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Abstract

This document describes the design of the FARADs prototype in detail. The objective of the
prototype was two fold. The first objective was to give a form to the ideas presented in original
FARADs architecture document by David Clark [Cla02], and build a platform for experimenta-
tion. The second objective was to verify that we indeed get the flexibility and extensibility that
was claimed as a benefit of the design. We made several design decisions while instantiating the
various components of the architecture primarily due to feasibility and time constraints. We dis-
cuss the design in detail, and identify potential future work. The appendix contains the FARADS
Programmer’s Manual that discusses the various interfaces, and data structures in more detail.
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1 Introduction

This document describes the overall design of the FARADS prototype and how the various FARADs
concepts map to the prototype components. This document assumes that the reader is familiar with
the FARADs concepts that are described in the vision [1] and high-level design[2] documents. The
purpose of the effort is two fold. The first purpose was to create a platform for testing ideas related to
FARADS concepts. The second purpose was to verify that implementing FARADS does indeed lead
to flexibility and extensibility of the Internet. Both these objectives were met to varying degrees. By
supporting a variety of forwarding and transport mechanisms we show that the transport layer can
evolve independently of the forwarding mechanisms. By supporting newer forms of mobility, and as
a side effect elimination of some of the issues in existing internet such as NAT support, we show that
the FARADs design provides new capabilities.
The prototype consists of group of co-operating processes spread out in the network. UNIX

processes and IPC are used to create an application overlay that is the FARADs network of hosts and
routers. The prototype also supports some simple applications such as an http application.
The outline of the rest of the document is as follows. Section 2 discusses the overall structure of the

prototype. Section 3 presents an example sequence of operations for a mobile entity and a fixed entity.
Section 4 lists the various design decisions made while building the prototype. Section 5 describes the
control and data flow in the prototype. Section 6 describes support for mobility in FARADs using
agents. Section 7 discusses the FD translation problem, and presents canonical routes as a potential
solution. Section 8 describes the various protocols providing different communication abstractions.
Section 9 discusses the packet formats in more detail and present the various FD formats supported.
Section 11 presents two initial scenarios used for testing FARADs. Section 12 concludes by presenting
some future work that can build upon the prototype.

2 Prototype Structure

The FARADS network consists of a set of interacting FARADS hosts and routers. In the prototype,
each new FARADS host is simulated using a set of UNIX processes as shown in Figure 1(b). Although
theoretically multiple FARADS hosts can be simulated on a single host, our current implementation
allows only one FARADS host per physical host. These simulated FARADS hosts interact to form an
overlay network as shown in Figure 1(a).
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Figure 1: Abstract model of FARADS network
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Element Implementation Function

Entity Unix process Application
FARADS Kernel Unix process forwarding, local resource discovery

Agent Unix process Mobility support
Association abstract datastructure Maintain communication state

FD Multiple forms (IPv4, SlotID), Carry routing instructions to deliver
(IPv4 Addr 1, IPv4 Addr 2,..., SlotID n) packet to the destination entity

Rendezvous Association establishment protocol Setup association state at endpoints
Rendezvous String String carrying protocol cookies Carry additional first packet information

Slot abstract datastructure built on Unix socket Attachment point for the entity
Portal abstract datastructure Attachment point for an association

FD Mgmt Distributed among association and kernel Perform functions that require knowledge from
below-the-line e.g., FD manipulation

Table 1: FARADs design-prototype mapping

We use the phrases “a FARADS host” and “a cluster of processes simulating the FARADS host”
interchangeably. The FARADS hosts communicate using a standard protocol such as UDP through
the socket interface provided by the operating system. This socket to which the FARADS host binds
to effectively acts as the network interface to the FARADS host, and the bidirectional channel created
acts as a physical layer. FARADS hosts are multi-homed when the correspoding physical host is
multi-homed, and such hosts act as FARADS routers.
Each FARADS host may contain many entities as shown in Figure 1(b), each of which may contain

many associations. The FARADS host is built using two components – a FARADs kernel daemon
that supports all below-the-line functionality, and an entity process that contains all above-the-line
functionality. There is one process corresponding to each entity. The kernel daemon is an essential
part of the host, and a minimal host has only the kernel daemon running. Processes corresponding
to entities are spawned as and when required. This structure decouples the development of the kernel
daemon from that of the entities. All entities communicate with each other and with other entities on
the network through the daemon. For this purpose, each entity maintains a communication channel
with the daemon using UNIX IPC facilities.
Table 1 lists the various elements of the FARADs architecture, what they map to in the prototype,

and gives a summary of their function. In the rest of this section, we explain Table 1 more detail.

2.1 Entities

Figure 2(a) shows an entity containing many associations and two slots, reachable using FD1 and
FD2. The entity communicates with the kernel and other entities through the slot. In the prototype,
each entity maps to one process. We refer to process and entity interchangeably. At startup time, an
entity/process establishes communication channel with the FARADS kernel (daemon), and requests
a slot. Once allocated, the entity queries the routing subsystem for an FD corresponding to the slot
allocated, called myfd. Upon obtaining myfd, the entity is ready to communicate with other entities
in the FARADS network. In server mode, a non-mobile entity probes the FARADS kernel’s local
resource discovery function for the FARADS DNS’s FD. The entity then registers a name and myfd

with the DNS. A mobile entity, on the other hand, first probes the kernel for an agent FD. The mobile
entity then registers with the agent, which returns a globally routable FD that can be advertised
through the DNS. The mobile entity then registers a name and the agent-returned FD with the DNS
just like the non-mobile entity.

2.2 FARADS Kernel

The FARADs kernel is an essential component of the FARADS host that is responsible for forwarding
packets. It runs as a daemon in the background. The daemon has two interfaces. On the FARADS
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Figure 2: Generalized entity and agent structure

network interface, it listens for communication from other FARADS hosts. On the local interface,
it listens to all the open IPC channels to entities for control and data messages. The kernel routes
messages from the network interface to the local interface, and vice-versa.
For sending and receiving packet on the network interface, we experiment with two possible imple-

mentations with different levels of flexibility. In the first implementation, IP packets are constructed
by the daemon and sent out of the physical network host bypassing the host operating system such
as FreeBSD. In the second implementation, and FARADS host communicate using UDP tunnel. The
prototype implementation is single threaded, and supports IPv4 and IPv6 as the link layer protocols.
The slot interface supports four system calls, i.e., send, receive, slot allocate and slot deallocate.

The send and receive are equivalent to the traditional UNIX system calls send and recv provided to
the applications. An outgoing packet processing is identical to that of the routed packet. The slot
allocate and deallocate are handled by a special control control function that manipulates the mapping
between the slot numbers and appropriate OS construct such as the named pipes corresponding to
each entity. Section 5 discusses the control flow in more detail.

2.3 Agent

Agent is a special kind of entity that has a globally routable FD and helps other entities establish
contract with mobile entities. This is done through rewriting headers before forwarding the messages
or sending a redirection message to the source. Its functionality is below the kernel-entity boundary.
It must also communicate with the mobile entity to ensure that the latest FD is used forwarding.
The implementation uses a modified entity to perform the functions as shown in Figure 2(b). An
entity-level implementation was done due to time constraints and since it does not result in any loss
of generality.

2.4 Slots

Slots are implemented as abstract datastructures that user unix sockets to communicate with the
entities. An entity bootstraps by instantiating the abstraction, and then requesting the kernel to assign
the instantiation a specific slot number. The slot state consists of operating system file descriptors
corresponding to the sockets and message sequence numbers. Slot state is required on both sides of the
kernel-entity boundary. The current slot implementation uses only one socket connection, and does
have any staging buffers. A different implementation of the kernel-entity communication channel can
have one or both of them. Also, there is no checkpointing or any other kind of support for mobility
within the slots.
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2.5 Association

Association in the prototype take the form of a abstract datastructure. An entity instantiates an
association object to initiate communication. A simple handshake protocol between two instantiated
association objects from different entities is used to create an end-to-end association. The association
state consists of the source and destination forwarding descriptors, source and destinations AIDs,
send and receive buffers, agent FD corresponding to the remote end, and handshake protocol state.
Section 8 discusses the various types of associations supported by the prototype in more detail.

