Production Use of a Gigabit LAN

Joe Touch, Hong Xu, Ted Faber, Annette DeSchon, Avneesh Sachdev
USC/ISI HPCC Division
http://www.isi.edu/atomic2

This work is supported by the Advanced Research Projects Agency through Ft. Huachuca contract #DABT63-93-C-0062 entitled “Netstation Architecture and Advanced Atomic Network”. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Department of the Army, the Advanced Research Projects Agency, or the U.S. Government. We receive additional support from Calren’s ARC Consortia and GTE’s SCAN Project.
ATOMIC History

A Mesh Supercomputer becomes an Gigabit LAN

Cal Tech’s Mosaic Supercomputer

Cable Driver 8x8 Switch

ATOMIC LAN
"Address Consultant" Source-routing
Windowed differential cable drivers
LAN-sized proof-of-concept
1993

Netstation
ATOMIC LAN as a host backplane

3x3 Switch

Sun S-bus Intf. Sun VME Intf.

Prototype ATOMIC LAN
Memoryless Mosaic processor
Dual-processor host interfaces
Lab-sized proof-of-concept
1992

ATOMIC-2
Production Use of the ATOMIC LAN
ATOMIC Components

Myricom-built hardware

- Sun SPARC SBus
- Host Interface

- 8-port switch
- 10” x 10” x 1”

- Uses 36-conductor twisted-pair cable (0.5-1.0” dia.)
- Byte-wide transmission (80 Mbps x 8 = 640 Mbps)
Outline

Protocols
File Server
Gateway
Security and Authentication

ISI has the largest production stand-alone ATOMIC LAN
ISI’s ATOMIC LAN

Total of 65 hosts
- All HPCC Div. Sun 10s & 20s (entire floor)

Two level topology
- Allows intermediate switch failure
- Relies on dynamic source route updates

Installation progress:
- Approx. 20 workstations in daily use
- Preparing to deploy ATM/ATOMIC gateway
- Investigating Fast Ethernet/ATOMIC gateway
Managing ATOMIC

New Hardware

- What metrics to watch?
- What timescale is important?
- What are the acceptable values of those metrics?

Tools

- Short term interactive network monitor
- Long term network monitor and summary tool
Bandwidth to the User

Protocols

Bandwidth Measurements

- **Hardware**:
 - SPARC 20/71
 - Fore SBA-200
 - Myricom LANai 2.3

- **Native transport**
 - 210 Mbps over ATOMIC
 - 136 Mbps over ATM

- **Kernel protocols (UDP)**
 - 150 Mbps over ATOMIC
 - 133 Mbps over ATM
ATOMIC Protocols

Dual-stack Protocols

- Atomic Transport Protocol (ATP)
 - RPC send/receive style reliable protocol
 - Designed to facilitate PVM over ATOMIC
 - Tuned down to device DMA
 - Implemented in user space

- PVM decomposition
 - ATP protocol for data
 - Kernel TCP/IP for control
 - Dual-stack driver

- PVM speedup
 - 65 Mbps using system protocols
 - 164 Mbps using ATP
ATPng Protocols

A LAN transport protocol
- Full duplex, reliable transport within ATOMIC
- Leverage DMA techniques from ATP

Compatibility Library for TCP applications
- Relinking most applications will provide TCP compatibility
- Compatibility at the socket level
- Library will use new transport or fall back to TCP
Network File Systems

File Server

Goals
- Remove network/protocol bottleneck
- Aggregate user requests fairly

Studies
- AFS and NFS studied
- Protocol limits throughput

Hardware
- Texas Memory Systems SAM-200 RAM disk
 • 140 Mbps, 4KB blocks, SPARC 20/71
- Classic disk/network bottlenecks are removed
File System Protocol Issues

File Server

Protocol/System bottlenecks
- Serial RPC
- Parallelism from multiple processes
- xdr adds a copy

Potential Solutions
- Pipeline RPC in 1 process
- Simplify data translation
Tuning the File System

File Server

Replace existing file data transfer mechanism

- Pipelined RPC
- In-kernel protocols
- Lightweight data encoding

Port server code directly to disk interface

- Remove Sbus bottleneck on disk data (aggregate)
- RPC allows simple server code

Initial implementation is modified NFS
ATOMIC-ATM Gateway

Goals

- Access other media at high speed
- Limited hardware

Host-based solution

- SPARC 20/71
- IP routing
 - BSD kernel-based
 - Direct inter-interface

![Graph showing throughput Mbps for different protocols and packet sizes.]

Throughput Mbps
Host-based Gateway Issues

Hardware Interactions

- **FORE ATM**
 - fly-by DMA
 - 155 Mbps limit

- **Myricom LANai**
 - High overhead DMA
 - 200 Mbps+ bandwidth

Unusual gateway characteristics

- **Asymmetric performance**
- **May be solved by another bus**
MD5 and High Speed IP

Authentication and Security

MD5 is the default required option for authentication in IP version 6

MD5 digest added to authenticated packets

- Proves that the packet is from another MD5 entity
- Provides more than data integrity (not a checksum)
- Touches every byte of an authenticated packet
MD5 Dataflow Analysis

Authentication and Security

- Mostly serial
- Compute-bound
- 5-level critical path (2 adds, 3 logicals)

- Sequentially dominated
MD5 Performance

Authentication and Security

Mbps

Ref. Impl., no cache
Optimized Ref. Impl., no cache
Optimized Ref. Impl., external cache
Optimized Ref. Impl., internal cache
Upper-bound

Workstation / architecture

DEC 5K MIPS
DEC Alpha
HP 712 HP-PA
HP 730 HP-PA
IBM 6K/410 PPC
IBM 6K/3AT P2
IBM 6K/590 P2
Intel 486
Intel Pentium
SGI 4400 MIPS
Sun SS2 RT601
Sun 10/51 SupSP
Sun 20/61 SupSP
Sun 20/71 SupSP2

ATOMIC-2

November 2, 1995

17 of 19
Other options

Authentication and Security

Seeking fast algorithm

- MD5 is 45 opcodes per word
- 15 ops/wd OK / 2-4 for “low cost”
- Alt. Hash (AHA) currently at ~200 Mbps
Conclusions

Current Status

- **File Server**
 - Analysis complete
 - Implementation underway

- **Protocol development**
 - ATP successful in improving PVM performance
 - New protocol in development

- **Gateway**
 - Tuning of current gateway continues
 - Searching for other hardware

- **Security**
 - MD5 analysis complete
 - Investigating MD5 in IP stack

http://www.isi.edu/atomic2