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Abstract

We demonstrate how to apply Coupling from the Past, a simulation technique for exact sampling, to
Markov chains based on TCP variants. This approach provides a new, statistically sound paradigm for
network simulations: instead of simulating a protocol over long times, or explicitly finding the stationary
distributionof a Markov chain, use Coupling from the Past to quickly obtain samples from the stationary
distribution.

Coupling from the Past is most efficient when the underlying state space satisfies a partia order and
certain monotonicity conditions. To efficiently apply thisgeneral paradigm to TCP, we demonstrate that
the states of a ssimple TCP model possess a monotonic partial order; this order appears interesting in its
own right.

Preliminary simulation resultsindicate that thisapproach is quiteefficient, and producesresultswhich
are similar to those obtained by simulating a TCP-Tahoe connection.

1 Introduction

There are two commonly used methodsfor determining or comparing the performance of TCP variants. The
first approachisto usesimulationsover largetime scales, usingtoolssuchasns[17]. Whileuseful in practice,
this approach generally lacks a statistical basis, without a priori knowledge of how long a TCP simulation
should runin order to obtain agood sample. A second approach isto develop asimplified TCP model, often
based onaMarkov chain. (Another recently proposed related approachisto use stochastic fluid models[15].)
If enough simplifying assumptions are made, such a model may yield an equation (or bounding equations)
for relevant quantities such as throughput [16, 19, 6, 3]. Such atack often requires fairly extreme simpli-
fications, however. Alternatively, given an appropriate model one may be able to calculate explicitly the
equilibrium distribution [18, 22], from which relevant quantities can be derived. The calculations required,
however, grow with the complexity of the model. For example, if complex loss models are used, calculating
the equilibrium distribution may require significant resources.

We suggest another approach that may prove useful for studying performance of TCP variationsor sim-
plifications. This approach is to treat a TCP connection as a Markov chain and obtain a sample from the
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stationary distribution of thischain. Unlike previouswork, our approach does not require computing the en-
tirestationary distribution. Also, unlikesimulation attacksthat simply run the chain for along period of time,
our approach is grounded with a solid statistical basis. Specifically, under certain conditions, one can run a
Markov chain in such away that oneis sure to abtain an exact sample from the stationary distribution.

We apply “ Coupling from the Past” (CFTP) [20], asimulation techniquewidely used to sample combina-
torial structuresin mathematics and physics, to Markov chainsfor TCP. Whilethisconnectionistheoretically
interesting initsown right, we believe that CFTP may also prove a practically useful tool for network analy-
sis. Indeed, we suspect that CFTP may prove useful for studying other similar complex network phenomena
that can be modeled effectively as Markov chains.

CFTPisessentialy avariant of the Markov Chain Monte Carlo method [8, 13] and anatural extension of
the work on approximate and exact sampling for specific Markov chains[4, 14, 13]. Markov Chain Monte
Carlo methods have already been used widely for problems arising from combinatorics (e.g. [5, 1]), physics
(e.0. [10, 11]), statistics (e.g. [4]), and optimization (e.g. [7]). The reader isreferred to an excellent descrip-
tion of CFTP by Propp and Wilson [20] for more detail.

Coupling from the Past is most effective when there isa partial order on the underlying state space with
amonotone structurei.e. if X < Y inthe partial order, then thisrelationship is preserved as the states X
and Y evolvein time. Accordingly, we first present a partial order defined on all possible states of a TCP
connection. We show that thispartial order resultsin aminimum and a maximum state. The minimum state
correspondsto a connection performing slow start, with the slow start threshold and the congestion window
et to the smallest possible values. The maximum state corresponds to a connection performing congestion
avoidance, with the congestion window set to the maximum possible value. We then demonstrate that if
we start in two different states which are ordered and couple their packet |oss events, then the ordering is
preserved as the states evolve. Thus the partial order has a monotonic structure. This alows us to apply
CFTP to efficiently obtain an exact sample from the stationary distribution of the window sizes of a bulk
TCP connection; here the stationary distributionis as seen by a random packet.

The sampling algorithm is very simple. For notational convenience, it is simplest to think of arranging
matters so that packet sequence numbers are increasing but non-positive, so that our exact sampleisobtained
at the packet numbered 0. To obtain a sample from the exact distribution of the TCP Markov chain, we first
generate an infinite packet loss pattern going backwards from packet 0, and chooseasmall value . Thenwe
simulate the TCP connection for packets numbered — to O starting in both the minimum and the maximum
states. If the two states have converged by the time we get to the packet number 0, then the common state at
the end isthe desired sample. Otherwise, we double 7 and repeat. Note that the work involvedisjust to run
the Markov chains, abeit from two statesinstead of just one.

