
Asynchronous Information Space Analysis Architecture
Using Content and Structure-Based Service Brokering

Ke-Thia Yao, In-Young Ko, Ragy Eleish, and Robert Neches
Information Sciences Institute

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, USA

E-mail: {kyao, iko, ragy, rneches}@isi.edu

ABSTRACT
Our project focuses on rapid formation and utilization of
custom collections of information for groups focused on
high-paced tasks. Assembling such collections, as well as
organizing and analyzing the documents within them, is a
complex and sophisticated task. It requires understanding
what information management services and tools are
provided by the system, when they appropriate to use, and
how those services can be composed together to perform
more complex analyses. This paper describes the
architecture of a prototype implementation of the
information analysis management system that we have
developed. The architecture uses metadata to describe
collections of documents both in term of their content and
structure. This metadata allows the system to dynamically
and in a context-sensitive manner to determine the set of
appropriate analysis services. To facilitate the invocation of
those services, the architecture also provides an
asynchronous and transparent service access mechanism.

KEYWORDS: Data-driven brokering, asynchronous service
access, content and structure, metadata, component
architecture, information management, information analysis

INTRODUCTION
The GeoWorlds project at USC/ISI focuses upon a special
niche in digital libraries: rapid assembly of custom
collections of information for groups focused on high-paced
tasks. Assembling such collections, as well as organizing
and analyzing the documents within them, is a complex and
sophisticated task. It requires understanding what
information management services and tools are provided by
the system, when they appropriate to use, and how those
services can be composed together to perform more
complex analyses. It is a significant challenge to provide a
set of services in a manner that helps "non-wizards" perform
these tasks. It is an even greater challenge to do so in an
open and extensible environment in which new services can
be added and made available. This paper reports progress on
techniques that serve to meet these requirements. It
complements previous work on federated systems [12].

GeoWorlds [4] is a component-based information
management system that integrates various information
organization and analysis tools together with a geographic
information system1. Figure 1 illustrates some of the
services within the current prototype of the GeoWorlds
system. Within GeoWorlds, the Collaborative Information
Space Analysis Toolset supports various services for
gathering, analyzing, editing and visualizing information.
These services help users efficiently organize task-oriented
information spaces by helping them making sense of the
data sources: characterizing them, partitioning them, sorting
and filtering them [9].

Figure 1: GeoWorlds Overview

The information management functions provided by the
system can be classified into three major types: information
gathering, information analysis, and information
visualization. Using the information gathering functions,

1 All the system components are implemented in Java (or
Java wrapped legacy components); persistence is provided
via XML serialization of Java objects.

In Proceedings of the 5th ACM International Conference on Digital Libraries, June 2000, San Antonio, Texas.

users can extract relevant documents from various
information sources such as Web search engines, Web
directory services, on-line yellow pages, news video
archive databases, etc. Then, the users can process the
collected documents using the rich set of information
analysis functions such as noun-phrase extraction,
document clustering, category comparisons, language
translation, etc. The source document collections and the
analysis results can be displayed in various ways by the
information visualization functions in the system.

Organizing a task-oriented information space involves
cyclic application of these three types of functions. The
user retrieves initial document collections from the
information sources by creating topic-related queries and
submitting them to the information gathering services. The
initial data retrieved may be unorganized, or too big to
browse, or even unrelated to the topics. A set of
information analysis services must be applied to the initial
document collections to reorganize, characterize and filter
them. Then, the visualization components must be applied
to the analysis results in various ways to help the user make
sense of them. To fully organize a body of information,
these steps must be repeated until the information space is
sufficiently refined and populated to give users structured
information relevant to the tasks that motivated their work.

During this cyclic process of organizing an information
space, it is essential for the user to know which services are
applicable to which document collections in the
information space at any given stage of analysis. We seek
to meet this need by providing a data-driven service
brokering and an asynchronous service access mechanism.

The data-driven service brokering components provide
context-sensitive matchmaking functions that use metadata
descriptions about input data to identify appropriate
services. The metadata description for a document
collection is composed of two parts: a content description
and a structure description. The content description
represents the meaning (type) of the document collection
(e.g. a yellow-page collection, a video document collection,
etc.), and the structure description characterizes the
document collection organization structure (e.g. a flat
document list, hierarchical document clusters, etc.). By
dividing the metadata description into these two different
types, we can reduce the complexity of the description and
simplify the classification and matchmaking processes. The
metadata can be reused by multiple document collections
that have same content type or organization structure.

Our system provides a uniform, asynchronous service access
mechanism. Using this, services with heterogeneous
communication methods such as Socket, Java RMI (Remote
Method Invocation) [6], JavaSpace [5], etc. can be easily
integrated to the system, and rendered transparently
accessible by the client regardless of their locations and
communication methods. Our asynchronous service access
architecture is a layered architecture that is composed of the
client layer, the job pool layer, and the service layer.

