCP control blocks. These proposals
address either connection or slow-start overheads, and in
some cases, both issues.

4.1: Persistent HTTP

Persistent HTTP addresses both connection and slow-
start overheads. There are several distinct proposals for P-
HTTP, including [5], [15], and [9]. For the purposes of
this discussion, we treat them as equivalent.

P-HTTP attempts to achieve optimal transaction time
for sequences of transactions to the same server. The ini-
tial transaction occurs as in HTTP, but the connection is
not closed. Subsequent requests occur without needing to
re-open the connection.

In addition, P-HTTP attempts to avoid slow-start restart
for each new transaction, again by using a single connec-
tion for a sequence of transactions. Unfortunately, suffi-
ciently large gaps in the arrival of requests may cause a
restart of slow-start anyway, due packet loss during the
resulting packet burst when the transmission resumes,
notably in the 4.4BSD-derived TCP implementations. The
P-HTTP method is useful primarily for multiple adjacent

User Server

HTTP get file

file rec’d

TCP DATA

User Server

HTTP get file
TCP syn

TCP syn+ack
TCP ack

“HTTP get file”
delivered to application

“HTTP get file”
arrives

4

requests, as would occur on pages with embedded images,
for example.

P-HTTP achieves this efficiency at the expense of
application-layer complexity. Re-using a single connec-
tion requires application-layer multiplexing or can stall
concurrent requests arbitrarily. Consider retrieving a large
PostScript file, and issuing a small HTML file request dur-
ing the transfer. The HTML response will either be stalled
until the end of the PostScript file transmission, or the
PostScript file will be segmented. The server cannot know
whether this segmentation is required or not when it
started to send the PostScript file. MIME-style headers are
in-line and not encoded via “escapes”; only the specified
length is used to determine when to parse the next header.
As a result, the inefficiency of application-layer segmenta-
tion and reassembly occurs for every transaction. Finally,
application-level multiplexing interferes with emerging
Integrated Services multiplexing in the kernel, for Type-
of-Service and Quality-of-Service mechanisms [4].

4.2: Transaction TCP

Transaction TCP (T/TCP) provides transaction-ori-
ented service over TCP via extensions to the TCP protocol
[2], [3]. T/TCP uses cached per-host state to avoid the
delayed delivery of data carried with an OPEN, as dis-
cussed earlier. TCP delays that data to avoid delivery to
the wrong connection, especially in cases of aborted con-
nections. T/TCP uses cached values of extended state to
avoid such errors, and permits early delivery before the
third packet in the exchange.

In addition, T/TCP caches other TCP protocol control
block parameters, such as round-trip time measures, to
avoid inefficiencies with reconnecting to the same host.
Reusing slow-start information, which would avoid slow-
start restart, is discussed briefly in the T/TCP specifica-
tion.

4.3: Shared TCP Control Blocks

Shared TCBs (S-TCB) augment the TCB state-sharing
mechanism of T/TCP and show how to aggregate parame-
ters such as window size across sets of concurrent connec-
tions [17]. T/TCP state caching is aimed predominantly at
serial connection state reuse, whereas S-TCBs address
both serial and concurrent shared state reuse.

S-TCBs optimize only the inefficiency of the slow-start
restart component of HTTP over TCP. Also described in
the S-TCB memo are the effects of application-layer mul-
tiplexing, and ways in which kernel-based multilevel feed-
back queuing, as in Integrated Services, would be
adversely affected.

When S-TCB and T/TCP are coupled, they provide
similar efficiency to P-HTTP, but at the kernel-level rather
than requiring application-layer multiplexing.

5: Prior Analyses

Earlier analyses have claimed significant performance
problems with HTTP over TCP [16], [11], [12]. Both
Spero’s and Mogul’s analyses focused on client/server
interactions in well-connected (1 Mbps) hosts [16], [12].
Their conclusions do not apply to the vast majority of web
accesses, which are for small files over modem and ISDN
links.