2.6 Portal

A portal is an abstract point of attachment for the association. There is no data structure associated
with the portal in the current implementation, but in a future implementation involving a complex
association, the portal might be used as a staging location before messages are delivered to the
association.

2.7 FD Management

The FD Management module consists of the set of functions that require application-level input
and below-the-line information simultaneously to perform a desired operation. These include FD
manipulation based on user inputs, and detection of changes in FDs used to communicate with a
specific entity. The prototype supports only FD change detection. Full fledged mobility support will
require a more complex FD management unit operations such as slot allocation at a remote node
where the entity plans to move.

3 Operation

A typical operation sequence for a mobile server entity is as follows:

1. The entity obtains a myfd, an FD to itself, by querying the routing subsystem.

2. The entity (process) obtains an Agent FD. This FD is either preconfigured/well known or the
entity queries the FARADs kernel.

3. This agent FD is presented to the FD management layer along with any route preferences that
the entity may have. The FD management layer returns a modified FD.

4. A standard agent registration protocol is used to register a service name to myfd mapping. A
full fledged association with the agent may or may not be necessary for the registration process.

5. The association, if any, is then terminated.

6. The entity (process) then obtains the FARADS DNS FD. This FD is either preconfigured/well
known or the entity queries the FARADs kernel.

7. This DNS FD is presented to the FD management layer along with any route preferences that
the entity may have. The FD management layer returns another FD.

8. This new FD is used to establish an association with the DNS.

9. A standard DNS registration protocol is used to register a service name to myfd mapping.

10. The association is then terminated.
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11. The entity then listens on myfd for any new associations.

A fixed server entity can skip the agent registration process. An operation sequence for the client
entity is as follows:

1. The entity obtains a myfd, an FD to itself, by querying the routing subsystem.

2. The entity (process) then obtains the FARADS DNS FD. This FD is either preconfigured/well
known or the entity queries the FARADs kernel.

3. This DNS FD is presented to the FD management layer along with any route preferences that
the entity may have. The FD management layer returns another FD.

4. This new FD is used to establish an association with the DNS.

5. A standard DNS querying protocol is used to lookup a service name.

6. The association is then terminated after receiving server’s FD.

7. The entity presents server’s FD to FD management layer along with routing preferences.

8. The FD management layer returns a modified FD which is used to establish an association with
the server entity.

The entity has interfaces to the various other modules such as the routing subsystem, FD manage-
ment, kernel, agent and the DNS. Only the interfaces relevant to the prototype have been identified in
some detail. For other interfaces such as that between the FD management and the routing subsystem,
they are part of the future work.

4 Design Choices

The nature of the prototype allowed for several possible implementations. Here we discuss some of
our design decisions.

1. User-level implementation. The user-level implementation allowed for fast prototyping. Further,
our focus is flexibility and functionality and not performance, which is usually the primary reason
for a kernel-based implementation.

2. FreeBSD as the experimental platform. The choice of FreeBSD was fairly arbitrary and most of
the code is portable to other unix platforms.
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3. Use of IP as link layer. A hybrid implementation is possible in which the FDs are expressed
in terms of the IP header fields and initial few bytes of the payload. An initial implementation
was based on this idea. However, to allow for experimentation with different types of FDs and
addressing schemes that are incompatible with IP, IP is only used as the link layer.

4. Kernel and entities as processes. This allows for independent development of the kernel and the
individual applications.

5. UNIX IPC for kernel-entity communication. UNIX IPC was used for this purpose because of
time constraints, low complexity with reasonable performance. However, the IPC usage requires
that the NewArch kernel and entities lie on the same physical host.

6. Agent as a special entity. Although the agent functionality is below the line, a simple but
inefficient user-space implementation was done due to time constraints.

7. Reauthentication protocol. The prototype uses DCCP-nonces[DCCP] because it is simple and
easy to implement.

8. Simple routing algorithms. Routing subsystem is beyond the scope of the implementation, and
therefore a simple static routes-based implementation is chosen.

5 Control and Data Flow

Figure 2(a) data flow at a high level within an entity. Packets enter an entity from one of several
possible slots to which the entity listens to. The destination AID contained within each packet is
used to select the portal to which the packet must be delivered to. There is one-one correspondence
between AIDs, associations and portals. Portal is useful as an abstract notion but there is no data
structure associated with it. Packets are directly delivered to the association.

5.1 Control Flow in FARADS Kernel

Figure 4 shows the data flow within the FARADS kernel. Any packet coming in from the network is first
decoded to construct an abstract representation of the packet. A routing check is performed to verify
if the host is the destination for the packet. If the host is the final destination, the packet is delivered
to the slot identified in the destination FD of the packet. If the host is not the final destination,
the packet may require special processing before being shipped to the next hop. The packet is then
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sent to the forwarding function after advancing to the next FD segment in the destination FD. The
forwarding function first encodes the packet datastructure before sending the data out. The next hop
destination is extracted from the destination FD to select the UDP tunnel that must be used. In our
prototype we use IP (version 4 and 6) as the link layer, so an appropriate IP header is constructed
and used. The packet processing of outgoing packets is similar to that of the routed packets.

5.2 Control Flow in Entity

Figure 5 shows the control and data flow within entity. The FARADS kernel delivers each packet to
the entity as a tuple <Source FD, Destination FD, Data>. FD management is the primary consumer
of the source and destination FDs. Entities can probe the FD Management layer for information
about the packets such as the number of the slot through which the packet was delivered. The FD
management may inform the entity of events such as change in the source or the destination FDs from
previous packets.
The entity first checks to see if it is running in the agent mode on the slot of the incoming

packet. If so, it looks up an internal data structure for (1) the specific type of agent configured such
as redirector or forwarder, and (2) FD of the mobile entity. If the agent is a redirector, a redirect

message is constructed and sent to the entity at the source FD. In the agent is in forwarding mode,
the destination FD is rewritten, and the packet is reinjected back into the network.
If the entity is not running in the agent mode, the destination AID specified in the packet is used

to identify the correct association to deliver the packet to. The prototype implementation supports
different associations providing different abstractions. Section 8 discusses the protocols used in more
detail. A base connected association is responsible for handling handshake with the remote end during
connection establishment. A mobile association can be configured to receive data messages from the
base association. The function of the mobile association is to provide transparent mobility through
detection of movement, and invoking reauthentication mechanisms upon such a successful detection.
In the default case when the data arrives on an expected slot with the correct FDs, the data is delivered
to a message queue after stripping the mobile association headers.
The FARADS Transport Protocol (FTP), provides a reliable byte stream abstraction. Internally

FTP uses headers which have TCP-like header format. The data extracted from the message queue
is a FTP message, and the payload of the FTP message is copied to the user-specified buffer.
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6 Mobility Support

Section 2 introduced the agent-based mobility support. The agent serves as a rendezvous point between
a mobile entity and other entities by keeping track of the location of the mobile entity and letting other
entities know about it. Existing DNS already serves as a rendezvous point between mobile entities.
The mobile entity can, for example, update the DNS whenever it moves to a new location. Commercial
implementations such a service already exist. However, it is effective only when the movement occurs
infrequently. For high rates of mobility, a third party entity, an agent, is used.
The agent operates as follows. The mobile entity discovers the agent, and registers an FD. The

agent responds with another FD which the mobile entity advertises through the DNS. Any other entity
which looks up the DNS for the mobile entity’s name finds the agent’s FD. Any message sent to the
agent will be either forwarded or responded to with a redirect message depending on how the agent is
configured. The two schemes are discussed below in more detail. The agent has a functionality that is
both above and below the line simultaneously. The above-the-line functionality relates to maintaining
an association with the mobile entity and and state related to mobile entity’s location. The below
the line functionality relates to handling of packets meant for the mobile entity. The agent uses the
slot number on which a particular packet has been received to distinguish between packets meant for
itself and those meant for the mobile entity. Thus an agent listens to atleast two slots. It listens on
multiple slots if it serves as an agent for multiple mobile entities.
Two possible kinds of agents are as follows:

FD-Rewriter Agent: This kind of agent simply rewrites the header of packets that are intended
for the mobile entity with the mobile-entity’s FD and reinjects the packets into the network.
Upon receiving such forwarded messages the destination can respond directly instead of the
going through the agent. The packet exchange is shown in Figure 6(a). If the connection
breaks, the connect can fall back to the default scheme, i.e., route packets through the agent.
The disadvantage of such a scheme in which the synack-equivalent message can come from any
arbitrary source FD could potentially be a security problem, and therefore will require stronger
authentication.