In order for the CFTP paradigm to apply, the underlying Markov chain needs to be ergodic. In the case
of TCP, whether the chainis ergodic or not depends on the nature of the loss processthat determines whether
each packet getsdropped or successfully transmitted. Two interesting loss processesthat result in ergodicity
of the TCP chain are where the packet drops arei.i.d., and where the packet dropsform a Markovian On-Off
process. A further conditionisthat we need to be able to sample from the stationary distribution of the loss
process, and create aloss pattern backwardsintime. A more detailed explanationis presented in section 4.1.

We also perform a running time analysis of this scheme; in order to obtain one exact sample, we need
to simulate a TCP connection over O(N ;.. log W) packets on the average, where N,,,;, is the number of
packets required for the TCP Markov chain to mix (see section 4.3 for aformal definition). It is unrealistic
to expect to obtain any good sample (much less an exact sample) in fewer steps than the mixing time, and
hence the running time guarantees are quite strong. Finally, we show how simple sub-sampling techniques

! Clearly an infinite loss pattern can not be generated in the traditional sense; in order to “generate” such a pattern, it sufficesto
fix a deterministic algorithm that takes a non-positive packet sequence number as an input, and output a bit indicating whether this
packet got lost. We deal with thisissuein greater detail in section 4.1.



can alow usto sample from the stationary distribution at a random time instant (as opposed to at a random
packet departure epoch).

Several pointsabout the CFTP approach are worth noting. First, even though the running time guarantee
involves the quantity N,,;,:, the algorithm does not need to know this quantity to obtain the exact sample.
Thisisagreat asset, since computing V.,;.. or an upper bound on N ;- can be very complicated even for
very simple Markov chains. Second, even though proving the correctness of the CFTP approach involves
the partial order defined in section 2, the resulting sampling algorithm does not involve any knowledge of
the partial order. Again, thisis very useful since the partial order and the proof of monotonicity are quite
intricate. Finally, itisimportant to notethat CFTP does hot strictly require monotonicity under apartial order,
although these requirements aid analysisand greatly improve the practicality of using CFTP. Thus, although
TCP variants can demonstrate non-monotonic behaviors [9], we believe this approach can be extended to
Markov chainsfor other TCP variants besides the chain considered in this paper. Also, we believe that our
monotonic partial order isinteresting in its own right and may lead to further insightsinto the nature of TCP
congestion control.

Our simulations of simple scenarios suggest that this approach is efficient, scales well with increasing
maximum window sizes, and yields results which are close to those obtained by running the network simu-
lator nsfor TCP-Tahoe. Our simulation results are quite preliminary, and it would be interesting to develop
amore extensive simulation infrastructure to explore the practical utility of the ideasin this paper.

In this paper, we restrict ourselvesto bulk TCP connections, so we ignore the connection establishment
phase. Further we assume that the TCP slow start and congestion avoidance algorithms are in place, but
fast retransmit and fast recovery algorithmsare not (see [12, 21, 2] for adetailed description of these algo-
rithms). Extending our approach to all variants of TCP and to other networking protocolsis an interesting
open problem.

Section 2 defines the partial order, and section 3 proves that this partial order is monotonic. Section 4
detailshow the CFTP paradigm can be applied to this problem, section 5 presentsthe simulation results, and
section 6 concludes the paper.

2 A Partial Order on TCP Windows

In this section, we define a simplified state space for TCP, and provide a partial order on this state space. We
show that this partial order has unique minimum and maximum e ements, which isuseful in applying CFTP.

Definition 1 GivenaTCP connectionC, thestate.S (C) of the TCP windowisthetriplet (MODE, SSTHRESH, CWND)
where

e MODE = SS if the TCP connection is performing slow start,and Mobe = CA if the connectionis
performing congestion avoidance.

e SSTHRESH denotes the Sow start threshold. If MODE = CA then the slow start thresholdisirrele-
vant and is denoted by the symbol .

e CWND denotes the congestion window of the TCP connection.

We use MODE(.S), SSTHRESH (5), and CWND(S) to denote the three components of the state S; also we
overload notation and use MODE(C) etc. to denote MODE(.S(C)) etc.

Definition 2 Let S denote the space of all valid TCP states.