Underlying services can be dynamically reconfigured
without affecting the client layer. The architecture allows
the services and job pools to be fully distributed over the
Internet.

The sections following detail concepts and design issues in
the data-driven and asynchronous service access
architecture. We first provide an overview of the
architecture, followed by detailed descriptions of data
organization and service brokering, service access and
invocation, and data visualization.

SYSTEM OVERVIEW
Our goal in designing the system was to meet the following
requirements:

• Transparency. Clients requesting services should not
need to know the name or the location of the server
processing the request. The mechanics of selecting the
appropriate servers and dispatching request should be
hidden from the client. Similarly, the services should
not have to care how the clients invoke them.

• Specificity. Transparency should not mean ambiguity.
The client should be able to invoke precisely the desired
service based on content and structure of the data.

• Composability. The architecture should allow services
to be chained and executed together to handle single
client requests.

• Asynchrony. The architecture should allow service
requests to be handled asynchronously to facilitate
batch processing. The client should be able to request a
service, log off, and then log in again to retrieve the
results.

• Extensibility. The architecture should facilitate adding
new information services without requiring major
changes to either the new or the pre-existing services.

• Fault tolerance. The system should not be disrupted by
client or system service failures.

• Reusability. The system should be general enough to
be useful in a broad range of applications.

As we discuss the design of specific aspects of the system
in the sections following, we will relate them back to these
criteria. The remainder of this section provides a general
context for those design discussions.

Conceptually the system is organized into three parts: data,
analysis services, and visualization services (viewers). The
data is organized hierarchically. It defines the organization
of the document collection that the analysis services use to
process and the viewers use to display.

The system defines a set of basic documents that are viewed
as primitive by the information management system. The
basic document types include HTML, plain text, images,
and video. The system is able to store metadata about these
basic documents, such as title and URL, but it does not
directly manipulate these basic documents. It relies on the
services and viewers to manipulate and examine them. What

the system does directly manipulate are collections of these
basic documents. The data hierarchy describes how these
collections are organized. The collections are characterized
by two orthogonal classifications: structure and content. The
structure defines how the documents are grouped and their
adjacency relationship. Some possible document structures
are hierarchical, flat, and acyclic directed graphs. The
content defines the information expressed in the collection.
For example, a collection may represent the result of noun
phrase collection or classification based on geographical
location. An information space is a set of document
collections.

The analysis services and the viewers operate on the
document collection types in the data hierarchy. For
example, our Category Editor viewer can display and edit
hierarchical document structure, and the Map viewer can
display geographical location-based document collections.

Figure 2 illustrates the system components and procedures
involved in identifying available services using data-driven
matchmaking, selecting specific services, and invoking the
selected services transparently and asynchronously.

Document
Collections

Content Description Structure Description

Analysis Service Broker
Visualization Service

Broker

Analysis Service Selector Viewer Selector

Job Pool Viewer Instantiation

Metadata
Descriptions

Service
Brokering

Available Services Available Viewers

Job Request Entries Viewer Names, Properties

Service
Selection

Service
Invocation

Information Gathering
Services

Analysis Services Viewers Services

Figure 2: System components; service brokering and
invocation procedure

As a result of performing an information gathering service
or an information analysis service, a user gets a document
collection. This is an organization of the resulting
documents in certain structure with specific meaning in its
content. The service brokering components use this content
and structure information to determine which services are
appropriate and meaningful for processing the document
collection. The data generators produce metadata
descriptions of the document collection, subdivided into

content and structure information, and send those
descriptions to the service brokers.

The analysis service broker matches the input document
collection against analysis services registered with the
system. It determines which can extract interesting
characteristics from the documents and/or reorganize the
collection by sorting and filtering. The visualization service
broker finds alternative viewers for displaying the document
collection. Matching service descriptions against the
document collection, the analysis service broker mainly
relies upon content descriptions; the visualization service
broker emphasizes the structure descriptions.

There may be multiple available services that matched
against the metadata description. Service selection allows
users to choose among them. The analysis service selector
or the viewer selector displays a service selection dialog,
receives user's choices, and generates appropriate job
request entries, or viewer names and properties, to invoke
the corresponding services. The generated job request
entries are sent to the job pool to invoke the analysis
services asynchronously. The viewer name and properties
will be used by the viewer invocation component to
instantiate the selected viewers with the format specified in
the property list. The analysis service selector registers
appropriate job event listeners to the job pool to monitor the
progress of the submitted jobs and receive results.

DATA ORGANIZATION AND SERVICE BROKERING
Our Collaborative Information Space Analysis Tool Set
needs to handle diverse types of document collections
generated by various information gathering and analysis
services. Thus, the system has to provide efficient ways to
manage the data, identify the types of the data, and use the
data for invoking services. Since many difference document
analysis and visualization services may be registered,
meaningful and dynamic matches of the data against the
services are also critical to help the user to select and
perform appropriate services. To identify the type of data,
we associate a metadata description with each document
collection in order to find out appropriate services for a
specific document collection. The service brokers use the
metadata to perform data-driven matchmaking.