FD-Redirector Agent: When the agent is sent a connection open message or an explicit lookup, the
agent responds with a redirect message specifying the mobile entity’s FD. The source uses this
new FD to send a fresh connect message. The packet exchange is shown in Figure ??. If mobile-
fixed connection breaks, the fixed entity can obtain the latest FD by performing a lookup and
executing the reauthentication algorithm. The disadvantage of such a scheme is that anonymous
one-way communication, e.g., used in streaming media or multicast, cannot be supported.

When a redirect message is received by the source, the particular send message which resulted in
the redirect response must fail or an asynchronous signal must be sent to the application. In either
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MyFD() Compute an initial set of FDs
FDMake(<preferences>) Create an FD which satisfies the preferences.
FDChar(fd, characteristics) Evaluate the FD with respect to the identified characterististics.

FDMerge(FD1, FD2) Combine two FD fragments.
FDSort(<FD set>, <preferences>) Sort FDs based on the identified characteristics.

FDSplit(fd, <preferences>) Extract components of the FD based on geographic or topological constraints.
FDOther(fd, <preferences>) Compute a small set of alternative FDs for a given FD based on

some prespecified contraints, e.g., cost.
FDRoutable(fd) Make the given FD globally routable.
FDDuplicate(fd) Duplicate the FD
FDAdvance(fd) Advance to the next segment within the FD
FDTestEnd(fd) Test whether
FDNextHop(fd) Compute the next hop

Table 2: FD manipulation functions

case, the new FD must be provided so that the entity can update its datastructures. The prototype
implementation differs slightly from this model. A entity-level redirect control message is generated
which is handled by the entity itself.

6.1 FD Management

Describe the FD-Management interface. The assumptions that the entity makes about the FD man-
agement functionality such as obtaining an FD, and obtaining FD to a remote location (where the
entity is scheduled to move to). Table 2 shows a partial list of functions that must be supported either
by the FD management or the routing subsystem. The interface definition is future work.

6.2 Reauthentication

Separation of location and identity in FARADS introduces security issues. FDs are opaque sequence
of bits, and the destination to which an FD leads to may not be predictable. Strong cryptographic
key-based entity identification will be necessary, but may be computationally too expensive. The
prototype assumes a simple, relatively less secure, scheme in which every packet is not authenticated
but rather end points can be forced to authenticate themselves at any point during communication,
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6. ACK(..) DATA(..)
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MOBILE

(a) Initiated by mobile entity.
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Figure 7: Reauthentication message sequence.
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if necessary. The authentication protocol defines the credentials that must be presented and building
up appropriate state at end points to evaluate the credentials. A challenge is a request to the remote
end point to present the credentials, and a challenge response contains the credentials from the remote
end point.
Authentication challenge can sent in circumstances such as when the source or destination FD

used by an endpoint changes and when a threshold amount of time has passed since that last data
exchange. Movement of an endpoint causes a change in atleast one of source or destination FD
that is used. Figure 7 considers a scenario where there is one fixed entity, one mobile entity and an
agent, and the mobile entity moves. The figure shows the sequence of messages exchanged during
reauthentication which is invoked after the movement. Here we assume an unpredictable move by the
mobile endpoint, and that the agent is operating is forwarding mode. Figure 7(a) and 7(b) show the
exchange when reauthentication is initiated by mobile entity and the fixed entity respectively. On
both the sequences, the mobile entity updates the agent first and then presents credentials to the fixed
entity. This presentation of credentials may be preceded by a challenge from the fixed entity.

7 Canonical Routes

Support for mobility requires that the routing subsystem or some other subsystem be able to translate
between FD’s. Suppose FDdst was being used to communicate with a remote entity. When the entity
moves to a new location, a new FDdst’ must be computed which results in packets being delivered
exactly to the same location that FDdst would have delivered the packet to. Now, if the internet
consists of a flat network of private domains, then this FD translation could be arbitrarily complex.
The complexity increases further if we assume that FDs have QOS-related semantics.
To avoid this complexity, we assume a two level routing domain hierarchy as shown in Figure 8

in which there is a single globally routable domain. End-to-end routes are composed of two FD
fragments, viz., FDup and FDdown. FDup corresponds to the part of the FD that results in a packet
being delivered in the globally routable domain. The FDdown is the part of the FD that results in a
packet being delivered to the appropriate private routing domain. We call the FDdown the canonical
route because it is invariant between the various end-to-end routes used to reach the destination
entity. Given a canonical route to a destination, it is easy to compute an end-to-end FD. The routing
subsystem uses local knowledge to compute FDup and concatenation this FDup with FDdown. We
can thus avoid most of the FD translation complexity.
We can use canonical routes where ever possible in the existing system. For example, they can be

advertised through the DNS or carried as the source FD in messages. Canonical routes are now part of
the association state. When an entity moves to a new location, the entity presents the saved canonical
route to the destination to the routing subsystem which uses its local knowledge about FDup’ at the
new location to an compute end-to-end FD.
Efficient routes can be composed if the routing subsystem has additional knowledge about the

topology

FDup

GLOBALLY ROUTABLE
DOMAIN (e.g., IPv4)

NATed DOMAIN (e.g., IPv6)
ANOTHER DOMAIN

DST SRC

SRCFDdown
DST

Figure 8: Assuming a single globally routable domain simplifies FD translation
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8 Protocols

The prototype supports four different kinds of associations – simple association, connected associa-
tion, mobile association and fTP. They are in the increasing order of complexity, shown in the form
of protocol layers in Figure 9. A simple association’s functionality is similar to that of UDP – un-
ordered, unreliable message sequence. A connected association includes a handshake to establish and
destroy the connection. It is also unreliable, but allows for admission control and authentication.
Mobile association builds on the connected association to provide transparent mobility by performing
authentication and reauthentication upon each move. NewArch implementation of TCP, fTP, adds
reliability and ordering. fTP is a simplified version of the standard TCP.
The connection-initiating end must know, in the prototype, the protocol that is being used at the

remote end point. This can easily eliminated by introducing a protocol field.

8.1 Simple Association

There are two possible simple associations. First, the class of associations that is equivalent to UDP
connections, i.e., unordered datagram delivery service without explicit connection setup. Second,
single packet association setup. The prototype support only the first type. Section 9 discusses the
packet format in more detail, and the appendex discusses the appropriate field values in more detail.

8.2 Connected Association

Connected association provides unreliable, datagram delivery service but with a single-round trip
connection establishment phase. Although the protocol does not provide reliability, a handshake can
help identify the source and destination to each other.
Figure 10(a) shows the finite state machine corresponding to the connected association protocol1.

The protocol state machine at each end point starts in the LISTEN state. Depending on whether that
end is initiating the connection, the state machine goes through the WAIT state. Similarly during
termination of the connection, the active end (initiator of the termination) goes through the WAIT
state.
This protocol provides minimal security. Data is always sent to the destination FD that was used

during the connection setup. However, data can be received from any source allowing for certain kinds
of security attacks.