We do not defineformally what the valid TCP statesare, butinvokethe propertiesof TCP asand when needed
to disqualify states from belonging to S. In particular, we assume that a TCP connection goes out of slow
start and into congestion avoi dance as soon as the congestion window becomes equal to or exceeds the slow
start threshold.

We now definearelation < on S.

Definition 3 Giventwostates A, B € S, therelation A < B holdsif and only if exactly one of the following
istrue:

A) = CA ,MODE(B) =SS, and CwND(A) < CWND(B)

Thisrelation has some very interesting properties. In particular, wewill show that thisrelationisapartial
order. Figure 1 illustratesthis partial order for a smple case.
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Figure 1: A pictorial representation of the partial order < for asmall set of TCP window states. Thereisa
directed path from B to A in theabove graph iff A < B. Noticethat thereisaminimum state (SS , 2, 1), a
maximum state (CA , (), 4), and that thereareincomparable states (eg. thestates(CA , 0, 3) and (SS , 4, 2)).

2.1 Thepartial order property
We now claim that therelation < isapartial order i.e. it isreflexive, anti-symmetric, and transitive.
Theorem 1 Therelation < isa partial order.

Proof: X < X istrivia to prove, so reflexivity holds.
To prove anti-symmetry, we need to show that if X # Y then X < Y = Y £ X. The proof is by
contradiction. Suppose X # Y, X < Y andY < X. We consider four cases:
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1. Suppose MODE(X) = MODE(Y) =
we know that CWND(X) < CWND
CWND(X)i.e. CWND(X) =
SSTHRESH (X') = SSTHRESH

= CA . Then, combining X < Y withrule 1 in definition 3,
(Y). SinceY < X also holds, we know that CwND(Y) <
CwND(Y). Since MODE(X) = MoDE(Y) = CA, we know that
Y) = (. Hence X = Y whichisacontradiction.

(

2. Suppose MODE(X') = MODE(Y) = SS . Then combining rule 2 in definition 3 with X < Y and
Y < X,weget SSTHRESH (X ) < SSTHRESH(Y'), SSTHRESH (Y ) < SSTHRESH (X ),CWND(X) <
CwND(Y'), and CwND(Y) < CwND (X ) simultaneously. Together, theseimply that X = Y, which
isacontradiction.

3. Suppose MODE(X) = SS and MoDE(Y) = CA . Then by rule 3 and thefact that X < Y, we
get SSTHRESH (X ) < CwND(Y'). Combining rule4 withY < X, weget CWND(Y) < CWND(X).
Together, the two imply that SSTHRESH (X' ) < CwND(.X'). But TCP goes out of slow start and into
congestion avoidance when the congestion window becomes equal to or exceeds the slow start thresh-
old. Hence state X' could not be in slow start mode, which isa contradiction.

4. Suppose MODE(X) = CA and MODE(Y') = SS . Thisis symmetric with the previous case.

Since all four cases above result in a contradiction, we have established that < is anti-symmetric.
We must now prove that < istransitivei.e. X < Y andY < Z together imply X < Z. Again, we
divide the proof into four steps:

1. SupposeMoODE(X) = MODE(Y) = CA . If MODE(Z) = CA ,thenbyrulel, wehave CWND (X ) <
CwWND (YY) < CwND(Z) whichimpliesthat CwND (.X') < CwND(Z). Invokingrule1 again, wehave
X < Z.If MODE(Z) = SS , thenby rules1 and 4, wehave CWwND (X ) < CWND(Y) < CWND(Z);
invoking rule 4 again impliesthat X < 7.

2. SupposeMODE(X) = MODE(Y) = SS . If MODE(Z) = SS thenby invokingrule2, weknow that
CWND(X) < CwND(Y) < CWND(Z) and SSTHRESH (.X') < SSTHRESH(Y) < SSTHRESH (Z);
invoking rule 2 again, we obtain X < Z. If MODE(Z) = CA theninvoking rules 2 and 3, we get
SSTHRESH (X') < SSTHRESH (YY) < CWND(Z); reinvokingrule 3 gives X < Z.