The system provides a uniform, graph-based internal
representation for the document collections, by which we
can represent the hierarchical document categorization
structure, the title and properties of each category or
document, and resource pointers (URL and the local cache
pointer) of each document. However, each document
collection may have a different content type and
organization structure. This information is represented in
metedata description about the document collection.

Metadata Descriptions
As the number of data types increases, it becomes
unmanageable to classify and identify them by using simple

IETF MIME types2 or Java class names. We developed an
initial metadata description mechanism by which we can
represent the content and structure information of a
document collection.

The metadata description of a document collection is
machine understandable [2] and helps the system perform
more intelligent service selection and invocation. This
makes it possible to build a more composable and extensible
service brokering system that finds alternative services when
a requested service is not available. Newly added data types
can be identified and matched with the services without
updating the algorithm.

The content description is metadata that represents the
meaning embedded in the content of a document collection.
For example, the result of a place name extraction service is
a set of document clusters where each cluster node is a place
name node which has a geographical coordination
information as its property, and this type of content can be
represented by the metadata type, Place Name Document
Clusters. Figure 3(a) shows a sample content type hierarchy
for sets of document clusters.

Document
Clusters

 Noun Phrase
List

Company Name
Noun Phrase List

Place Name
Noun Phrase List

Document
List

Hierarchical
Document Clusters

Flat Document
Clusters

Document Collection
Content Types

Document
Organization Structures

(a) (b)
Place Name

Extraction Result
(c)

Figure 3: Examples of content and structure types - (a) a
content type hierarchy for noun-phrase based document

clusters, (b) a structure type hierarchy for document
clusters, (c) a metadata description for the place name

extraction result

The structure description is metadata that represents the
document organization structure of a document collection.
For example, a set of document clusters may have
Hierarchical Document Clusters as its structure type, which
is a structure where each cluster node contains documents or
other sub-clusters as its children. Figure 3(b) shows a part of
the structure type hierarchy for document collections.

Each metadata type has its own ontology name and generic
properties. For example, a content description that describes
a Web document collection extracted from a Web search
engine has Web Document Set as its content type name and

2http://www.isi.edu/in-notes/iana/assignments/media-types/

Source, Summary and Rank as its properties3.

The metadata type (class) hierarchy shown in Figure 3
represents the ontology structures and the subsumption
relations between metadata types. A sub-metadata-type
inherits all the properties in its super-metadata-types.
Currently, the subsumption relations and properties are not
explicitly specified and stored in the system. The
subsumption relations are encoded in each ontology name
when it is defined. Properties are consented between the
document collection generators and consumers. In order to
represent more complex relationships between data and
services and to support more sophisticated matchmaking
system, we are currently developing a metadata description
language that can explicitly represent the content and
structure types, their subsumption relations, and properties
using W3C's RDF (Resource Definition Framework)
schema [14].

A content description may have embedded structure
information. For example, the noun-phrase based document
clusters have Document Clusters as their default structure
type. The dotted arrow in the middle of Figure 3 shows this
default structure relationship. Service brokers use this
default structure description to match appropriate services if
a document collection’s metadata description doesn't include
any structure information.

A document collection’s metadata description is a set of
content and structure descriptions. Multiple content or
structure descriptions can be associated with a document
collection. Figure 3(c) shows an example a metadata
description for the place name extraction result that includes
a content description which is an instance of Place Name
Document Clusters, and a structure description which is an
instance of Flat Document Clusters.

The division of the metadata description into the two
independent types gives us the following benefits:

• Simple ontology hierarchies. Each ontology hierarchy
is relatively simple than a unified one that has a deep
tree hierarchy.

• Easy classification. We don't need to consider the
structure types when we classify a data type under the
content type hierarchy, and vice versa.

• Reusability. The content and structure types become
more reusable because those are more general than the
combined types.

• Efficient matchmaking. Depending on the service
types, we can match one of the metadata type prior to
another to improve the matchmaking performance (see
next section for details).

3 In our scheme, the value of Source property represents the
search engine name such as AltaVista (www.altavista.com),
Excite (www.excite.com), etc., and Summary or Rank
properties have boolean values that indicates whether the
summary text or rank information is available for each
document in the collection.

Data-driven Service Brokering
Various analysis services have been integrated into the
system to support: extracting certain characteristics from a
document collection (e.g. noun phrase extraction,
summarization, etc.), reorganizing the document collection
(e.g. document clustering, category merging, sorting, etc.)
and comparing different categorizations. We also provide a
number of visualization components. Figure 4 summarizes
the current basic document analysis and visualization
services.