1The labels have the standard format of “input/output”
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STATE SEMANTICS

OPEN full fledged connection established
I WAIT Wait for the ack from remote end for an explicit move message

I AGENT WAIT wait for the agent’s reply
I REAUTH reauthentication must be initiated

I AUTH SENT local end’s authentication information sent
N REAUTH wait for the other end to initiate the reauthentication process

Table 3: Various mobile association states and their semantics

8.3 Mobile Association

Mobile association allows for mobility of the connected association and at the same time provides weak
security. Mobile association invokes a reauthentication mechanism whenever one end is unsure about
the status of the remote end. This could happen when there is a timeout or which the source of a
datagram has changed We the DCCP nonces as the authentication mechanism, and use the rendezvous
strings to exchange the nonces.
State transitions in figure 11(a). The state machine starts in the OPEN state when the underlying

connected association completes the handshake, and enters the OPEN state. Mobile association state
transitions occur while the connected association remains in the OPEN state. When a close is invoked
on the mobile association, the necessary cleanup is performed and a close operation on the connected
association is invoked.
In Figure 11(a), states are prefixed by either I or N to indicate whether they are the initiator or

non-initiator ends of the association. The following transitions occur at the initiating side:

8.4 fTP

The FARADS Transport Protocol (fTP) provides for reliable byte stream. We are interested only
in the reliability aspects and not the performance. As such we use window sizes of 1 byte and fixed
timeout intervals for retransmission. Figure 12(a) shows the state machine that was implemented.
The packet loss testing tool Sting [Sav99] was modified for the purpose.
fTP header is identical in syntax and semantics to the standard TCP header. However, we use a

restricted range of possible values to the various fields and parameters. In particular we ignore the
congestion control algorithms.

OPENWAIT

CLOSED

LISTEN

/OPEN

OPENED/

/CLOSE

CLOSED/ CLOSE/CLOSED

OPEN/OPENED

(a) Connected association state machine

STRING)

DATA
(RENDEZVOUS

TYPE

SEQ NO

REMOTE AID

LOCAL AID

(b) Header

format

Figure 10: Connected association components
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Figure 11: Mobile association components

The checksum of the fTP packet is computed over the pseudo-header consisting of the local and
remote AIDs. AIDs are equivalent to the source and destination port numbers in TCP in IP networks.
This provides some, albeit small, improvement in security by preventing another association on the
remote host from sending data.
Data is delivered to the user, i.e., a recv call will return when TCP sees a PUSH flag set.
By advertising a window of 1 byte, the prototype, although inefficient, can ensure that all data is

received with out complicated reordering-related problems.

8.5 Discussion

The inter-layer dependencies results in additional programming complexity. They are as follows:

1. Connection open and close: Each layer has a associated handshake to be performed. However
we cannot serialize these handshakes because such a design will require as many round trips as
there are layers. Therefore the handshake messages carry tokens from all the different layers.

2. Dependencies: The pseudo-header computation at the fTP layer requires the AIDs to be known
in advance. However, the aid is assigned by the connected association layer. This requires
separation of the AID selection from the association establishment process.

9 Packet Formats

Figure 13(a) shows the default on-wire format of packets in FARADs. The destination FD identifies
the entity to which the packet must be delivered to, and the source FD identifies the return path to
the entity sending this packet. Each FD has two components – a routing directive and a slot number.
The routing directive helps the packet traverse the network to reach the destination physical host,
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Figure 12: Header formats

and the slot is use to identify the correct entity at that destination host. Figure 14 presents a small
subset of possible forwarding directives.
The semantics of the rest of the fields are as follows: The link layer header is a per-hop header.

Since our implementation is an overlay network, we use IP as the link layer. The source and destination
AIDs are used to select the correct association within the receiving entity to handle the packet. The
TTL is used to control the maximum number of hops that a packet can traverse, and is decremented
after each hop.
The default packet format is similar to IP, and provides no guarantees. Mobility and reliability are

provided by appropriate protocol layers, mobile association and NewArch TCP respectively, within
the association. Headers corresponding to them are shown in Figure 13(b) and 13(c). Note that TCP
header and the mobile header are independent, but the figure shows the typical use. The details of
the headers are discussed in Section 8.

9.1 Header Formats

Section 8 discussed the various header in more detail in the context of individual protocols. So we do
not discuss them here.

9.2 FD Formats

FDs are constructed and manipulated by the routing subsystem and the FD management layer. The
entity treats the FD as an opaque sequence of bit but the structure is visible to the routing and
forwarding functions below the line at end hosts and the routers. After bootstrapping, an entity
queries the routing system for a globally routable FD to itself and registers the returned FD with the
NewArch DNS. A client wishing to find the entity performs a DNS lookup.
A linear structure in which the there are series of FD components is assumed by the FARADs

kernel.
The prototype has been tested with a variety of FD formats. The length of the FD depends on the

FD type, and we expect the FARADs network to support a small number of FD formats. Figure 14
shows the different FD formats supported by the prototype. IPv4 FD and IPv6 FD have a simple

15



DATA

LINK LAYER
HEADER

TTL LENGTH

SRC FD

DST FD

SRC AID

DST AID

(a) Default

packet format

MOBILE HEADER

LINK LAYER
HEADER

TTL LENGTH

SRC FD

DST FD

SRC AID

DST AID

DATA

(b) Mobile asso-

ciation packet for-

mat

TCP HEADER

LINK LAYER
HEADER

TTL LENGTH

SRC FD

DST FD

SRC AID

DST AID

DATA

MOBILE HEADER

(c) fTP packet

format

Figure 13: Various packet formats

SLOT

IP ADDR

IP12

(a) IPv4 forward-
ing directive

IPv624

SLOT

IPv6 ADDR

(b) IPv6 forward-
ing directive

12 + 8n SRC_RT

SLOT 1

....

ROUTE LENGTH

POINTER

IP ADDR 1 

IP ADDR n

SLOT n

(c) Source route

FD

FD n

LENGTH GEN_FD

FD COUNT (n)

POINTER OFFSET

FD 1 

....

(d) Generalized

FD

Figure 14: Various forwarding directives

format with fixed length. The IPv4 source route FD, on the other hand, has variable length. Note
that this is not source route in the traditional sense because by specifying non-default slot numbers
for intermediate nodes, the source can allow for processing at intermediate nodes. The generalized FD
shown in Figure 14(d) consists of a series of FDs, each of which can be an IP FD or source route FD.
It has a linear structure consisting of network segments that must be traversed in the specified order.

10 NewArch DNS

NewArch DNS in the FARADS prototype is an entity. The FARADS kernel is assumed to be configured
with the DNS FD. FARADS DNS supports a simple mapping between a name and a canonical FD
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described in Section 7. The name is free form and only exact matching is supported. Section A.8
presents the DNS registration and lookup protocol in more detail.

11 Experimental Scenarios

This section presents three scenarios – route mobility, host-level mobility and agent placement to show
the flexibility of FARADS. All of them have been implemented and tested in the prototype.

Route Mobility

Route mobility, also called virtual mobility, involves switching between FDs without destroying the
already established association. A sample sequence of operations for an experimental setup shown in
Figure 15 include:

1. FIXED establishes connection with MOBILE (at 10.1)

2. MOBILE instructs FIXED to use a different FD (20.1)

3. FIXED initiates process of reauthentication with MOBILE

4. FIXED and MOBILE resume data transfer

Host-Level Mobility

Host-level mobility is the traditional notion of mobility where the mobile host, potentially contain-
ing more than one entity, physically moves to a different location. If the movement is predictable,
then the mobile entity can suspend the association until the move is completed and resume it after
reauthentication at the new location. If the move is unpredictable reauthentication process can be
initiated by either the non-mobile or the mobile entity. In case of the former, the non-mobile entity
first contacts the mobile entity’s agent to obtain the current location of the mobile entity before initi-
ating the reauthentication process. A sample sequence of operations for an experimental setup shown
in Figure 15 include:

1. FIXED establishes connection with MOBILE (at 10.1)

2. MOBILE’s host’s 10.1 interface goes down and therefore MOBILE is unreachable.

3. FIXED goes back to contact the agent to enquire about MOBILE’s new FD

4. AGENT returns MOBILE’s FD corresponding to 20.1

5. FIXED contacts MOBILE at the new FD.

12 Future Work

The exiting prototype supports different forms of FDs, agents, and associations. It can be extended
in several different ways. They include:

1. The prototype implementation supports only one fTP instance per entity. The prototype must
be extended to support multiple fTP instances.