3. Suppose MODE(X) = SS and MoDE(Y) = CA . If MODE(Z) = CA theninvoking rules 3 and
1, we get SSTHRESH(X) < CWND(Y) < CWwWND(Z); invoking rule 3 again gives X < Z. The
case MODE(Z) = SS isalittlemore involved. Invoking rules 3 and 4, we get SSTHRESH (X)) <
CwWND(Y) < CwND(Z). Thisin itself is not enough to invoke rule 2 and claim that X < Z. But
observe that since X and ~ are both in slow start, we know that CWND(.X') < SSTHRESH (.X') and
CWND(Z) < SSTHRESH (). Combining these two inequalitieswith SSTHRESH (.X') < CWND(Z)
gives CWND(X') < SSTHRESH(X) < CWND(Z) < SSTHRESH(Z). We can now invokerule 2 to
claimthat X < Z.

4. SupposeMODE(X) = CA andMoODE(Y) = SS . If MODE(Z) = SS , thenrules4 and 2 imply that
CWND(X) < CwND(Y) < CwND(Z); invokingrule 2 again gives X < Z. If MODE(Z) = CA ,
then rule 4 implies that CwND (X)) < CwND(Y), MODE(Y) = SS impliesthat CWND (Y) <
SSTHRESH(Y'), and rule 3 impliesthat SSTHRESH (Y) < CwND(Z). Combining the above, we ob-
tain CWND(.X') < CWND(Z); invokingrule 1 now givesus X < Z.

[ |
Itisinterestingto notethat the partial order < isatotal order if restricted to only those stateswhich are inthe
congestion avoidance mode. The above proof illustrateshow the definition of < iscarefully tailored for usto
be ableto provethat therelation < isapartial order. There are other partial ordersthat can be defined onthe

5



TCP window state space. What makes the relation < particularly interesting is the existence of a minimum
and a maximum element.

2.2 Thelower bound property
We now define a specia “lower bound” state L.

Definition 4 The state L is (SS,1,1) i.e. the TCP connectionisin slow start, and the congestion window
and the dow start threshold? are both set to 1.

Thestate I isaminimumi.e. L < X foral X € S. Thisiseasily verified by looking at rules 2 and 3.

2.3 Theupper bound property

We now define a special “upper bound” state [/. We use the terms max_cwnd and max_ssthresh to refer
to the maximum possible window size and the maximum possible slow start threshold, respectively. These
terms typically depend on the TCP variant in use, the advertised window size of the receiver, and the con-
figuration of the end-hosts. We assume that max_ssthresh < max_cwnd; if not then max_ssthresh can
be set equal to max_cwnd without any change in TCP behavior. By a similar argument, we assume that
max_cwndis no larger than the receiver’s advertised congestion window.

Definition 5 The state U is (CA , 0, maxcwnd) i.e. the TCP connection is in the congestion avoidance
phase and the congestion window is the maximum possible.

Thestate 7 isamaximumi.e. X < U foral X € S. Thisiseasy to verify by looking at rules 1 and 3.

3 Monotonicity in the TCP Window Space

We show herethat the partial order < has anice monotonic property which allowsusto apply Coupling from
the Past, assuming the |oss process satisfies certain useful properties.

Consider two valid states X and Y of a TCP connectionC suchthat X < Y. Let Next(.X ) and Next(}")
denote the states of this connection after sending one packet each from states X and Y and receiving the
corresponding ACK or NACK. Here we make the following simplifying assumption: when aloss occurs, it
beginsaloss event that causes all subsequent packetsto belost until atimeout occurs. Sincewe are not using
fast retransmit or fast recovery, essentially this assumption providesalower bound on TCP performance; we
ignore packets that may have been received that and will be acknowledged later. Similar assumptions have
been made in other work, e.g. [19, 3].

If we couplethefate of the next packet sent in state X with the fate of the next packet sentin state Y (i.e.
either both begin aloss event, or both are successfully transmitted), then Next(.X') < Next(Y').

We recall how Next(.X') dependson X .

1. IfMoODE(X) = SS , thenasuccessful transmissionyieldsCwWND (Next(.X')) = CWND (X )+ 1. Also
MobDE(Next(X)) = CA if CwND(Next(X')) = SSTHRESH (X ) = SSTHRESH (Next(.X)).

2. If MoDE(X) = CA , thenasuccessful transmissionyieldsCwND (Next(X )) = CWND (X )41/CwND(X

3. Onapacket loss, MODE(Next(X)) = SS,
SSTHRESH (Next(.X')) = max{[CWND(X)/2],2},and CWND(Next(X)) = 1.

“Most variants of TCP set the congestion window to at least 2; for these variants we should define L= (8S,2,1). All the
resultsin this paper hold with this variation aswell.

).