As we
to inte
specif
name
the m
docum
in Ge
to lin
brows
brows

The s
betwe
The m
only
feasib
descri
descri

As su
open-
the co
of the
archit
servic
match
descri

Most of our analysis services can accept some popular
structure types such as Document List and Hierarchical
Categories. Thus, matching content types is more effective
than matching structure types to filter out irrelevant
services. For example, all the document analysis services
listed in Figure 4 can accept a document collection with
Hierarchical Categories structure, but the Category fan-out
service4 can perform a meaningful analysis only when the
category structure is composed of Yahoo5 categories (i.e.
the content type should be Yahoo Hierarchical Categories).
So, the analysis service broker always matches the content
description prior to matching the structure description of
the document collection.

 Some analysis services such as Category comparison and
Category merging require multiple document collections
for their inputs. In this case, the services cannot be matched
until the required collections are available.

The visualization service broker finds appropriate viewer
components that can visualize the input document
collection. In contrast to the analysis service broker, this
broker considers the structure description first because in
most cases, any document collection that has a certain
organization structure can be visualized by a particular
viewer regardless of its content type.

Currently, each service component maintains its own list of
acceptable document collection types. The brokers query
each service to check whether it can handle certain set of
document collections. We are working on separating the

•
-

-
-
-
-
-
-

•
-
-
-
-
-
-
-

Document Analysis Services
 Keyword extractors: noun phrase extractor, company

name extractor
 Document summarization
 Language identification and translation
 Document clustering
 Category manipulations: merging, sorting, filtering
 Category comparison
 Category fan-out (for Yahoo categories)

Visualization Services
 Category tree viewer
 Document list viewer
 Noun phrase list viewer (Frequency list view)
 Working set explorer
 Category editor
 Color-coded classifier
 3D bar chart viewer
 , we need
g
i
e
a

o
k
i
e

e
e

t
l
p
p

g
a
n

e
e
i
p

capability description out of each service and collecting
them into a metadata space. This will let us perform the
matchmaking process on the metadata level without
apply the system to different types of tasks

Figure 4: Basic document analysis and
visualization services
rate more analysis and visualization services that are
c to the task domain. For example, we added a Place
xtractor analysis service and Locate documents on
p visualization service to the system to relate a

ent collection to the geographical information system
Worlds. We are currently integrating more services
 the information space analysis tools to a molecule
ng system and to a time-sensitive news article
r.

rvice brokers in the system perform matchmaking
n document collections and these various services.
atchmaking process is data-driven and finds all and
hose services for a document collection that are
e given its metadata description. The metadata
tion is composed of the content and structure
tions, as we explained in the previous subsection.

gested by Carl Lagoze and Sandra Payette in their
rchitecture digital library infrastructure proposal [8],
tent-dependent manipulation of digital objects is one
important requirements to build a reliable repository
cture for a digital library system. The analysis
 broker in DASHER supports this feature by
ng meaningful analysis services against the content
tion of the input document collection.

querying to the actual service instances.

Service Selection and Invocation
To process their data users, users are helped by service
selectors to choose among services found by the brokers. A
service selector displays a user interface that shows
available service names and elicits user selections. It then
maps the selected service names to the appropriate job
request entries or viewer information. This is then sent to the
service invocation components to access the services.
Multiple selections can be made using the service selectors
to perform services in parallel. We provide two service
selectors - one for selecting the analysis services and another
for selecting the viewers.

The analysis service selector performs mappings between
service names and job request entries after getting user
selections. Then, it instantiates the job request entries by

4 The fan-out service provides the user a quick overview of
a set of related categories in large category structures, such
as Yahoo’s category structure. Given a set of documents,
the service first determines the categories the documents
are classified under. Then it fans out by using the
documents under those categories to determine other
related categories.
5 http://www.yahoo.com

including job IDs and other required arguments. The job
request entries are sent to the job pool, which searches for
and invokes service instances that can handle the requests.

T
th
c
se
st
d

S
c
su
tw
fi
b
m
m

availability after the user selects among the candidates. In
this case, the service selector should ask the user about
alternative services when the selected services are not
available.

The viewer selector collects the selected viewer names and
forwards them with the input document collections and their
metadata descriptions to the viewer instantiation component,
which actually invokes the viewers. The instantiated viewers
present the input document collections with the formats
specified in their metadata descriptions.

The default viewer name for each structure type is
maintained in the viewer selector. A default viewer is
invoked if explicitly requested by the user or if the viewer
properties are not specified in the input document collection
metadata. The result document collections returned by the
analysis services are usually visualized using the default
viewers.