2. Remove the constraint of one FARADS host per physical host
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3. Allow the agent forwarding to happen simultaneously with the

4. Single packet association setup.

5. Extend FARADs kernel to be multihomed beyond one V4 and V6 interface.

6. Support multicast.

7. Implement tools to add/delete/modify routing table entries.
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APPENDIX

A Programmers Manual

This document discusses the FARADS prototype implementation in more detail. It presents the
interfaces to various abstract data structures used in this prototype, and discusses important imple-
mentation details. As such, this document assumes familiarity with the FARADS [Cla02, FBP02]
terminology and and the high level design of this prototype.
The appendix first presents an overview of this prototype, and follows it up with a detailed dis-

cussion of the implementation of the various pieces of the architecture. The outline of the rest of the
appendix is as follows. Section A.10 presents a simple example FARADS application. Section A.1
introduces the source files and compilation framework. Section A.2 discusses the implementation of
slots. Section A.3 presents the interface to forwarding directives. Section A.4 discusses the vari-
ous types of associations supported and their respective interfaces. Section A.5 discusses the various
mobility-related messages that are exchanged between entities. Section A.6 presents the simple routing
system that this prototype supports. Section A.7 presents the interface to the authentication module
and discusses a specific implementation. Section A.8 discusses the simple naming system that this
prototype supports. Section A.9 discusses some helper applications. Section A.11 summarizes the
implementation and identifies possible future work.

A.1 Source Overview and Build

The source distribution consists of the C++-language source files, and scripts. Executing configure
script results in a Makefile which can be used with UNIX make utility.
The source files can be broadly classified as belonging to the library or to an application. Table 4

lists the various source files that generate the library libfarads.a, and identifies their contents. Table 5
presents the various application source files, and the various executables produced corresponding to
these application source files. The source distribution contains instructions for using these executables.
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File Contents

slot.cc, slot.h Implementation of slots
association.cc, association.h Implementation of association base class association base and

connected association

aa association.cc, aa association.h Agent aware connected association, aa association.
aa request.h
mobile association.cc, mobile association.h Implementation of the mobile association
mobile queue.h
fTP.cc fTP.h Implementation of FARADS transport protocol
mobile message.cc, mobile message.h Implements the message formats
inet.cc, inet.h, checksum.h Provide helper functions to TCP-format packets
farads.h Global include file
authentication.h Defines the interface to authentication mechanisms and

a specific authentication mechanism implementation, DCCP.
serializable.h Defines an interface that can be used to convert and object to

and from network independent representation.
counted.h Provides reference counts to derived classes.
fd.h Implementation of the various forwarding directive types

Table 4: libfarads.a source files

Figure 17 shows the relationship between the various important classes. In the rest of this document
we discuss the various classes in more detail.

A.2 Slot

Source Files: slot.cc, slot.h

Slots are the FARADS kernel multiplexing/demultiplexing points. Incoming messages are received
on a slot, and outgoing messages are sent on one. The slot is an abstract data structure built on top
of a local UNIX socket. A reference count is used to keep track of the number of references to the
data structure. A slot is closed and deallocated when the the last reference goes out of scope or is
deleted. Slots can also be closed explicitly.
Once a slot is allocated, all the operations in Table 6 are supported. Most applications will not

use slot operations directly, however. Most associations should know what slot they operate on and
hide this from the user.
Each slot is identified by a 32-bit integer, and there is a constructor that takes such an integer, used

to create or access allocated slots. The 32-bit integer decision is arbitrary, and should be considered
an artifact of implementation. Constructing a slot object with a given integer adds a reference to
the underlying socket if the slot already is allocated, or exchanges messages with the local faradd to
allocate the slot if not. If a slot is required, but the application can use any slot number, passing a
special integer, slot::NO SLOT, to the constructor tells the faradd to select the slot number. A slot
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Figure 17: Relationship between some important classes
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File Executable Contents

dnsserver.cc dnsserver FARADS DNS service
dnsserver.h
dnsclient.h - Library interface to call the dns
farads exceptions.h - implementation of the exceptions throw in case

- thrown
farads debug.h - Implementation of the debug class to control the level of reporting.
routing.h all Implementation of the routing subsystem
faradd.cc faradd FARADS kernel
packet.cc faradd Implementation of the abstract representation of the messages
packet.h within the faradd

aa ping.cc aa ping Simple ping application used to test a mobile association.
aa pong.cc aa pong Uses command line options and a single domain. aa agent
aa agent.cc aa agent is an application implementing the agent functionality.
agent.cc agent Echo client and server with agent support.
fixed.cc fixed Uses mobile association and simulates host-level mobility.
mobile.cc mobile
fixed fTP.cc fixed fTP Echo client and server.
mobile fTP.cc mobile fTP Uses FARADS transport protocol, fTP instead of the

mobile association.
ping.cc ping Simple echo server and client. Uses connected association
pong.cc pong
testdnsv2.cc testdnsv2 DNS service test application.
uping.cc uping Simple echo client and server. Uses simple association

upong.cc upong

Table 5: Contents of the important application source files

Prototype Effect

uint32 t number() Return the slot number
void send(const void *b, int len, Send the buffer to the given
const forwarding directive& fd) FD. Throws an exception on an error.
throw(slot exception)
void recv(const void *b, int len, Receive a buffer. fdis set to a reply FD.
const forwarding directive& fd) This is a blocking call. Throws an exception on an error
throw(slot exception)
bool message waiting() Return true if a recv call will return immediately.
void close() Explicitly close the slot. No more packets will be received, nor can

any be sent on the slot after this call is made.

Table 6: slot operations
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Name Semantics Value

IP IP v4 FD 1
IPv6 IP v6 FD 2
SRC ROUTE IP v4 source route 3
GEN Generalized FD 4
NO TYPE Null FD 9999

Table 7: FD types

object can be created without allocating a slot number from the faradd using the default constructor.
Slots can be assigned to and initialized from other slots.
The protocol for allocating a slot is straightforward. Messages travel between the entity and the

faradd via a local, i.e., UNIX-domain socket. Each message contains a message of the format in the
slot::request class. To allocate a slot, an ALLOCATE, message is sent. If the allocation is successful an
ALLOCATEDmessage is returned or an error is indicated by NOT ALLOCATEDmessage. Analogous
messages exist for deallocation. All messages are sent on the same channel to avoid ordering problems.
Once either request is made, the entity waits 0.5 seconds for a reply. If none comes, the request is
assumed to have failed. The protocol is not very robust to errors, but the combination of high reliability
of local sockets and simplicity of implementation argues for a simple protocol.

A.3 Forwarding Directives

Source Files: fd.h

Forwarding directives (FDs), as described in the companion document, are set of instructions that
can take a packet from a source to a destination. Forwarding directives have two parts. First, a network
part that helps the packet traverse the network, and second, an end system part which is used to select
the correct entity within an end system. In this prototype, the network part of the FD consists of an
ordered sequence of IPv4 and IPv6 addresses. The end system part in our implementation is a 32-bit
slot identifier. This prototype supports different kinds of FDs, but in all cases the end system part,
slot identifier, is fixed. The on-wire formats of the various FD types described in Section 9.
FDs are created by either the FD management layer or the routing subsystem. Section A.6 discusses

the routing system interface provided for this purpose. Entities treat FDs are an opaque sequence of
bits. In this prototype most applications use the routing system to obtain FDs, and deal with only
references to FDs. Operations such as duplication, comparison, and sorting are ideally done by the FD
management layer, but the abstract data structure used to represent FDs supports these operations
directly within the entity.
This prototype supports five types of forwarding directives: Null, IPv4, IPv6, IPv4 Source Route,

and Generalized. Table 7 specifies the types and values corresponding to the various FD types.
Within the entity and the FARADS kernel, the FD is represented as an abstract data structure,
forwarding directive. Table 8 specifies the common interface to all FDs. The various FD types have
different constructors. The IPv4 and IPv6 FD constructor take as input IPv4 and IPv6 addresses
respectively. The IPv4 Source Route FD constructor requires the specification of the source and
destination IPv4 address. The Source Route FD constructor invokes a helper function to compute the
source route. A Generalized FD can be constructed by specifying an ordered list of FDs.
The forwarding directive interface methods can be broadly classified as being delivery-related,

format conversion-related, and user-interface related.
The routing subsystem uses the delivery-related FD functions. These include the in addr method

