
Bob Braden -- 3 May 2001 1

From Protocol Stack to Protocol Heap

-- Role-Based Architecture (RBA)

Bob Braden, Ted Faber
USC Information Sciences Institute

Mark Handley
ICSI Center for Internet Research

ACM HotNets I
Princeton University

October 28, 2002

Role-Based Architecture -- Braden@isi.edu 2

Outline

• Motivation

• Overview of Role-Based Architecture (RBA)

• Using RBA

• Related Work

• Conclusions

Role-Based Architecture -- Braden@isi.edu 3

Motivation

• The IETF has become an architectural pretzel factory.
– Layer violations

– Sub-layer proliferation
• E.g., MPLS at 2.5, IPsec at 3.5, and TLS at 4.5.

– Feature interactions
• Cross-product complexity

– Erosion of E2E model -- middleboxes
• Firewalls, NATs, proxies, caches, ...

• A paradise for lovers of complexity

• Can we somehow reduce the complexity and increase
the architectural flexibility?

Role-Based Architecture -- Braden@isi.edu 4

Motivation ...

• Suggestion 1: Replace the traditional protocol layering
paradigm with a more general model.

• Many of these problems seem to be related to traditional layering.

• Suggestion 2: Provide a protocol mechanism to attach
additional metadata to data packets -- “in-band
signaling” -- for middleboxes.

• Attach color-coded “stickies” to packets in the network.

• These suggestions led to the concepts of Role-Based
Architecture (RBA)

• Giving up layering has profound consequences for how
we think about protocols.

Role-Based Architecture -- Braden@isi.edu 5

What Does Non-Layered Mean?

• Traditional layered architecture
– Modularity

• Functional unit for each protocol layer.

– Packet header format:
• Sub-header for each layer, forming a logical stack.

– Header processing rules:
• Order: Headers processed in order by layer (LOFO)

• Access: A functional module can read/write only its own sub-
header

Role-Based Architecture -- Braden@isi.edu 6

• Non-Layered architecture
– Modularity:

• Role: Functional spec of a communication building block.

– Packet header format:
• An arbitrary collection of sub-headers: “role data”.

• These are Role-Specific Headers (RSHs).

• RSHs are addressed to roles.

• Header data structure is now a logical heap of RSHs.

– Processing rules: need new rules for order, access.

Role-Based Architecture -- Braden@isi.edu 7

RSH Processing in a Node

Role
A Role

B

Role
C

Network Node

PayloadRSH
1

RSH
2 RSH 3

Heap

Packet

Write
Rea

d

Role-Based Architecture -- Braden@isi.edu 8

Objectives of RBA (1)

• Clarity:
– Replace “layer violations” with architected role interactions

• Flexibility
– Roles have more flexible relationships than layers

• Extensibility
– Roles are modular and hopefully orthogonal. No layer

restrictions.

• Inband Signaling
– RSHs can act as “stickies”, e.g., to control middle boxes.

• Auditability
– Can leave RSHs after they have been “consumed”, to signal to

downstream nodes that a function has been performed.

Role-Based Architecture -- Braden@isi.edu 9

Objectives of RBA (2)

• Portability
– Allow roles to be sited arbitrarily on nodes.

• For extra credit: mobile roles that migrate among nodes

• Re-Modularization
– Current monolithic protocol layers are large and complex;

can re-modularize into smaller units.
• This is not a new idea

• It is unclear how far one should go towards micro-roles

• But RBA gives us freedom of choice on functional granularity

• Security
– Hide particular role data (Don’t muck with my meta-data!)

– RSH might be unit for encryption of role data

Role-Based Architecture -- Braden@isi.edu 10

Brief Overview of RBA

• Outline
– Role Data

– Role Definition

– Naming and Addressing

– Processing Rules

– Trivial Example

– Implementation: Packet Layout

Role-Based Architecture -- Braden@isi.edu 11

More About Role Data

• RSHs can be added, modified, or deleted as a packet
is forwarded.

• RSHs subdivide the header information (meta-data)
along role boundaries.

• Granularity of RSHs is an important design parameter

• Trade off processing overhead against reusability

• RSHs generally carry metadata, but some may not,
only modifying processing by their presence.

Role-Based Architecture -- Braden@isi.edu 12

Defining Roles

• Roles communicate with each other only via RSHs
– (for role mobility)

• Roles may have local APIs to node software.

• A fully-specified role will be specified by:
– Its internal state, its algorithms, its APIs, and the RSHs it will

send and receive.

• Generic roles
– Want to be able to derive a full role specification from a

generic functional definition by stepwise refinement.

– Aid reasoning about protocols and for developing new roles.

