ARP: Active Reservation Protocols

featuring

ACC: Active Congestion Control

Ted Faber
Bob Braden, Bob Lindell, Jeff Kann,
Graham Phillips, Alberto Cerpa

USC/ISI
braden@isi.edu
faber@isi.edu

ARP Goals

- Apply Active Networking (AN) to signalling
 - control plane
- Support changing software
 - emerging protocols
 - customization
- Infrastructure
 - ASP EE design for protocol customizations
 - virtual networks
 - experiments (ABONE)

Active Signalling

- Signalling (state in routers), e.g.:
 - RSVP resource reservations
 - label switching paths
 - diffserv provisioning information
- Why should AN be used for signalling?
 - performance
 - distribution
 - customization

An Active Signalling Architecture

Diagram showing the integration of RSVP, RIP, ACC, NodeOS, Classifier, Routing, Scheduler, and ASP EE.
Active Signalling Applications

- Jrsvp
 - 90% complete RSVP implementation
 - tested in CAIRN w/legacy implementations
 - EE requirements:
 - soft state
 - access to routing system (RSRR)
- Jrip
 - RIP for our virtual network
 - same packet format & protocol as RIP

Feedback and Active Nets

- Passive (w/o ACC):
- Active (w/ACC):

ACC: Active Congestion Control

- Show that active networking techniques can improve feedback-based congestion control
- Expand the ASP framework to support congestion control
- Explore the design space of active feedback congestion control

ns Simulation Studies

- Simple TCP style algorithms
 - Notify host
 - Filter one window of traffic
- Results
 - As much as 18% throughput improvement on high BW-delay paths with bursty traffic
 - Detailed discussion at http://www.isi.edu/~faber/pubs/active.ps
ACC and ARP

- ACC:
 - reacts to congestion events
 - installs filters
 - sends feedback
- Low per-packet CPU overhead
- CPU intensive work is signalling
- ACC fits in a signalling framework (ASP)

ACC Implementation

- Using ARP’s internal classifier/scheduler
- Ported Partridge’s RDP to Java
- Activating RDP

Protocol Customization

- Customize code for:
 - new feature sets
 - algorithm changes (authentication)
 - bug fixes
- Multiple customizations must coexist
- Active Signalling Protocol (ASP) EE
ARP Customizations

- AA:
 - set of classes working together
 - packet context \rightarrow class bindings

![Diagram of class bindings between Class A and Class B](image)

Customized Implementations

- Three custom versions of RSVP on one router
 - base
 - base + SCOPE
 - base + CONFIRM
 - (SCOPE and CONFIRM are new features)

- Demonstrated at July PI meeting

ASP Design for Customization

- Dynamic binding
- Code sharing
- Resource protection between AAs
- (Virtual) network I/O
- Inter-AA communication
- Per-AA soft-state

Dynamic Binding

- Dynamic name binding
 - apparent \rightarrow definite name (in the EE)
 - definite name \rightarrow code (at remote servers)

- Transparent extension
 - first mapping: feature changes
 - second mapping: invisible changes

- Load each implementation once
Resource Protection

- ASP AAs should not interfere with each other
 - accident
 - malice
- ASP: AA-based protection
- Java: class-based protection
- Java → ASP:
 - generalize static data to per-AA data
 - prevent AA data exchange through ASP

Future Work

- AA resource limits
- Component mechanism
- Fleshing out dynamic loading
- Security and inter-AA communication
- Porting to a common NodeOS
- ACC implementation and testing

Virtual Networking

- VNet module abstracts network
 - addressing
 - end-to-end/hop-by-hop delivery
 - routing
 - management interface
- Same interface as native code