Moskowitz described performance problems at the
server, where buffering limitations in the operating sys-
tems affected transaction performance. The claim is that
the server runs out of buffers to create new TCP connec-
tions; the purported evidence is the “Host Connected,
Waiting Reply” message. This message is emitted after the
TCP connection is established, which is in turn after the
TCB control block is allocated. This message is possibly
evidence of processing bottlenecks at the server after the
connection is established, although it is counter-proof of
the claimed lack of buffers.

We are currently looking at HTTP performance over
several transport protocols, including TCP, p-HTTP,
T/TCP, and UDP-based RPC protocols, over a wider vari-
ety of network conditions [6]. This paper will contain both
a more detailed model of HTTP performance than pre-
sented here and validation of this model against real-world
traffic.

6: Environment Characteristics

The degree of inefficiency of HTTP over TCP depends
on the environment in which the Web operates. Here we
describe some characteristics of that environment. These
factors will be used in the evaluation of the performance
inefficiencies of HTTP over TCP later.

6.1: Networks

Current network environments can be characterized by
a small set of classes: remote (satellite), modem, ISDN,
leased-line direct (T-1), and high-performance (ATM,
fast). These classes are named for dominant factor in the
path between client and server, shown in Table 1

The default TCP MSS is 536 bytes for data, although
most current implementations round this down to 512
bytes. Fast links support larger MSSs, but TCP often
ignores them and uses the default for connections where
MTU discovery is not implemented.

5

6.2: The Web

Current Web use can also be characterized by classes of
file types accessed. Several studies have shown that the
vast majority of Web accesses retrieve small files, on the
order of 6 KB. We describe these classes as shown in
Table 2.

Although this describes the characteristics of web pages
in general, the majority of accesses are to 6 KB files, and
that is the focus of the discussion. Other analysis at ISI
shows that the “Web page” case has a greater potential for
optimization than the HTML case, because it is composed
of multiple files [6]. In particular, the aggregate of files
denoted by a Web page can be retrieved in a single con-
nection with a single aggregate ‘GET-ALL’ request, rather
than even using persistent connections [12].

The effect of the optimizations (avoiding connection
establishment and slow-start) depends on the network
properties; for modem links it is 11%, for ISDN it is also
low, around 27%. Optimization increases significantly for
faster connections or for higher latency paths [6], which is
similar to the results in [16] and [9].

7: Evaluation

We want to determine the potential for inefficiency in
HTTP over TCP. For this purpose, we analyze the time
required for an HTTP interaction, computing an upper-
bound for both the per-transaction connection establish-
ment and potential slow-start overheads, and compare that
to the optimal time for transfer.

These analysis consider optimal performance of the
system. We assume that the hosts are limited only by the
network bandwidth, that server processing time is negligi-
ble, and that disk I/O and other bottlenecks are minimal.
We consider the worst-case performance of HTTP over
TCP, assuming no packet loss. This maximizes the benefit
of persistent connections.

Even so, these optimizations benefit most Web users
only minimally. When other factors, such as server pro-
cessing, packet loss, etc., are included, the optimizations
are even less noticeable.

The following section presents analysis for HTTP over
TCP. A more complete analysis of HTTP over several
transport protocols and P-HTTP is currently underway [6].
The formulae below are simplified versions originally
developed there. The formulae in this paper provide an
upper bound on performance, the formulae in [6] are more
precise and include implementation-specific interactions.

7.1: Analysis

The following notation is used in the analysis:

R = RTT

bw = bandwidth

MSS = max. segment size (packet size)

K = number of packets in the file
= filesize / MSS

L = round trip time in packets,
i.e., length of the pipe

= number of packets to fill the pipe
= bw * R / MSS

M = max useful window size
(lower bound)

= min(L, K)

S = round trips stalled in slow-start, assuming no
loss (upper bound)
(window starts at 2, see[6])

= floor(log2(ceil(M/2)))

Net
BW
(bps)

MSS
(bytes)

Latency (ms)
LAN/MAN WAN

satellite 9K 512 250 500

modem 29K 512 150 250

ISDN 112K 1460/512 30 130

direct 1M 1460/512 2 100

fast 155M 8192/512 2 100

TABLE 1. Network properties

Web
File size
(bytes) File Type

HTML 6K ASCII text

Web page 6+2+2K HTML and links
(2 icons)

text 60K ASCII text

icon 2K small GIF (icon)

image 20K large GIF
(clickable map)

photo 200K very large GIF
(photo)

