Using Active Networks To Improve Feedback Congestion Control (ACC)

Ted Faber
USC/ISI
faber@isi.edu

Active Networks (AN)

- Active Network: A Programmable Network
 - Number of Programmable Elements
 - Time Scale
- In the Limit...
 - Each Network Element Programmable
 - Each Packet a Program (Capsules)

Outline

- Active Networking
- Feedback Congestion Control
- Active Congestion Control (ACC)
- ACC Simulations And Implementation Status

AN Example (Video Transcoding)
Uses of AN

- Dynamic Router Code Updates
- Management And Monitoring
- Service Migration
- New Services INside The Net

Where Does ACC Fit?

- Assume:
 - CPU Cycles On Routers And Access with AN
 - Access To Router State (Queue Lengths)
 - Simple Programmability
- Can We Improve Feedback Congestion Control? (Yes, or I’d be at home…)

Challenges of AN

- Security - Can It Be Done Safely/Fairly?
- Efficiency - Can It Be Done Quickly?
- Applicability - Is It Worth Doing?
 - Active Congestion Control (ACC)

Feedback Congestion Control

- Iteratively Search For A Good Operating Point
 - Make A Change
 - See How The System Changes
 - Observation Determines The Next Change
- TCP Sender...
 - Changes Window Size
 - Checks For Loss Each Round Trip Time
 - If Loss, Reduce Window To 1/2 Current
 No Loss, Increase Window By 1 Packet
More TCP Congestion Control

- Additive Increase/Multiplicative Decrease
 - Probes Slowly For Additional Capacity
 - Allows Router To Drain After Overflow
- Loss Is Deduced – No Direct Feedback
 - Timeout
 - Successive Same ACKs

Some TCP Optimizations

- Slow-Start
 - Oscillation Control
- Fast Retransmission
 - Oscillation Control
- Random Early Drop (RED) Queueing
 - Signal Quality
- Explicit Congestion Notification (ECN)
 - Signal Quality
- TCP Vegas
 - Signal Quality

Feedback Shortcomings

- Congestion Signal
- Oscillation Control
- Bandwidth-Delay Product

ACC: Bandwidth-Delay Product

- Use Router Intelligence To Reduce Congestion
- Routers Calculate Endpoint Responses
- Nearby Routers Implement Local Response
- Source Eventually Recalibrates
- Reverse the Lag
Method Comparison

- Passive
 - Infers Congestion
 - Endpoint Response

- Active
 - Detects Congestion
 - Router Response

Simulation Studies (Algorithm)

- ACC for TCP:
 - Routers Initiate Correction On Packet Drop (Routers Use RED)
 - Packets Are Filtered On Arrival (Simulates Upstream Drop)
 - Corrections Calculated From Extra Packet Info (Current Congestion Window In Header)
 - Source Modifies Behavior To Match Feedback (Source Matches Router Calculation)

Simulation Studies (Topology)

- Cross Traffic Sources (7)
- Bulk Traffic Sources (10)
- R1: 10 Mb/s delay varies
- R2: 1.5 Mb/s 10ms
- R3
- Bulk Traffic Sinks
- ns simulations
- Compare ACC to TCP in high BW-Delay
- Bursty Traffic

Throughput vs. RTT (Std. Dev. bars)

- ACC
- Standard TCP Reno
Simulation Conclusions

- At High BW-Delay Product, ACC:
 - Adjusts Each Window Less Frequently
 - Adjusts Each Window A Larger Amount
 - Each Source Keeps Larger Window Longer

- At Lower BW-Delay Product, Over-control

- Best Improvement: 20%+
Implementation

- Implement ACC In The ISI ASP AN Environment
- Leverage ASP Development Work
- Advance Development of ASP
- Implement Transport (RDP) To Test Ideas

Why an Active RDP?

- Simpler than TCP – concentrate on ACC
- Take advantage of AN
 - Virtual Networking (some risk, too)
 - Active Code Loading
 - Improve Environment
 - Simplify Filtering
- RDP Is The Only General Reliable Active Transport

RDP Status

- Reliable Packet Transport Functions
- Incorporates TCP-like Congestion control
 - Fast Retransmission
 - Slow-Start
 - Congestion Avoidance
- Performance Acceptable (in Java!)
- Next Step: Activation
Conclusions

- If AN Works, Feedback Congestion Control Can Benefit
 - ACC Shows Improves Throughput Max 20%
 - Possibility Of Tuning Algorithms Further
- ACC Will Be Tested in a Real AN Environment
 - RDP Being Activated in ASP

For More Information

- My Home Page:
 http://www.isi.edu/~faber/
- ACC Home Page:
 http://www.isi.edu/active-signal/ACC/
- ARP Home Page:
 http://www.isi.edu/active-signal/ARP/
- ISI AN Home:
 http://www.isi.edu/active-signal/