and the advance method. The in addr function returns an address structure containing the next
hop in a specific domain. Currently the address structure supports only IPv4 and IPv6 nexthops.
It is executed by each FARADS router along the path from the source to the destination. When
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bool my type(void *, int) const Check if encoded FD has my type
uint32 t my type() const Return my type
bool operator==(const forwarding directive& f) const Compare two FDs for equivalence
forwarding directive *make copy() Create a duplicate
address *in addr() const Return next hop address (e.g., an IPv4 address)
uint32 t slot() const Return the slot identifier
void advance() Forward internal pointers to next FD segment
void post processing() Any post processing (e.g, resetting pointers) of FD

to be done before making storing it

Table 8: Important forwarding directive methods

the packet reaches the next hop identified by the address structure returned by in addr method, the
advance method is invoked to set an internal pointer within the FD to point to the next FD segment.
A packet is assumed to have reached its destination if even after the advance operation, the local end
system/router still remains the destination. The method slot returns the slot number associated with
an FD. This is used by the farads kernel to identify the entity to which the data must be delivered,
and the OS data structure corresponding to it.
The representation of an FD within the packet is different from the representation within an

end system. The forwarding directive class provides methods serialize and unserialize to perform
conversion between these different forms. A helper method my type extracts the type of the FD
when it is the decoded, i.e., when the FD is in normal form, and tests whether the type of the
encoded FD is the same as another FD. This is useful in determining the correct domain for taking
the next hop and the appropriate gateway. An artifact of the implementation is that an end system
cannot simultaneously be resident in multiple V4 or V6 domains at the same time. This problem
can be eliminated by providing some context for interpreting the V4 address which can disambiguate
between different structurally similar routing domains.
The entity stores source FDs of incoming packets to allow for sending responses. The make copy

function, as the name indicates, is used to make copies of the forwarding directives for storage and
manipulation. Before storing FDs, any internal pointers may have to be reset. The post processing
invoked just before storing an FD allows for resetting of such pointers.

A.4 Associations

This prototype supports various types of extensible associations, and each association is implemented
as a C++ class. The relationship between the various kinds of classes is shown in Figure 17. In this
section we discuss each of the associations in more detail.

A.4.1 Class association base

Source Files: association.h, association.cc

The class association base is the base class identifying the minimal interface that other derived
associations must support. The interface is very simple, and is shown in Table 9. The send and recv
methods invoke send message and recv message respectively that are implemented by derived classes
such as mobile association. The method rv string returns the rendezvous string sent by the remote
end during connection establishment.

A.4.2 Class simple association

Source Files: association.h, association.cc
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Prototype Effect
string rv string() Return the rendezvous string
void send(const void *b, int len) Send the buffer on this association.
throw(farads exception) Throws an exception on an error.
void recv(const void *b, int len) Receive a buffer on this association. This is a
throw(slot exception) blocking call that throws an exception on an error.

Table 9: association base operations

Prototype Effect
void send(const void *b, int len, Send the buffer on this association to the
const forwarding directive &fd) throw(farads exception) specified destination. Throws an exception on an error.
void recv(const void *b, int len, Receive a buffer on this association and return the source FD using
forwarding directive &fd) throw(slot exception) the specified fd. This is a blocking call.Throws an exception on an error.

Table 10: Methods added by simple association

The simple association provides connectionless transport similar to UDP. The simple association
class adds send methods that includes a destination FD, and a recv method that can return the source
FD. Other than that, the basic association model is preserved. The uping and upong applications use
simple associations. This class of associations do not use association IDs (AIDs).

A.4.3 Class connected association

Source Files: association.h, association.cc

connected association provides a connection oriented transport without reliability or ordering guar-
antees. It defines a simple two-messages protocol between two connected association end points to open
and close an association presented in Section 8.2. Table 11 shows the various methods support by this
class. connected association defines a constructor that just takes a slot and rendezvous string that
results in a passive association end point. Calling listen on that association returns a fully formed
connection should one become available. The active open is accomplished by using a constructor
that takes a slot, rendezvous, and the FD of the other end. This constructor initiates the connection
establishment protocol. The listen and active constructor each allocate an association identifier on
either end and set up appropriate demultiplexing state to provide separate message streams over the
same slot. The ping and pong applications use connected association.
The method process message receives all incoming messages and classifies them into control, valid

data and invalid data messages based on the destination AID. Control messages are handed off to
control message method. In case of valid data messages, the headers are stripped, and the body
enqueued in a message queue. Invalid data messages are dropped.

A.4.4 Class aa association

Source Files: aa association.h, aa association.cc

aa association is similar to connected association in that it provides connection oriented, unreliable
datagram service.

aa association class is constructed out of connected association code base but is not a sub class.
aa association has two major changes from connected association. It handles the mobility-related
redirect message, and supports a variety of FDs by converting all references to pointers. This class
is intended to be used with mobile association. connected association can theoretically replace by
connected association which has been retained for historical reasons.
Table 12 shows the various methods support by this class. The semantics of the process message

method is almost identical to that of connected association with one difference. The agent aware
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Prototype Semantics

connected association listen() Accept incoming connection and return a
newly instantiated association

int send message(const void *, int)
int send message(const void *b, int len, Send data through the slot
const forwarding directive&)
int recv message(void *, int) Receive data from the slot
connected association listen() Accept incoming connections and return a

a newly instantiated association.
void process message() Process incoming packets

Table 11: Important connected association members

association can also be set to function in an agent-mode. In this mode, all incoming messages from
specific slots on which the entity is listening are handled as an agent is supposed to - rewrite the header
and reinject the packet into the network. This agent function is embedded in the the process message
method. A common data structure is maintained to store agent-related information such as the slot,
type of agent and mobile entity’s FD. aa association provides a low level interface to manipulate this
common data structure. The interface consists of the add forwarding rule and delete forwarding rule
functions.

A.4.5 Class mobile association

Source Files: mobile association.cc, mobile association.h, mobile queue.h

The mobile association class is derived from aa association class, and adds support for mobility.
Table 13 shows the various methods support by this class. A mobile association can be instantiated
in a way similar to connected association and aa association. The only difference in the construc-
tor interface is that a mobile association constructor requires a source FD to be explicitly specified.
Constructors that do not require a source FD to be specific such as connected association constructor
compute the source FD in the background assuming IPv4 routing domain and using the first interface’s
address. The major changes from the base class aa association include introduction of a new mobility
header, extension of the stateful message queue with association-related state, additional functions for
mobility protocol processing, and extended user interface.
As discussed in Section 8, the mobile association adds a new header to the body of the FARADS

packets, and uses messages contained in this header to ensure continuous connectivity to a mobile
entity as discussed in the FARADS design document [Cla02, FBP02]. The header is used to carry a
variety of messages. The message types and semantics are listed in Table 15. Section A.5 discusses
these messages in more detail.
Both connected association and aa association deliver all non-control (open/close) messages to a

stateful message queue. These messages remain in the queue until they are read by the user. A design

Prototype Semantics

int send message(const void *, int)
int send message(const void *b, int len, Send data through the slot
const forwarding directive&)
int recv message(void *, int) Receive data from the slot
aa association listen() Accept incoming connections and return a

a newly instantiated association.
void add forwarding rule(uint32 t slotnum, Add a mapping between a slot and
aa association class t aa class, destination FD (corresponding to a mobile
forwarding directive *redir) entity). Used when the entity is in agent mode.
void delete forwarding rule(uint32 t slotnum) Delete an existing mapping