ARCHITECTURE FOR ASYNCHRONOUS SERVICE
INVOCATION
The service invocation framework (Figure 5) provides the
service selector with the set of available services,
represented as job entries. The service selector uses these
job entries to invoke the actual service. This paradigm
facilitates transparency, because the service selector need
not know how to invoke the service or where the service is
being performed. The service invocation is performed

lient Layer

 Pool Layer

rvice Layer

in

Ke

No
Service Selector and Job
Listeners

System Job Pool

Job Manager

Default
Job Pool

Service Wrapper

Local
Services

RMI
Services

Socket
Services

JavaSpace
Job Pool

CORBA
Job Pool

JavaSpace
Services

CORBA
Services

C

Job

Se

Entry Flow
Event Flow

Figure 5: Asynchronous services access
architecture
he input document collections can be sent to a service
rough arguments in the job request entry or by a separate

ontrol entry that conveys the input data. The service
lector registers job listeners with the job pool to monitor
atus and receive the results (see next section for more
etails).

ome of the selected services may not be available at a
ertain time. Service availability can be checked by
bmitting its job request entry to the job pool. There are
o ways to provide availability information to the user. The

rst method is to check availability of the matched services
efore invocation and show only available services. This is
ore reliable, but it may take a long time when there are
any services matched. The second method is to check the

asynchronously, which allows for batch mode processing.
Also, the framework provides facilities for service providers
to wrap their components as services and to modularly
extend the system.

Job Entries and Events
A job entry is the basic unit of communication among
client-layer components and underlining service-layer
components. Job entry implements Sun’s Jini [7] entry, so
the Job Entries can be posted to Jini and JavaSpaces. Job
entries are divided into four subclasses: request, control,
report and result. Client components use job request entries
to initiate service computation processes, and control entries
to manage them. Control entry directives include cancel,
return, pause and resume. The services report and result
entries, wrapped as asynchronous events, back to the client
components. Report entries contain intermediate results and
status messages. Result entries contain the final result. They
signal that the computation process is terminating. The
client gives each computation process a unique job ID
number. This number is used to channel control entries to
the computation process, and to channel the report and result
entries to the client. The arrows in Figure 5 depict the flow
of entries and events.

The Job request class sub-hierarchy in Figure 6 defines the
types of available services. Keyword extraction extracts
keywords from document collection, Clustering groups
similar documents together, Web Wrapper returns a
collection from search engines, and summarization returns
summaries for each document in the collection. Keyword
extraction services currently subdivide further into noun

f

Job Entry

Request Entry Control Entry Report Entry Result Entry

Exception Entry Status Entry

yword Extraction Clustering Web Wrapper Summarization

un Phrase Company Name Place Name
Figure 6: Job entry hierarchy for service/client
ormation exchange. The Job request entry subtree
defines a hierarchical organization of services.

phrase, company name and place name extraction.

Job Pool Layer
The job pool layer is a two-level tree of job pools (see
Figure 5) that manages and controls job processes for the
client. Through the System job pool, the root of the job pool
tree, the client can send job requests and job control entries
to the services. Also, by registering as a listener, a client can
receive report and result entry events. A client can register
as one of three types of listeners. It can register to listen to
entry events related to a specific job ID, related events in a
job group, or to all job events. From the client-side
perspective the job pool layer effectively uncouples the
client-side service requestors from the server-side service
providers. The clients do not need to know how the job
requests are handled, nor who handles them. From the
server-side perspective this transparency facilitated by the
use of service interfaces (discussed more below).

The System job pool maintains a chain of lower-level job
pools from which it delegates job assignments. For each job
request entry, the System job pool successively queries the
job pools in the chain to determine if it can handle the job. If
a job pool responds in the affirmative, the System job pool
delegates the job request to it.

All job requests made through the job pool are logged based
on the job ID. The log contains information about which job
request is still active, and which lower level job pool is
processing it. This log is used to direct the flow of entries
and events across the job pool layer. Also, this log is saved
with the client’s information space. This allows the client to
retrieve job results from previous sessions.

Communication Mechanism
What differentiates the lower-level job pools from each
other is the communication mechanism they use to exchange
information with the actual service. We have implemented
two lower-level job pools: default and JavaSpace.
Depending on necessity, other job pool implementations are
possible, such a job pool based on CORBA [11]. The default
job pool is able to invoke services local to the client,
services accessible across Java’s RMI mechanism, and
services accessible across sockets. The JavaSpace job pool
uses Sun’s JavaSpaces, a distributed message exchange
mechanism based on Yale’s Linda system [3]. The
following paragraphs describe JavaSpaces and its job pool
in more detail.

JavaSpaces supports just four operations: write an entry into
the space, read an entry, take an entry, and notify an object
when an entry is written. All four operations are
implemented asynchronously. They do not block. Since the
job entry hierarchy extends JavaSpace entry, any job entry
can be directly submitted to the space. An entry, which is
similar to a tuple in the Linda system, is a Java object that
contains the data to be exchanged among any program
communication through JavaSpaces. In contrast to the
classless Linda system, entries are strongly typed and the

object oriented inheritance relation is maintained. Entries
are matched by their field values as well as their class types.
This allows the space to match a super-class entry with a
sub-class entry. For example, a client could use a Keyword
Extraction job request entry to request any available
keyword extraction service, or it could use a Company
Name extraction entry to specifically request that service.

