FARADS

Forwarding Directives, Associations, and Rendezvous

Aaron Falk, Bob Braden
USC ISI
September 17, 2002

‘ Outline

Architecture Overview
Design Choices
Implementation Notes

FARADS -- Falk -- USC ISI -- NewArch Project

I. FARADS Architecture
Overview

Summary of the architecture as defined by
Dave Clark

‘ FARADS: Possible Newarch

Functional Abstraction

= Separate location from identity

1. Support general mobility
2. Support wide range of routing/forwarding architectures

3. Support diverse naming schemes

= May include e.g., anonymity, local names as well as global
names.

4. Cleanly decouple 2. from 3.
= Support range of mechanisms for end-system

authentication despite this separation.
= Including lightweight authentication

FARADS -- Falk -- USC ISI -- NewArch Project

The FARADS Architecture

= Abstractions:
Entity
Association
= Mechanisms
Forwarding Directives (FDs)

Rendezvous
Slot

FARADS -- Falk -- USC ISI -- NewArch Project

Entity

= The Entity abstraction generalizes the traditional
application.
Might be: process, process group, entire machine, or
cluster of machines
= Entities communicate with each other, using
association(s).

Contains communication state for its association (as well
as other state that is relevant to their higher-level function.)

Question: what about cwnd? MTU? rcvbuf?

= Entities are the unit of mobility — an entity moves as
a unit.

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Association

Association = logical comm link between two entities
Sequence of data packets
Shared communication state

An entity may have multiple concurrent associations

Association within a particular entity is labeled with a
local Association Identifier (AID)

A handle for locating associated comm state

Unique within entity, not necessarily within node or across
nodes. Hence, must be local to entity.

AID is invariant during mobility, i.e., as FD changes
A "fate-sharing region"

FARADS -- Falk -- USC ISI -- NewArch Project

T orwarding Directive

= Tells the "network" how to deliver a packet to an
entity — or more strictly, to a slot within which the
entity Is instantiated.

= FD supports a range of forwarding mechanisms

Might specify globally-unique address, e.g., a network
attachment point (IP address); FD ~ (IP addr, port#), or

Might specify a path/explicit route.
Might be inherently reversible, or not.
Might change in flight

May be independent of sender, or not.

FARADS -- Falk -- USC ISI -- NewArch Project

Forward Directive (2)

= FD contents are opaque to entity.

FARADS -- Falk -- USC ISI -- NewArch Project

‘ The Red Line

A "red line" separates forwarding (network)
knowledge from entity (application) knowledge

FD provides packet delivery (below the line)
AID identifies association state (above the line)

Some messiness in FD management
E.g., obtaining FDs, mobility awareness, etc
Network congestion needs to be shown to the association

FARADS -- Falk -- USC ISI -- NewArch Project

Slots

= A slot is the local operating system interface to an
entity.

= An FD actually delivers data to a slot, and hence to
the entity, if any, currently occupying that slot.

If an entity moves to a different slot in the same (or different)
end-system, the FD changes

Slots are like dynamically-allocated ports

ISSUE: Can slots be well known? May be stable, but form
of slot specification might be specific to one OS, for
example.

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Rendezvous

= Establishing an association generally requires a
procedure/mechanism called rendezvous.

= Entities wishing to initiate an association send a
rendezvous string (RS)

= RS contains anything the receiving entity needs to
establish an association
Examples:
= TCP initialization
= URL click-through tags
= Authentication

FARADS -- Falk -- USC ISI -- NewArch Project

‘ FD Management

= FD Mgmt straddles red line

Tells entity things about the network
= E.g., translates entity QoS needs to route preferences
Tells network things about the entity

= E.g., notifies entity that packets from other end contain new
source FD to prompt authentication

= Performs FD negotiation
= Performs site preparation for mobile entities

FARADS -- Falk -- USC ISI -- NewArch Project

Mobility

= Several types:
Entity Mobility: entity moves to a new end-system
Physical Mobility: end-system moves to new network

attachment point
Virtual Mobility: entity moves to a different slot (think “port”)

In current end-system
Or: path changes during a connection

= All require FD changes
= Mobile entities can be found using agents

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Agents

= Agents are a special type of entity that act as a
helper for mobility
Required when mobile entity wants to be found in DNS
May be useful at other times (e.g., unexpected FD
changes)
= Agents are special: they operate below the red line
(they munge FDs) but have entity-like properties

E.g., they have associations with the mobile entity to
maintain the FD mapping

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Agents (2)

= An entity may have multiple agents
All agents require updating when FDmobile changes

= An agent may support multiple entities

= The agent function may be located anywhere along
the path, including within the sender or receiver

Locating the agent within the network has preferable
scaling properties

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Problem & Undefined Areas:

N-way associations (n>2)
E.g., middleboxes

Multicast

Quality of Service
Routing Subsystem
Overlays

Consider 13?