TABLE 2. Web page properties

6

W = amount of wasted time
= (upper-bound on waste --

not all slow-start is wasted, though)
= slow-start + connection-setup
= R * S + R

F = min. file transmission time
= filesize / bw

Tmin = min. transaction time
= F + R

T = transaction time
= Tmin + W (discounting server processing

time)

R, bw, MSS, K, and L are self-explanatory. M is the
maximum useful window size for this file and network,
bounded by the smaller of the packets in round-trip (L)
and the packets in the file (K).

S is the number of round-trips stalled during the initial
slow-start. The initial send window starts at 1 MSS, but in
most BSD implementations it is increased to 2 when the
TCP SYN (connect start) is ACK’d. The window for data
transport effectively begins at 2, and doubles each round-
trip. The transmission stalls each time this window is
smaller than M. Each stall wastes at most one round-trip;
actually, the entire round-trip time is not wasted, since the
window was non-zero, but this is an upper-bound.

W is the amount of wasted time, the total of one round
trip for connection establishment, and at most one round
trip for each slow-start stall. We compare this number to
the absolute minimum for a transaction, composed only of
one round-trip for the request exchange and the file trans-
mission time. We assume here that the request transmis-
sion time is negligible compared to the file transmission
time; typically requests are less than 100 bytes. We also
ignore header overheads.

The amount of wasted time becomes noticeable to the
user when it is the same as the minimum transaction time,
or larger. At that point, removing re-connection and slow-
start restart overheads will halve the time of access. This
assumes no network loss.

Tmin + P <= W

(under best conditions, assume P goes to zero)

Tmin <= W

So we can plot the ratio of time wasted to file transmis-
sion, as an upper-bound on the optimization possible. This
ignores processing time and other impediments at the
server, as mentioned earlier. We also count the entire
round-trip of each slow-start exchange as wasted, which is
not strictly true. Up to one RTT-worth of data is sent dur-

ing this exchange, at most; by ignoring this, we achieve a
further upper-bound.

There are two ratios we can compare. The first is per-
cent wasted time, the ratio of waste to optimal file transac-
tion time. The second, more intuitive notion is percent of
possible reduction, the ratio of waste to transaction includ-
ing waste. The first is more meaningful experimentally,
because the waste varies independently of the optimal
transaction time, and so the ratio varies in the numerator
only. The second is easier to intuit; a 10-second transac-
tion with 50% possible reduction optimizes to 5 seconds,
whereas in the first equation this would be a 1:1 ratio. We
will show both the ratio and the percent possible reduc-
tion.

W
------ = ratio wasted time
Tmin

W
-------------- = % of possible reduction
Tmin + W

7.2: Some common cases

We plotted the ratio of waste to useful time on a con-
tour plot. For a given network RTT, we want to see what
bandwidth is required for the proposed optimizations to
reduce the overall transaction by half, i.e., where the waste
is the same as the useful time.

The graph is fixed for a constant filesize of 6 KB. We
consider bandwidths from 10 Kbps - 1 Mbps and latencies
from 0.01-1 seconds. Typical latencies are 70 ms for end-
to-end latency for average Web surfing in the USA, with
30-150 ms of additional latency for modem or ISDN links.
We therefore consider 250 ms total latency for modem
links and 100 ms total latency for other types of directly-
connected networks. Satellite network latencies are
higher, but not considered below.

Shown in Figure 6 are contour lines where the waste to
useful time is 0.25:1, 0.50:1, 2:1, and 3:1. I.e., for 1:1,
removing the overhead halves the effective transaction
time. The shaded area shows where this 2x speedup (or
greater) applies. For this graph, we consider Internet inter-
actions, so that the MSS is 512 bytes.

Current modem links, at 28.8 Kbps and 250 ms total
round-trip latency, have only 11% waste for a 6 Kbyte file
transfer (A), a ratio of 1.13:1. Waste of 50%, i.e., a ratio of
1:1, is achieved around 100 Kbps at 250 ms latency (B).