Table 12: Important agent aware association (aa association) members
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Prototype Semantics

int send(const void *b, int len in) Basic send/receive functions.
int recv(void *b, int len in)
int send message(const void *, int)
int send message(mobile queue *q, const void *b, int len ) Send data on slot
int send message(mobile queue *q, const void *b,
int len, forwarding directive &tfd, forwarding directive& sfd)
void send request(const request& r) Encode the request and invoke send message
void lookup agent() Reset the destination FD to that of the agent

and send authentication challenge
void process message() Process data coming into the entity
void process protocol message(aid t sa, aid t da,
char *pkt, int pktlen, forwarding directive *tfd, Process mobility-related message
forwarding directive *sfd)
bool message waiting() Check if there is data on message queue
forwarding directive* get fd()
void set fd(forwarding directive* fd in) Set and get various FDs.
forwarding directive* get source fd() (Wrappers around mobile queue calls)
void set source fd(forwarding directive* fd in)
forwarding directive* get agent fd()
void set agent fd(forwarding directive* fd in)
uint32 t get local aid () Get AIDs. (Used by FARADS transport protocol)
uint32 t get remote aid ()
void start agent(int x) Execute in agent mode
void reauthenticate() Send authentication information to the remote end
void move(forwarding directive *tfd) Inform the remote end of new FD
ma set t association select(ma set t ma set, Posix select over associations

struct timeval &to)

Table 13: Important methods in mobile association

Prototype Semantics

mobile queue(association state t st in, Create a queue and initialize
forwarding directive* source fd, it with the association state,
forwarding directive* dest fd) source and destination FDs
void set local aid(aid t aid) Set and get local aid.
void get local aid(aid t aid) Set and get remote aid.
void set remote aid(aid t aid)
void get remote aid(aid t aid)
void set fd(forwarding directive* fd) Set and get destination FD
forwarding directive* get fd()
void set source fd(forwarding directive* fd) Set and get source FD
forwarding directive* get source fd()
void set agent fd(forwarding directive* fd) Set and get agent FD
forwarding directive* get agent fd()

Table 14: mobile queue class methods

decision made early during this prototype implementation was to separate the queue and the rest of
the association data structure to allow flexibility in the implementation of the association. In this
design, an association ID (AID) maps to this message queue instead of the association object. Support
for mobility requires authentication-related and mobility-related messages to be exchanged even when
the user is not actively reading from the stateful queue. To allow access to mobile association state at
all times, the stateful message queue is extended with necessary association-related state such as the
FDs and AIDs, and this new data structure is called the mobile queue. The interface to mobile queue
is presented in Table 14. In addition to the stateful message queue operations, the interface provides
a series of methods to update the association state. Where necessary, the mobile association meth-
ods are modified to use the mobile queue. The implementation of the mobile association assumes a
mobile queue.
All incoming messages on a slot are received by process message. Control messages are handed

over to the control message method of aa association, and all other messages are directed to the
process protocol message. Control messages are identified using a well-defined destination AID. Non-
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control messages include data and mobility-related messages. In case of mobility messages such as
reauthentication, process protocol message performs appropriate mobile association state transitions,
and responses generated. In case of data, the mobility header is stripped to extract the content, and
added to the outstanding message queue.
The association protocol state is stored in the variable astate. The method process protocol message

manipulates astate. The various states of the association are: OPEN, CLOSED, LISTENER, I REAUTH,
I AUTH SENT, I WAIT, I AUTH SENT, N REAUTH, and N AUTH SENT. The description of the
states and transitions are described in Section 8

mobile association also supports a few other mobility-related functions. The method reauthenti-

cate is invoked when a mobile entity wishes to update the remote end of an association with a new
FD. This might be necessary when the entity moves or when the entity has a preferred route. The
mobile association class also provides a start agent function that handles all incoming packet on a
specified slot as an agent. The class aa association also provides add forwarding rule that can be used
to specify a slot number, type of agent functionality and mobile entity’s FD.
The method association select is equivalent to the unix select system call for associations. This

allows for each entity to use create and use multiple associations simultaneously. It takes as input a
set of mobile associations and a timeout and returns with the set of mobile association that have data.

A.4.6 Class fTP

Source Files: fTP.h, fTP.cc, inet.cc, inet.h, checksum.h

FARADS transport protocol, fTP, builds on mobile association by adding reliability, ordering and
a byte stream abstraction. The interface to fTP is identical to mobile association.

fTP adds a header, that is identical to TCP header, and uses the sequence numbers contained
within to order data, detect packet losses. Miscellaneous functions such as WriteTcpPacket and
ReadTcpPacket help manipulate the header. The checksum in the fTP header is computed over
source and destination AIDs instead of the standard IP pseudo-header. The retransmission algorithm
is simple, and based on fixed, pre-defined timeout. Initial sequence numbers are exchanged during
association establishment using rendezvous strings.
The current implementation of fTP is written as an application on top of mobile association. An

artifact of the implementation is that immediate responses to fTP messages such as acknowledgments
and retransmissions cannot be generated when the entity performs a blocking read or write operation
on another association. This is not a problem if all associations are mobile associations. A closer
integration of the fTP with mobile association is part of the future work.

A.5 Mobile Messages

Source Files: mobile message.cc, mobile message.h

Table 15 lists the various mobility-related messages along with their contents. The header is
simple with an identifier, type and body. The identifier is used to detect losses and match requests
and responses. The type field is self-evident.
The agent register message is sent by a mobile entity to the agent to register its presence. Future

extensions to this message type will allow the mobile entity to select from among different agent modes
possible. Currently there are two modes. An explicit move message is sent by the mobile entity to a
remote end of an association when the movement is predictable and destination of the movement is
known. In response to the move message, the remote end prevents any further data transfer until the
mobile end reauthenticates itself after the move. Reauthentication between two entities is performed
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Type Value Contents Semantics

MOB AGENT REGISTER 1 id, type, fd Agent register message
MOB NEG FRAGMENT 2 - Place holder for FD negotiation messages
MOB DATA 3 id, type, len, data Data
MOB DATA ACK 4 id, type Data acknowledgement
MOB REAUTH ACK 5 id, type Move acknowledgement
MOB REAUTH MOVE 6 id, type, fd, cred Explicit move message
MOB REAUTH AUTH CHALL 8 id, type, challenge Authentication challenge message
MOB REAUTH AUTH CHALL RESP 9 id, type, resp Authentication challenge response
MOB REAUTH AUTH ACK 10 id, type Acknowledge of the challenge response

Table 15: Mobile message types

Function Semantics

forwarding directive *get fixed to agent route()
forwarding directive *get agent to fixed route()
forwarding directive *get agent to mobile route()
forwarding directive *get mobile to agent route()
forwarding directive *get fixed to mobile route() Optional functions to compute end to
forwarding directive *get mobile to fixed route() end routes between individual entities
forwarding directive *get fixed to dns route()
forwarding directive *get dns to fixed route()
forwarding directive *get mobile to dns route()
forwarding directive *get dns to mobile route()
forwarding directive *get canonical mobile route()
forwarding directive *get canonical dns route()
forwarding directive * Compute canonical routes to

get canonical agent for mobile route() individual entities
forwarding directive *get canonical agent route()
forwarding directive *get canonical fixed route()
forwarding directive *compute full route() Given a canonical route, compute the

the end to end route.
void set location(where t w) Tell the routing system where the

entity is

Table 16: Routing subsystem interface

using a challenge response protocol. The contents of the challenge, response and acknowledge messages
are dependent on the specific authentication protocol.