Role-Based Architecture -- Braden@isi.edu 13

More about Roles

• A role instantiation called an actor.
• (MJH doesn’t like the Hollywoodiness of this term)

• Roles are often coupled in conjugate pairs
– E.g., {Encrypt, Decrypt} {Compress, Expand} {Fragment,

Reassemble}
• (Undecided: Is a conjugate pair one distributed role with two

actors, or two interrelated roles?)

Role-Based Architecture -- Braden@isi.edu 14

Naming and Addressing in RBA

• Role type is identified by unique name: RoleID
• “Color-coded”

• RSHs are addressed to role(s)
– Assume an address space for nodes {NodeID} [~IP addr]

– <RoleAddr> ::= <RoleID> @ <NodeID> | <RoleID> @ *

Wildcard NodeID: RSH will be processed by any instance
of the RoleID that it encounters along the path.

• Symbolically, an RSH is:
 RSH(<RoleAddr>, ... ; <RSHbody>)

(More accurately: RSH(<RoleAddr>:<access bits>, ...))

Role-Based Architecture -- Braden@isi.edu 15

Processing Rules

• A Role R on node X may access an RSH if:
(1) The RSH is explicitly addressed to R

 RoleAddr = R@X or R@*,

(2) or R is promiscously listening for RoleID R’ that is addressed by RSH

Either may be restricted by access control bits.

• Enforce Sequencing rules
– Legal ordering of conjugate roles

• compress -> expand, or encrypt -> decrypt

– Proper nesting: compress -> encrypt -> decrypt -> expand

– Use presence/absence of RSHs (between nodes) plus
precedence rules for roles (within the same node).

Role-Based Architecture -- Braden@isi.edu 16

Simple Example Using RBA

 { RSH(HBHforward@* ; dest-NodeID, src-NodeID),
 /* -> Forwarding role instance in every router */

 RSH(Deliver@dest-NodeID ; serviceID, src-processID,
payload),

 /* Deliver payload to specific service at dest node */

 RSH(Reassemble@dest-NodeID ; offset, MFflag},

 RSH(TrustScope@* ; <local scope>)

 }

Role-Based Architecture -- Braden@isi.edu 17

Possble RBA Packet Layout

NodeID or zero

RoleID

Flags Stack
Chain

Byte Offset

Access
Bits

Element of Index Vector

Index
Vector

Heap Area

Payload

Length (bytes)Flags DDescr

RSH Body

RSH

RSH format

...

Role-Based Architecture -- Braden@isi.edu 18

Using RBA -- Possibilities

• Pure RBA architecture
• All functions, from current link layer to applications, using roles.

• RBA only above the Link Layer
• Probably want to treat the link layer as god-given.

• RBA only above IP layer
• Retain forwarding efficiency of IP in routers.

• RBA overhead then only in end systems and middleboxes

• RBA only in app layer
• We need an application layer architecture; RBA could be a nifty

framework for it. Would still help immensely with middleboxes.

• RBA only as abstraction for reasoning about protocols.

Role-Based Architecture -- Braden@isi.edu 19

Related Work

• Hasn’t this all been done before? Not really...

• Modular construction of protocol stacks
– Peterson et. al. 1991 (X-kernel), Tschudin 1991.

• Protocol decomposition into micro-protocols
– For re-usability & customization --

O’Malley & Peterson 1992, Bhatti&Schlichting 1995,
 Kohler et al 2000 (Click), Kohler et al 1999 (Prolac).

– For paralleism -- Haas 1991, Zitterbart et al 1993.

• These all focused on protocol implementations, not on the
protocols themselves.

• RBA is orthogonal concept; in fact, the earlier work may provide a
basis for realizing RBA.

Role-Based Architecture -- Braden@isi.edu 20

Conclusions ...

• This is a position paper.
– We have not yet built an RBA prototype, although a USC grad

student is working on it.

– We have worked through some simple examples.

– Some of the basic definitions are still subject to debate.

• I hope I have convinced you that a non-layered
approach to protocols might not be totally crazy.
– But we are so used to thinking in a layerist manner that using

RBA does twist the head a bit.

Role-Based Architecture -- Braden@isi.edu 21

Conclusions

• Advantages of RBA
– Modularizes functionality better then layering does.

– Provides an explicit place for middlebox metadata

– Should create fewer unexpected feature interactions

• Disadvantages of RBA
– Replacement of deployed protocols

– Less efficient (header space, processing).

– Greater flexibility may itself increase complexity and confusion.

Role-Based Architecture -- Braden@isi.edu 22

Conclusions ...

• RBA might be:
– The Next Great Thing in networking, or

– only useful for re-organizing particular protocol layers, e.g., the
application layer, or

– only an abstraction for reasoning about protocols.

• RBA appears to have considerable richness and scope
for further research.