ISDN (112 Kbps) at 100 ms latency has 27% waste (C),
a ratio of 0.37:1. At 100 ms latency, 260 Kbps end-to-end
links are the minimum required to approach the waste
ratio of 1:1, i.e., the 2x speedup sought (D).

7

FIGURE 6. effect of optimizations (Internet MSS)
Contour plot of (wasted time/useful time)

7.3: MODEM (Internet MSS)

The following equations govern the benefit for modem
links. As indicated, the potential benefit is an 11% reduc-
tion in wasted time.

R = 0.250 s
bw = 28,800 bps
MSS = 512 Bytes = 4096 bits
(filesize = 6 KB)
K = 12 packets
L = 1.76
M = min(1.76, 12) = 1.76 packets
S = floor(log2(ceil(1.76/2))) = 0 rtts
W = 0.250 s

F = 1.71 s

W/Tmin = waste ratio is 0.13:1

W/(Tmin+W) = % poss. benefit is 11%

7.4: ISDN (Internet MSS)

The following equations govern the benefit for ISDN
links. These equations assume Internet MSS (512 bytes),
end-to-end. As indicated, the potential benefit is a 27%
reduction in wasted time.

R = 0.100 s
bw = 112,000 bps
MSS = 512 Bytes = 4096 bits
K = 12 packets
L = 2.73 packets
M = min(2.73, 12) = 2.73 packets
S = floor(log2(ceil(2.73/2))) = 1 rtt
W = 0.200 s
F = 0.44 s

W/Tmin = 0.37:1 waste ratio

W/(Tmin+W) = 27% possible benefit

We re-evaluated the graph for the case where MTU dis-
covery is implemented, and packets contain the Ethernet-
MSS (1460 bytes), as shown in Figure 7. In this case, the
results of the optimizations are different. End-to-end rates
of 80 Kbps are required at 250 ms latency (E), and 200
Kbps is required for 100 ms latency (F). ISDN at 100 ms
gains only 16% from the optimizations.

FIGURE 7. Effect of optimizations (Ethernet MSS)
Contour plot of (wasted time/useful time)

7.5: ISDN (Ethernet to ISDN)

The following equations govern the benefit for ISDN
links connected to local Ethernets, supporting and end-to-
end MSS of 1460 bytes. As indicated, the potential benefit
is 16%. Note that this is lower than the Internet MSS ver-
sion of an ISDN line, under otherwise identical conditions.

0.01

0.1

1

10 100 1M

RTT (sec)

Bandwidth (Kbps)

 0.25

 0.5

 1

 2

20 40 60 80 200 400 600 800

Ratio

A

C

B

D

0.01

0.1

1

1M
 0.25
 0.5

 1

 2

 3

 4

RTT (sec)

Bandwidth (Kbps)

Ratio

10 10020 40 60 80 200 400 600 800

E

F

8

R = 0.100 s
bw = 112,000 bps
MSS = 1460 Bytes = 11680 bits
K = 4.21 packets
L = 0.96 packets
M = min(0.96, 4.21) = 0.96 packets
S = floor(log2(ceil(0.96/2))) = 0 rtt
W = 0.100 s
F = 0.44 s

W/Tmin = 0.19:1 waste ratio

W/(Tmin+W) = 16% poss. improvement

These observations indicate that avoiding connection
establishment and slow-start does not benefit current Web
access for the vast majority of users. Most users see end-
to-end latencies of about 250 ms and use modem lines. At
these rates, the optimizations reduce the overall transac-
tion time by 16%. Rates over 200 Kbps are required to
provide user-noticeable performance.

8: Conclusions

Our analysis indicates that the persistent connection
optimizations do not substantially affect Web access for
the vast majority of users. Most users see end-to-end laten-
cies of about 250 ms and use modem lines. At these rates,
the optimizations reduce the overall transaction time by
11%. Bandwidths over 200 Kbps are required to provide
user-noticeable performance improvements.

To be noticeable, the optimizations require network and
file characteristics that are not true for most users. Con-
nection establishment optimizations require that the file is
as small as the round-trip bandwidth-delay product, or
smaller. Slow-start optimizations require that there are a
large number of packets in the round-trip, and that the
overall number of packets is a small number of round-
trips’ worth. Neither of these assumptions hold for users
over modem or ISDN lines accessing the vast majority of
Web files.