The JavaSpace job pool’s job request processing protocol is
as follows. The job pool writes the job request entry to the
space, registers with the space to listen to job report and job
result entries. On the server side, JavaSpace notifies the
registered service of the availability of the job request entry.
Then, the service takes the job request, and registers to listen
to job control entries. After processing the job, the service
writes the job result entry to the space. The space notifies
the job pool that the job result entry is available, and the job
pool takes the result entry.

Write Job Request

Job Pool ServerJavaSpace

Notify Job Request
Available

Take Job Request

Write Job
Result

Notify Job
Result Available
Take Job Result

Register to Listen to
Job Control

Take Job Control

Register to Listen to
 Job Report

Register to Listen to
 Job Result

Process
Job

Figure 7: Asynchronous service invocation protocol

Multiple services can register to be notified when a job
request entry is written. This provides a degree of fault
tolerance to the system. If a particular service fails, other
services may be able to take the job request. JavaSpaces also
provides a transaction mechanism. If a service fails after it
has taken the job request entry, JavaSpaces will roll back to
a state before the entry is taken.

The space sends entry availability notifications in the form
of a Java Remote Event. We have created a dispatcher class
that listens to these Remote events, and converts them to
regular Java Bean type events. The dispatcher delivers
JavaSpace events in threads to enhance the response.

Service Interfaces
When job request and job control entries are sent by a user
they eventually reach a particular service. A service is any
object that implements the Service Interface. The interface
allows services to be modularly implemented without regard
to how they will be invoked or which communication
mechanism they will use. Adapter classes are provided to
allow services to connect with specific communication
mechanisms.

To support this, services must asynchronously implement
five methods: getJobEntries, process, control,
addServiceListener, and remove-ServiceListener.
When prompted using the getJobEntries method, the
service must respond with an array of Job Request Entries it
can handle. The service accepts a job request through the
process method. The job execution prcess can be managed
through the control method. Finally, the service must send
the process output as events to all the registered service
listener.

DYNAMIC VISUALIZATIONS AND VIEW
TRANSFORMATIONS
While organizing an information space, the user typically
iterates over many document collections of varying content
and structure. Each of these collections can be visualized in
various ways, each of which reveals different characteristics
of the collection. To help the user better explore and
understand the information space, the visualization service
broker dynamically provides the user with a list of possible
viewers for any given document collection. That list is
based on the collection’s content and structure. We call this
dynamic visualization. Dynamic visualization satisfies both
the transparency and specificity requirements. The user does
not need to know the name of the visualization service to
invoke the viewer, and the visualization services offered to
the user are those specifically oriented to the document
collection at hand.

Figure 8 shows alternative visualizations of a particular
document collection, which is a clustering, generated based
on place name extraction. The tree view of the document
collection helps us to figure out how the classification
structure was formulated. The frequency list view shows the
distribution of the original documents over the place name
nodes. The map view, which plots the document clusters on
the map based on the place names, shows how the
documents are distributed over the geographical regions.

Recognizing that these viewers are applicable to this data set
involves using the document collection’s structure and
content metadata. In Figure 8, viewers (a), (b) and (c) can be
matched by the broker using only the input data structure
description. However, to match viewer (d), the broker needs
to consider the content description because the map viewer
can only visualize document collections with location
information.

View Transformations
Each viewer keeps the original metadata description about
the document collection being displayed. When prompted
by the user, the viewer can use those descriptions to ask the
visualization service broker to suggest a list of alternative
viewers. The user can select among these to have the system
create an alternative view. We call this view transformation,
which is especially useful when the document collection has
multiple characteristics that cannot be visualized in a single
viewer.

Once alternative visualizations of a document collection are
created, they appear in separate tabs of the same window

 (a) (c)

(b) (d)

Figure 8: Various visualizations for place name based
frame as seen in Figure 8 (a), (b) and (c). Figure 8(d) is an
exception because the viewer is an external application.
Results of analyses performed on that document collection
are also placed in separate tabs of the window frame. This is
an attempt to localize and group in a consistent format
various manifestations of the same document collection.
When the user requests further processing in the next cycle
of information space analysis, the analysis results are sent
along with the original document collections to the analysis
service broker. They can then be used to match for
additional services.

Users cyclically perform information space analyses using
these dynamic visualization and view transformation
features. The process helps them to focus in on specific
interesting parts of the information space, to populate the
information space, and to extract useful characteristics from
the document collections.

RELATED WORK
Like ours, the repository architecture for the open-
architecture digital library infrastructure proposed by Carl
Lagoze and Sandra Payette [8] also considers the content
type and the structure type of a digital object separately, in
order to provide manipulation functions sensitive to content
or structure. However, they use the different metadata types
to provide appropriate manipulation functions within a
digital object. We use them instead to find higher level,
external services.