Before proving the theorem for the above setup, it is worth emphasizing that our approach could easily
apply to other common TCP simplifications. For example, in some cases TCP ismodeled without slow start;
it isinstead assumed that the process is alwaysin congestion avoidance, and that a loss causes the sending
window to shrink by some constant factor. (See, for example, [19, 3] for relevant discussions.) In this case
our Markov chain state space would be even simpler (we could avoidthe SS mode atogether), and we we
could prove monotonicity in amanner similar to the theorem below.

Theorem 2 If X <Y then Next(.X') < Next(Y).

Proof: Asbefore, we require a careful case by case analysis:

1. Suppose MODE(X) = MODE(Y) = CA . Thenby rule1in definition 3, we know that CWND (X') <
CWwND (Y). If thereisnoloss, thenMoDE (Next(.X' )) = MODE(Next(Y)) = CA , CwND (Next(X)) =
CWND (X )+ 1/CwND(X),and CWwND (Next(Y)) = CwND(Y) +1/CwND(Y). Now CWND (Next(.X))
< CwND(Next(Y')), asthefunction f(z) = z+1/zisincreasinginz for z > 1. Hence CWND (Next(X)) <
CwND (Next(Y')), sobyrulelindefinition3, Next(.X') < Next(Y"). If thereisaloss, thenMODE(Next( X))
MobDE(Next(Y)) = SS, CwND(Next(X)) = CwND(Next(Y)) = 1, SSTHRESH (Next(X)) =
max{[CWND(X)/2],2},and SSTHRESH (Next(Y)) = max{[CWND(Y")/2],2}. Note SSTHRESH (Next(.X')) <
SSTHRESH (Next(Y')). By rule 2 in definition 3, Next(.X') < Next(Y).

2. Suppose MODE(X) = MODE(Y) = SS. By rule 2 in definition 3 we have SSTHRESH(.X') <
SSTHRESH (Y') and CWND (X)) < CWND(Y'). If thereisaloss, itisasin case 1. If thereisno loss,
then the SSTHRESH remain unchanged, CwND (Next(.X)) = CWND(X') + 1, and CwND (Next(}'))
= CWND(Y) + 1, s0 CWND(Next(X)) < CwND(Next(Y)). If both statesremain inmode SS , then
by rule 2 in definition 3, Next(X') < Next(Y'). If both states move to mode CA , then by rule 1 in
definition 3, Next(.X ) < Next(Y'). If state X movestomode CA and Y doesnot, by rule 4 in defini-
tion 3, Next(.X') < Next(Y). If stateY movesto mode CA and X doesnot, then SSTHRESH (X)) <
SSTHRESH (Y') < CwND(Next(X)), so by rule 3in definition 3, Next(.X ) < Next(Y').

3. SupposeMODE(X) =SS and MoDE(Y) = CA . Thenby rule3, CWND(.X') < SSTHRESH (X)) <
CwND(Y). If thereisaloss, itisasincase 1. If thereisno loss, then SSTHRESH (.X') remains un-
changed, CwND (Next(.X')) = CWND(X') 4 1, and CWND(Next(Y)) = CWND(Y) + 1/CwND(Y).
If MODE(Next(X')) = SS , then we have CwND (Next(.X')) < SSTHRESH (X' ) < CwND(Next(Y')),
andby rule3indefinition 3, Next(.X' ) < Next(Y). If MODE (Next(.X )) = CA , then CwND (Next(.X))
= SSTHRESH (X' ) < CWND (Next(Y')), and by rule 1 in definition 3, Next(.X') < Next(Y).

4. Suppose MoDE(X) = CA and MODE(Y) = SS . Then by rule 4 in definition 3, CwND (X)) <
CwND (Y). If thereisaloss,itisasincasel. If thereisnoloss, then CwND (Next(.X')) = CWND (X )+
1/CwWND(X), and CwND (Next(Y')) = CwWND(Y) + 1. If MODE(Next(}Y)) = SS, then by rule 4
in definition 3, Next(.X') < Next(Y); otherwise, it followsby rule 1.

4 Applying CFTP tothe TCP Window Space

In this section, we demonstrate how to use our previous results to apply CFTP to the TCP window space.
We confine ourselves to bulk TCP connections; specifically, we choose a position in the stream and label
its packet sequence number as 0, and we assume there are an infinite sequence of packets prior to this one.
Our goal isto find the state of the TCP connection as seen by this packet. All other packets have negative
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numbers. Further, we require that each packet is labeled with a bit that indicates whether this packet was
successfully transmitted by the network. A lossprocessis a stochastic process that produces thislabeling of
the infinite stream of packets.