In such cases, only 1-2 packets are typically in transit in
the round-trip, negating the effects of slow-start optimiza-
tions. Typically, files are over 10x larger than the round-
trip bandwidth-delay product, negating the effects of con-
nection establishment optimizations.

In the future, bandwidths are sure to increase. Packet
sizes are also likely to increase, e.g., to 9 Kbytes for ATM,
and MSS discovery should be more widely available. File
sizes may increase as well. Given all three of these
advances, it is not easy to predict the overall effect. This is
discussed in further detail in ongoing work [6].

9: Acknowledgments

We would like to thank the members of ISI’s HPCC
Division, especially Ted Faber, for their assistance with
this document. This document was the result of discus-
sions on the http-ng and web-talk mailing lists, and we
also thank the members of those lists for their feedback.

10: References

[1] Berners-Lee, T.J, R. Cailliau and J.-F. Groff, The World-
Wide Web, Computer Networks and ISDN Systems 25
(1992) 454-459. Noth-Holland.

[2] Braden, R., “Extending TCP for Transactions -- Concepts,”
RFC-1379, USC/ISI, November 1992.

[3] Braden, R., “T/TCP -- TCP Extensions for Transactions:
Functional Specification,” RFC-1644, USC/ISI, July 1994.

[4] Clark, D., Shenker, S., and Zhang, L., “Supporting Real-
Time Applications in an Integrated Services Packet Net-
work: Architecture and Mechanism,” Sigcomm ’92, pp. 14-
26.

[5] Fielding, et al., “Hypertext Transfer Protocol - HTTP/1.1,”
(working draft), June 7, 1996.

NOTE: This became RFC 2068 in Jan. 1997.

[6] Heidemann, J., Obraczka, K., and Touch, J., “Analysis of
HTTP Transport Protocols,” (in progress).

NOTE: This was published with the revised title “Modeling
the Performance of HTTP Over Several Transport Proto-
cols,” ACM/IEEE Transactions on Networking 5(5), 616-
630, October, 1997.

[7] Jacobson, V., “Congestion Avoidance and Control,” ACM
Sigcomm ’88, August 1988.

[8] Jacobson, V. and Karels, M., “Congestion Avoidance and
Control,”

NOTE: This is a revised version of [7], which adds Karels
as co-author and includes an additional appendix. The
revised version has not been published, but is available at
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[9] Mogul, J., “The Case for Persistent-Connection HTTP,”
ACM Sigcomm ’95, August 1995, pp. 299-313. A longer,
more comprehensive version of this paper is available on
line at Digital Equipment Corporation Western Research
Laboratory Research Report 95/4, May, 1995.

[10] Mogul, J., and S. Deering, S., “Path MTU Discovery”,
RFC-1191, DECWRL, Stanford University, November
1990.

[11] Moskowitz, R., “Why in the World is the Web So Slow?”
Network Computing, March 15, 1996, pp. 22-24.

9

[12] Padmanabhan, V., and Mogul, J., “Improving HTTP
Latency,” Proc. of the Second International WWW Confer-
ence, Oct. 1994.

[13] Postel, J., “Transmission Control Protocol,” RFC-793 /
STD-007, USC/ISI, September 1981.

[14] Postel, J., and Reynolds, J., “File Transfer Protocol (FTP),”
RFC-959 / STD-009, USC/ISI, October 1985.

[15] Spero, S., “Progress on HTTP-NG,” (URL)

NOTE: This document was never archivally published. The
original URL was
http://www.w3.org/pub/WWW/Protocols/HTTP-NG/
http-ng-status.html

[16] Spero, S., “Analysis of HTTP Performance Problems,”
(URL)

NOTE: This document was never archivally published. The
original URL was
http://sunsite.unc.edu/mdma-release/http-prob.html

[17] Touch, J., “TCP Control Block Interdependence,” (work in
progress), USC/ISI, June 1996.

NOTE: This became RFC-2140 in April 1997.