The semantic and syntactic brokering concepts in MCC's
InfoSlueth [10] are similar to our content and structure
based brokering concepts. However, the brokers in
InfoSleuth are not data-driven, and their semantic and
syntactic descriptions are metadata about the target
resources instead of the input data. The user agents in
InfoSleuth have to explicitly specify the capabilities of the

document clusters - (a) tree view, (b) frequency list view,
(c) working set explorer, (d) geographical map view

required services in their requests. In contrast our users don't
have to know which services are available and meaningful
for their document collections at a certain stage of an
information space analysis cycle. They need not specify any
particular service types to analyze or visualize their data.

Using a distributed object framework, the Stanford InfoBus
[1] provides a suite of information management protocols
for uniform access to data and services. The protocols
include data item and collection, metadata, search, payment,
and rights and obligations management. We also provide
uniform access to a variety of services, although the
selection services that we choose to provide are different.
The services we provide include keyword extraction,
clustering, web wrappers, translation and summarization.
The key difference between systems is that we provide a
uniform way of accessing the services, instead of a suite of
protocols. We are exploring whether this ability scales, or
depends on offering a small, homogenous set of services.

EVALUATION
The first phase implementation of the GeoWorlds system is
complete. We have delivered it to US Pacific Command
Headquarters in Hawaii where it is receiving experimental
use as an aid to intelligence information analysis. We are in
the process of receiving feedback from them to improve the
system. Recently, we have been invited back to install
additional copies, and to train additional users.

To evaluate the effectiveness of the system at quickly
creating useful repositories we have generated information
spaces on a variety of topics, such as disaster relief (toxic
chemical spreading in a harbor), economic impact analysis
(ginseng distribution), and research trends (in mobile
computing). Figure 9 depicts the process of creating an
information space of humanitarian assistance in Indonesia.

FUTURE WORK
We are currently developing a new metadata architecture
that can manage metadata descriptions more efficiently and
perform matchmaking more dynamically. In addition to the
current content and structure descriptions of document
collections, metadata descriptions about ontology and
capabilities of the analysis and visualization services will be
provided.

We are developing a metadata description language using
W3C's RDF, which provides common conventions for
representing semantics, syntax and structure of a resource
[13]. Using this metadata description language, we can
represent subsumption relations between data or service
types, type properties, and relationships between types.

The metadata architecture will provide a task-oriented
metadata space that collects and combines descriptions for
the data and services that are relevant to a task. The service
brokers will perform reasoning on this metadata space to
identify available services for certain types of document

a

Sample from Sample from GeoSpatialGeoSpatial
Information SpaceInformation Space

Analysis of IndonesiaAnalysis of Indonesia

Filter and categorize
document collection by

Region of Interest

Filter and categorize
document collection by

Region of Interest

Problem: Identify good locations for amphibious
landings and subsequent transportation of supplies

Problem: Identify good locations for amphibious
landings and subsequent transportation of supplies

Define “Region Of Interest” within
Indonesia: Bali’s coastal cities

Define “Region Of Interest” within
Indonesia: Bali’s coastal cities

Observe: southern locations have better road networkObserve: southern locations have better road network

GeoWorlds facilitates rapid focusing of attention: Investigate Southern Bali beaches as candidate sites firstGeoWorlds facilitates rapid focusing of attention: Investigate Southern Bali beaches as candidate sites first

Capabilities SupportedCapabilities Supported
�� Viewing geographic features/layersViewing geographic features/layers

•• Multiple sourcesMultiple sources

�� Spatial queries to search/filter the web Spatial queries to search/filter the web
•• “Region of interest” specified by user“Region of interest” specified by user
•• Output of a simulation/path prediction toolOutput of a simulation/path prediction tool

�� Document-oriented view of regionDocument-oriented view of region
•• Document collection associated with regionDocument collection associated with region

�� Geography-oriented view of documentsGeography-oriented view of documents
•• Spatial distribution of a document collectionSpatial distribution of a document collection
•• Organizing documents based on geographyOrganizing documents based on geography

Web search for
beaches returns
large number of

documents

Web search for
beaches returns
large number of

documents

Locate references in
geographic context

Locate references in
geographic context
Figure 9. Sample information space analysis of Indonesi

collections without querying to the actual service instances.
By combing this with a data fusion description language, we
will enable users to compose virtual services that pipeline
multiple services in order to achieve complex information
analysis goals.

To facilitate more dynamic and integrated visualizations, we
plan to re-implement all the viewers in a model-view-
controller architecture. This will let changes or events
generated in one view propagate to other views. For
example, if the user highlights a category in the Category
Editor, then the corresponding category in the Map Viewer
will be highlighted as well.

We plan to extend the asynchronous service access
mechanism in several directions, including a priority
scheduling mechanism to sort jobs according to specific
criteria, and an inter-linked web of JavaSpaces to allow
users to access spaces that are not local to the network.