In this paper, we are concerned with | oss processes where packet drops are governed by aMarkov chain.
A loss process along with the TCP congestion control agorithms define a Markov chain that we call the
TCP Markov chain. Notethat in our TCP Markov chain, we do not include packetsthat are sent out after the
dropped packet (until atimeout happens); hence our loss process really signalsloss events.

4.1 Ergodic TCP loss processes

Definition 6 Alossprocessissaid to be an ergodic TCP loss process if the resulting TCP Markov chainis
ergodic.

One sufficient conditionfor alossprocessto be an ergodic TCP lossprocessisthat arbitrarily long sequences
of packet dropsand successful packet transmissions should occur with anon-zero probability. Two interest-
ing loss processes that result in ergodicity of the TCP chain are where the packet drops arei.i.d, and where
the packet drops form a Markovian On-Off process.

In order for the CFTP paradigm to apply, we need to be able to generate the loss pattern from —oo to
0. Since thisis an infinite sequence, we can not enumerate it in any traditiona sense; instead we need to
generate elements of this sequence on demand and in a consistent fashion. For i.i.d. drops, it iseasy to gen-
erate elementsof thissequence on demand. For Markovian On-Off drops, we can sample from the stationary
distribution of the On-Off processto determine whether packet 0 got dropped. We can then do a backwards
walk in the On-Off Markov chain to generate other elements of this sequence on demand. Sampling from
the stationary distribution of a Markovian On-Off processiseasy. Similar techniques should apply for other
natural 10ss processes.

4.2 Applying CFTP to samplefrom the TCP state space

We use the CFTP paradigm for monotonic Markov chains as defined by Propp and Wilson [20] to obtain a
sample from the stationary distribution of TCP window sizes. The evolution of the states . and U in the
Markov chain is simulated from event —r to 0. If the two processes are in the same state at event 0, then
this common state is output as the sample from the stationary distribution. If not, then 7 is doubled and the
process is repeated. Note that doubling 7 is chosen for simplicity; any factor greater than one would do.
(See[20] for details.) It isimportant to reuse the same random numbers at event —¢ during al theiterations
of the algorithm. In our scenario, thismeansthat during all theiterations of the algorithm, we should have a
consistent view of whether the packet numbered —¢ waslost. The main intuitionisthat when the sample paths
starting from the bottom state I and thetop state {7 converge, they sandwich the entire state spacein between.
It isimportant to follow this procedure exactly as described and not cut corners such as simulating states L
and U forward in time from event O till they converge. The reader isreferred to an excellent description of
the process by Propp and Wilson [20] for more detail.

Thefollowing theorem follows from a general theorem due to Propp and Wilson [20] regarding the cor-
rectness of the CFTP paradigm.

Theorem 3 The algorithm outlined above samples exactly from the stationary distribution of the Markov
chain defined by the TCP slow start and congestion avoidance mechanismsin conjunction with an ergodic
TCP loss process.



4.3 Running Time Analysis

We first need some definitions. Assume we are given an ergodic Markov chain M; further assume that the
state space of this Markov chain is equipped with a partial order, a minimum state, a maximum state, and a
monotonic property.

Definition 7 Let d(k) = max,, ., ||7f — 75| where =* isthe distribution governing the Markov chain M
after k transitions, when startedina randgm stategoverned by thedistributions. Themixingtime 1 ,,,;,, (M)
is defined to be the smallest /& for which d(k) < 1/e.

The mixing time need not necessarily bea*“time;” infact, for the TCP Markov chainitisgoing to denotethe
number of packets transmitted.

Definition 8 The convergence time 7 (M) denotes the number of simulation steps required by the CFTP
processto return a sample fromthe stationary distribution of M.

Definition 9 Given a partial order on the state of the Markov chain M, the chain-length C'(M) of M isthe
length of the largest ordered sequence of distinct states.

The following general lemma was proved by Propp and Wilson.
Lemmad E[T*(M)] < 2T,i:(M) - (1 + In C(M)).

Let W denote the maximum congestion window size of the TCP connection under study, and let V,,,;,
denote the mixing time of the TCP Markov chain.

Lemma5 The number of distinct statesin the TCP Markov chainis O (W ?).