FARADS -- Falk -- USC ISI -- NewArch Project

I1. Design Choices

Choosing an interesting and useful point in the
space defined by the FARADS architecture

‘NewArch DNS (nDNS)

= An optional — albeit handy — way to obtain FDs and
create RS

= Very similar to traditional DNS

= Returns globally reachable FD and a rendezvous
template (RT)

RT tells the entity how to create an RS, possibly requiring
local information

FARADS -- Falk -- USC ISI -- NewArch Project

‘ FD Negotiation

= An entity can request a path change via FD
definition or negotiation

= Used for

expression of route preferences (WAN provider selection)
server selection (load balancing)
mobility

= Need a protocol here...

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Agents — How 1t works

A mobile entity, using a private association, loads a
mapping (FDagent -> FDmobile) into the agent

The mobile entity publishes FDagent in the DNS

Two possible behaviors may be supported:

Incoming packets to FDagent are rewritten with FDmobile
and sent out

Incoming packets to FDagent trigger a redirect message to
the sender

As FDmobile changes, the agent is kept up to date
for new associations

FARADS -- Falk -- USC ISI -- NewArch Project

‘Mobile End Systems

= If an entity knows it’s going to a new FD, existing
associations are notified (via FD Mgmt) that the
source FD of the ME is going to change

= For unexpected mobillity, the agent can be used as a
meeting place

If an entity stops getting responses from a known ME, it
can send a query to FDagent

FARADS -- Falk -- USC ISI -- NewArch Project

Entity Moves to New End-System

Locate & prepare a slot (how?)
Acquire new FD

Provide new FD to entities engaged in associations
Collect & move state to new location (how?)

From new location, send an FD change to remote
entities

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Resynchronization

= Resynchronization needs to occur after an entity
moves
Accounts for packets that might go to wrong FD

= End-to-end, i.e., agent not involved
= Could be a simple exchange of sequence numbers

FARADS -- Falk -- USC ISI -- NewArch Project

‘Route Subsystem

Currently assuming black box which assembles a
working FD

mplies a method of expressing route preferences

~FDs are composed of route fragments reflecting
path preferences/new location

May be nimrod-like using route fragments
Some work by Xiaowei Yang at MIT

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Security

= Want to preserve “lightweight” nature of TCP
pseudo-header

= Candidate solution: DCCP connection nonce

Each entity exchanges a random number at the beginning
of a connection

When a nonce challenge is received, the XOR of the two
random numbers is returned

When FD management indicates packets have arrived on
an existing association with a new source FD, the
connection nonce is exchanged

= Alternate, more secure solution: purpose-built keys

(?)

FARADS -- Falk -- USC ISI -- NewArch Project

Examples (TBS)

Simple connection establishment
Simple plus nDNS

Mobile endpoint

Route preference negotiation

FARADS -- Falk -- USC ISI -- NewArch Project

Implementation

FARADS implementation performed at ISl

‘ Overview

= Entities * processes
= fKernel * user-level process
= Network ¢ overlay network of fKernels

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Implementation Details

C++

User space for ease of debugging
FARADS packets sent over IP with new protocol number
BSD firewall code used to grab packets fKernel
(courtesy Ted Faber)
FARADS kernel (fKernel) routes packets to correct slot

FD Management, DNS, and simple apps exist as separate
entities

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Implementation - Packet Format

= FD = |IP address + port number

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Implementation — Status

= Ted’s playground defines fKernel

= First apps:
Ping
Simple, unreliable file push
Simple DNS

FARADS -- Falk -- USC ISI -- NewArch Project

‘ Implementation — Plans

Mobility

Path negotiation

Demonstrate simple scenarios
Security stuff? HIP/IPSEC?

FARADS -- Falk -- USC ISI -- NewArch Project

The End