SUMMARY
The Collaborative Information Space Analysis Tools of
GeoWorlds provides a semi-automatic information space
analysis mechanism to help users organize task-oriented
information spaces quickly and efficiently. The approach
helps users overcome barriers of ignorance and complexity
in information analysis tasks: users don't know which
services are available, nor how to invoke the services. The
data-driven brokering and the asynchronous service access
architecture provide intelligent, dynamic and transparent
service selection and invocation mechanisms. The service
brokers utilize content and structure descriptions of
document collections to provide efficient matchmaking.
Representing content and structure separately simplifies the
metadata description and improves its reusability. The
architecture provides an asynchronous service invocation
framework to facilitate transparent access to services. The
client need not know the location of the services or the
actual communication mechanism. A set of dynamic and
consistent visualization features help users understand the
meaning of the document collections. This assistance in
using alternative visualizations of a document collection
helps users find out important or hidden points that cannot
be found using a single viewer.

INFORMATION AND QUESTIONS
For more information:

http://www.isi.edu/geoworlds/
http://www.isi.edu/dasher/

REFERENCES
1. Baldonado, M., Chang, C., Gravano, L., Paepcke, A.,

Metadata for Digital Libraries: Architecture and Design
Rationale, Proceedings of the Second ACM
International Conference on Digital Libraries (DL'97),
Philadelphia, Pennsylvania, July 1997, pp. 47-56.

2. Berners-Lee, T. Metadata Architecture, W3C, January
1997. http://www.w3.org/DesignIssues/Metadata.html

3. Carriero, N., and Gelernter, D., “Linda in context”,
Communications of the ACM, Volume 32, No. 4 (April
1989), Pages 444-458.

4. Coutinho, M., Neches, R., Bugacov, A., Yao, K.,
Kumar, V., Ko, I., Eleish, R. GeoWorlds: A
Geographically-based Information System for Situation
Understanding and Management, TeleGeo ’99, Lyon,
France, May 6-7, 1999

5. JavaSpaces™ Specification, Sun Microsystems,
November 1999.
http://www.sun.com/jini/specs/js101.pdf

6. Java Remote Method Invocation Specification, October
1998.
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spe
c/rmiTOC.doc.html

7. Jini™ Technology Architectural Overview, technical
white paper, Sun Microsystems, January 1999.
http://www.sun.com/jini/whitepapers/architecture.html

8. Lagoze, C., Payette S. An Infrastructure for Open-
Architecture Digital Libraries, Cornell Computer
Science Technical Report TR98-1690, June 1998.

9. Neches, R., Abhinkar, S., Hu, F., Eleish, R., Ko, I, Yao,
K., Zhu, Q., Will, P. Collaborative Information Space
Analysis Tools, D-Lib Magazine, October 1998.
http://www.dlib.org/dlib/october98/dasher/10dasher.ht
ml

10. Nodine, M., Bohrer, W., Ngu, A.H.H. Semantic
Brokering over Dynamic Heterogeneous Data Sources
in InfoSleuth™, 15th International Conference on Data
Engineering, 23 - 26 March, 1999, Sydney, Australia.

11. Orfali, R. and Harkey, D. and Edwards, J. The Essential
Distributed Objects Survival Guide. John Wiley &
Sons, New York, 1996.

12. Powley, C., Benjamin, D., Grossman, D., Neches, R.,
Postel, P., Brodersohn, E., Fadia, R., Zhu, Q., and Will,
P. DASHER: A Prototype for Federated E-Commerce
Services. IEEE Internet Computing, Vol 1, No 6,
November/December 1997.

13. Resource Description Framework (RDF) Model and
Syntax, World Wide Web Consortium (W3C)
Recommendation, February 22, 1999.
http://www.w3.org/TR/REC-rdf-syntax/

14. Resource Description Framework (RDF) Schemas,
World Wide Web Consortium (W3C) Proposed
Recommendation, March 3, 1999.
http://www.w3.org/TR/PR-rdf-schema/

http://www.isi.edu/geoworlds/
http://www.isi.edu/dasher/
http://www.w3.org/DesignIssues/Metadata.html
http://www.sun.com/jini/specs/js101.pdf
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
http://www.sun.com/jini/whitepapers/architecture.html
http://www.dlib.org/dlib/october98/dasher/10dasher.html
http://www.dlib.org/dlib/october98/dasher/10dasher.html
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/PR-rdf-schema/

	ABSTRACT
	INTRODUCTION
	SYSTEM OVERVIEW
	DATA ORGANIZATION AND SERVICE BROKERING
	Metadata Descriptions
	Data-driven Service Brokering
	Service Selection and Invocation

	ARCHITECTURE FOR ASYNCHRONOUS SERVICE INVOCATION
	Job Entries and Events
	Job Pool Layer
	Communication Mechanism
	Service Interfaces

	DYNAMIC VISUALIZATIONS AND VIEW TRANSFORMATIONS
	View Transformations

	RELATED WORK
	EVALUATION
	FUTURE WORK
	SUMMARY
	INFORMATION AND QUESTIONS
	REFERENCES