Proof: We need to prove that |S| = O(W?3). If aTCP connection isin the slow start mode, then its slow
start threshold and congestion window are both integers < W. Hence the number of different slow-start
statesis at most 17 2. Now suppose that the TCP connection is in the congestion avoidance phase, and that
the transition from slow start to congestion avoidance was made when the window size was x. There are
at most W choices for the value of x. Also, each successful ack during congestion avoidance resultsin the
window size beingincreased by at least 1/1/. Consequently, there can be at most 172 distinct window sizes
encountered as the window increases from z to W. Hence, there can be at most W* different statesin the
congestion avoidance phase. The total number of statesisat most W2 + W2 = O(W?). |

Since the chain-length can not be any larger than the number of states, we obtain the foll owing theorem:

Theorem 6 The convergence time for the TCP Markov chainis O (N, In W).

4.4 Sub-samplingto obtain samples at a random time

When thewindow sizeislarge, alarge number of packets see that window size. Thusthe stationary distribu-
tion as seen by arandom packet is biased towardslarger window sizes compared to the stationary distribution
at arandom timeinstant. In order to obtain a sample from the latter distribution, we need to discard some of
the samples returned by the CFTP process outlined above.

We use the term sampling interval to represent the larger of the timeout value and the RTT for the TCP
connection (thetimeout valueisthe duration after which the sender presumesthat an unacknowledged packet
has been dropped). We denote the sampling interval by /. To obtain samples at a random time we use the
following sub-sampling algorithm:



1. Use CFTP to obtain a sample X from the stationary distribution of the TCP state space as seen by a
random packet.

2. Simulate the TCP connection starting from X to determine theinterval I’ after which the next packet
issent.

3. With probability I’/1, output this sample and exit; else, go back to step 1.
The following theorem states that the sub-sampling algorithm is correct and efficient.

Theorem 7 The sub-sampling algorithm outlined above returns an exact sample from the stationary dis-
tribution of the TCP Markov chain as seen at a random time instant. Further, the sub-sampling algorithm
makes at most W - (1 /RTT) callsto the CFTP algorithmon an average.

Proof:

(a) Correctness: Thispart isrelatively straightforward, so instead of giving aformal proof, we sketch the
main intuition. Assumethat the state of the TCP connection changes at packet-departure epochs. Now
the state seen by a random packet persiststill the next packet is sent out. This happensan interval 7’
later. Therefore we need to weight thissample by 7’. Since I’ must be lessthan I (recall that I isthe
larger of the RTT and the timeout), choosing to retain the sample with probability 7’/1 givesit the
appropriate proportional weight.

(b) Running time: Let usartificialy divide the entire packet sequence into chunks of W contiguous pack-
ets. Let us examine a specific chunk B. Let I{ denote the time between the first and second packet
departures in the chunk, 7 denote the time between the second and third packets in the chunk, and
so on. Further, let I7;, denote the time between the last packet departure from chunk B and the first
packet departure from the next chunk. The CFTP algorithm in section 4.2 gives a sample from the
stationary distribution as seen by arandom packet. Let us condition our sample such that the random
packet must belong to chunk B. Given this conditioning, each of the I packets on thischunk is cho-
sen with probability 1/ . Hence the probability that the sub-sample succeedsis (1/W) Z]VL /1.
Sincethechunkisof sizeW (i.e. themaximumwindow size), itrequiresat least RTT timeto go across,
whichimpliesthat Zj”;l I > RTT. Thereforethe success probability giventhis conditioningisat | east
(1/W)-(RTT/I). Wedid not use any special properties of the chunk B, so the same lower bound on
the success probability holdsif we remove the conditioning. It now followsthat the expected number
of samplesrequired for successisat most W - (1 /RTT).

[ |
The sub-sampling algorithm as stated above seems to require a knowledge of the exact values of the timeout
and the RTT. However, the same agorithm continuesto work if weuseany / > max{RTT, timeout}.

5 Simulation Results

We built a simple implementation to test the feasibility and utility of our CFTP framework. We present re-
sultsonly for the case where each packet islost independently with probability p. (Of coursein thiscasethe
equilibrium distribution for the TCP Markov chain we have described could be cal culated explicitly, but the
number of states growsrapidly in the window size.)

Our implementation takes asinput the maximum window size max_cwnd, and adrop probability p. The
maximum slow start threshold is assumed to be the same as the maximum window size. We allow a con-
gestion window of size one, and the minimum slow start threshold after adrop istwo. Initialy we simulate
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Drop | max_cwnd=40 | max_cwnd= 400
Ratep | Avg. Max. Avg. Max.
0.001 | 1585.4 | 16384 | 5479.0 | 16384
0.01 350.8 | 1024 | 451.0 | 2048
0.02 174.1 | 1024 | 211.8 | 1024
0.03 121.3 | 512 | 130.9 512
0.04 83.6 256 93.2 512
0.05 68.7 256 72.7 512
0.06 53.6 256 56.7 256
0.07 44.3 256 47.6 256
0.08 384 256 44.3 256

Table 1: Quick samplesfrom the CFTP method.