A.6 Routing

Source Files: routing.h

This prototype supports a primitive form of routing subsystem servicing a few, well defined entities.
We assume that the routing subsystem has knowledge about (1) the (only) routing domain hierarchy
which is shown in Figure 18, and (2) a small number of network topologies which are shown in
Figure 19. The routing system is static both in terms of knowledge and computation. Only the
minimum required routing functionality was implemented, and routing system interface and design is
a major area of future work.
The routing subsystem presents a simple library call interface shown in Table 16. The interface

provides a set of calls to compute the canonical FDs to individual entities. Canonical FDs/routes
for a node are the set of instructions that deliver a packet to that node starting in a global routable
domain (IPv4, in this case). The interface has a separate call corresponding to each entity because the
routing subsystem does not have any way to identify the entity invoking the routing subsystem. The
compute full routemethod translates these canonical routes into complete end-to-end routes. However,
the routing subsystem requires knowledge about the location of the entity. The location can explicitly
specified using the set location call.
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Figure 18: Routing domain hierarchy supported by this prototype.
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Figure 19: The static topologies supported by the routing subsystem

A.7 Authentication

Source Files: authentication.h

Separation of location and identity requires authentication to offset at least some of the security
problems introduced by the separation of the location and identify. A connection end point can reau-
thenticate itself or require reauthentication of the remote end point anytime during communication.
An end point generates a authentication challenge requesting the remote end point to prove its creden-
tials, to which the remote end point responds with an challenge response. In both cases the messages
are tested for validity. An end point may unilaterally send a challenge response usually to update
destination FD information. This prototype defines an interface and contains an implementation of
DCCP [KHF03].
Table 17 lists the various methods that are part of the interface. The methods init send and

init recv are used to initialize the authentication state at either end. The method init send is used to
generate an authentication string to be sent to the remote end, and init recv is used to update the
local module’s state with authentication data from the remote end. The authentication data exchange
uses the rendezvous string2, but mobile association treats the data as an opaque character string. The

2The rendezvous string has structure imposed on it to allow for multiple first packet data items to be transferred
simultaneously

Name Semantics

string init send() Compute the token to be exchanged in the first packet
void init recv(string s) Receive the first packet token from the remote node
string generate challenge() Compute a challenge to force remote node reauthentication
bool test challenge(string s) Test the validity of the challenge sent from the remote node
string generate challenge response() Compute the authentication information as a response to the challenge
bool test challenge response(string s) Test the challenge response

Table 17: Important methods of authentication
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methods generate challenge and test challenge are used to generate and evaluate an authentication
challenge. The methods generate challenge response and test challenge response are generate and
evaluate a response to a challenge.
This prototype supports a specific type of challenge-response authentication system based on

DCCP. DCCP’s initial authentication data consists of a 32-bit nonce. A challenge consists of a
reauthentication request along with an XOR of the nonces exchanged at connection establishment
time for verification. A challenge response from an end point consists of remote entity’s nonce. This
scheme is vulnerable to a variation of man-in-the-middle attack, but it is included here only for
experimentation purpose.

A.8 Name Service

Source Files: dnsserver.h, dns client.h

This prototype includes a primitive name service. Table 18 lists various messages exchanged
between clients and DNS servers. They include messages for registering, unregistering and lookup
names. The interface provides for registering a combination of both domain and service name. The
service name allows for flexibility of the implementation of the service. The slots numbers need not
be well defined, and different service could use different routes.
The function of the dns client class is to provide a simple interface to the DNS function. It assumes

that the FD corresponding to the DNS has already been discovered and specified.
Table 19 list the methods associated with this class. Figure ?? shows the typical usage of the

A.9 Miscellaneous

The implementation includes several classes that are necessary for completeness but not part of
the high level design. In this section we discuss three such classes, viz., counted, serializable and
farads debug.

A.9.1 Counted Objects

Source Files: counted.h

Several objects, like slots, have an underlying implementation that is tied to an OS structure that
needs to stay around, yet for transparency it would be clean if th object could be passed as a parameter
or assigned to other objects of the same type. One can imagine an array of slots, for example. Such
underlying objects are reference counted, and because this technique is used frequently, there is a class
to support it: the counted class. For example, the underlying class of a slot is the connected socket

class, that is derived from the socket class, which is derived from the counted class. Counted provides
three methods, summarized in Table 20.
Whenever a new reference is created to the underlying object, by an assignment or initializa-

tion, for example, the reference count is incremented. Whenever a reference is removed, by assign-

Type Value Contents Semantics

DNS REGISTER REQ 1 type, name, RT, FD Register name to (FD, RT) mapping
DNS REGISTER REPLY 2 type, status Register operation status
DNS UNREGISTER REQ 3 type, name Unregister request
DNS UNREGISTER REPLY 4 type, result Unregister operation status
DNS RESOLVE REQ 5 type, name Name lookup request
DNS RESOLVE REPLY 6 type, result, RT, FD Result of name lookup result

Table 18: Various DNS messages
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Prototype Semantics

int register name(string domain name, Register a name to FD mapping with
string service name, string rendezvous string, the DNS. Return the status.
forwarding directive *fd)
int unregister name(string domain name, Invokes talktodns() to unregister a mapping.
string service name Return the status.
int resolve name(string domain name, Invokes talktodns() to lookup a name. Return a
string service name, string &rendezvous rendezvous string and a destination FD.
forwarding directive **fd)
void talktodns(DnsMessage &req, Establish an association with the DNS, send query
DnsMessage &reply) contained in req and return the response in reply.

Table 19: Class dns client methods

Prototype Effect

void add reference() Increment the reference count for this object
bool remove reference() Decrement the reference count, and return true if the count has become 0.
int references() Return the current reference count

Table 20: Counted operations

ment or destruction, the reference count is reduced, and if the count is zero, the removing object
deleted the reference-counted object. Slots use this to reference connected socket objects, and con-

nected association uses this mechanism to share a queue of delivered messages and a state variable.

A.9.2 Serialization

Source Files: serializable.h

Several classes are serializable, meaning they inherit from the purely abstract serializable class.
This class defines an interface for packing and unpacking objects for transport over the network. The
functions are given in
These classes encapsulate the work of moving objects to and from the network, or even across a

local socket. They are used by both slot s and connected association s during their protocol exchanges
and forwarding directives are also required to be serializable.

A.9.3 Debug

Source Files: farads debug.cc, farads debug.h

farads debug is an optional facility for use by applications and the various libfarads.a source files.
The debug object is assumed to be available through well known global variable, farads dd. Each
debug message is encapsulated with a check for the existence of the debug object and a debug-level
check. The debug messages are written to FOUT which has C++ cout semantics. Applications enable
the debug messages of a certain level by instantiating a farads debug object, assigning it to farads dd.
Three debug levels are available, viz., DLO, DMID, and DHIGH, and they can be specified using the
farads debug constructor.

Prototype Effect

int serialize(void *b, int len) Put a transferable copy of this object into the buffer. Return the number of bytes written.
int unserialize(void *b, int len) Get a transferable copy of this object from the buffer. Return the number of bytes read.
int serialized size() Return the size of the object when serialized successfully.

Table 21: Serialization operations
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A.10 Example

Figure A.10 shows the implementation of a echo server in FARADS. This example program shows
how to use slots and connected associations. A companion program “ping” makes an active open to
the slot this program allocates and send a message, to which this program responds with the message
“pong”. This is a simplified version of the pong application included with the source distribution.
A few points to note from the example are as follows: (1) the program assumes that faradd kernel

is always able to assign the application the slot it requests (2) the companion program knows which
slot number to use (3) no source FD is specified explicitly for the connected association. Source FD
is computed in the background as mentioned in Section A.4.

A.11 Summary

This appendix discusses the various internal data structures and interfaces in more detail. This
prototype could be used to further experiment with FARADS concepts or be as a generic infrastructure
for novel architectures. The implementation is easily extensible and customizable, and the interfaces
are well defined. Further, the code is relatively well documented. We encourage the reader to tinker
with this prototype.
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#include <iostream>

#include "farads.h"

// Allocate a slot given by the first argument (or 3 if no

// such argument is given) and listen on it for the number

// of association given in the second argument (or one if

// no such argument is given). For each message, print the

// message and reply with a message containing "pong" and

// close the association.

int main(int argc, char ** argv) {

try {

// a buffer to read incoming data

const int bufsize=4096;

char buf[bufsize];

// get the arguments

int slot_num = (argc > 1) ? atoi(argv[1]) : 3;

int iterations = (argc > 2 ) ? atoi(argv[2]) : 1;

// Allocate the slot

slot s(slot_num);

// Make the passive association to listen on

connected_association aa(s, "pong rv");

// Process each association.

for (int i = 0; i < iterations; i++ ) {

connected_association a = aa.listen();

int len = a.recv(buf, 1024);

string pong = "pong";

if ( len == -1 ) fatal("recv");

buf[min(bufsize-1, len)] = ’\0’;

cout << "Got request: " << buf << endl;

if ( a.send(pong.data(), pong.length()) == -1)

throw farads_exception("Send failed");

}

} catch (const farads_exception &e) {

// Catch errors in all of the above

cerr << "failed: " << e.what() << endl;

exit(20);

}

exit(0);

}

Figure 20: A simple example - pong - that uses connected association
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