Drop | max_cwnd=40 | max_cwnd= 400
Ratep | Avg. CWND Avg. CWND
0.001 33.71 47.36

0.01 14.16 14.25

0.02 9.77 10.09

0.04 6.93 7.07

0.08 497 5.02

Table 2: Average CwND value from CFTP samples.

two steps of the Markov chain, and then we double the number of time steps simulated if coupling has not
occurred between the upper and lower bound states. Hence when we describe the number of steps required
before coupling, our implementation always gives a power of two. Recall that thisis not a requirement, but
simply a convenient choice.

In Table 1, we show the average and maximum number of time steps (or equivalently packets) required
before a state was output over 1,000 trials and various drop rates when the window size was set to 40 and
400 packets. The average is significantly smaller than the maximum; often CFTP yields an exact sample
quickly. When the probability of adrop p issmall, the coupling timeis essentially dominated by the time for
the congestionwindow of thelower bound state to reach its maximum sizemax _cwnd. When pislarger, the
bounding states tend to couple more quickly, as the congestion window of the upper state quickly decreases
toward the lower state. As predicted in the theory of Section 4, scaling up to alarge maximum window size
does not dramatically increase the running time required, particularly when the drop rateishigh. Importantly,
this suggeststhat CFTP may be a useful alternative approach when the number of states growstoo large for
explicit calculations of the equilibrium distribution.

In Table 2, we show the average CwND for our simulation. Note that thisaverage isthe average CWND
experienced by each packet, and not the average over time. It isinteresting to note that CwND still appears
to followsthe square root law (see e.g. [19]) in our simulations; that is, CwND falls roughly proportionally
to 1/,/p. Also, as one might expect, the difference between the average CwND value does not differ signif-
icantly between the smaller and larger window size unlessthe drop rate is low.

We also provide results comparing our CFTP implementation to ans simulation with 10,000 packets us-
ing the Tahoe protocol. We examined the specific case where the drop probability p is0.01 and the maximum
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congestion window, max_cwnd, is40. We re-ran our CFTP simulation to obtain 1,000 new samplesfor this
comparison. We found that the average congestion window over all packetswas 14.77 in our CFTP samples,
whileit was 14.33 for the ns simulation. As another point of comparison, 5.2% of the samples were in the
slow start mode for our CFTP samples, while 5.7% of the packets were in slow start mode for the ns simu-
lation. We would expect the agreement to be rough, both because we are sampling and because our Markov
chain isnot atrue faithful representation of the Tahoe protocol. These results suggest that our approach can
lead to good approximationsfor actual TCP behavior.

6 Conclusions

We presented a partial order on the space of TCP window statesthat possessesa hatural monotonic property.
Thisleadsto an efficient application of the* Coupling From The Past” paradigm to samplefrom the stationary
distribution of TCP window states as seen by a random packet. The convergence time of this scheme is
O(N iz In W) where N,,;.. is the number of steps required for the underlying TCP Markov chain to mix
and W isthe maximum window size of. It is unrealistic to expect an exact samplein lessthan V,,,;, steps.
Hence, the above algorithm is only a small factor (In W) away from the optimum. At the same time, the
algorithm does not need to know N ;... We aso showed how a simple sub-sampling al gorithm can be used
to obtain a sample at a random time instant. Our partial order and proof of monotonicity may well be of
independent interest and may yield new insight into the structure of TCP congestion control algorithms. Our
simulations of simple scenarios suggest that this approach is efficient, scaleswell with increasing maximum
window sizes, and yields results which are close to those obtained by running the network simulator ns for
TCP-Tahoe.

The above approach can potentialy give rise to the following new paradigm for network simulations:
instead of simulating a protocol over long times, or explicitly finding the stationary distribution of the states
of the protocol, try to quickly obtain a“typical” sample of the state of the protocol. Our approach currently
works for a simplified TCP model that does not employ fast recovery. Extending these ideas to other TCP
variants and other network protocolsis an important open problem. Also, it would be interesting to develop
asimulation infrastructure to explore the practical utility of the ideasin this paper.
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