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Motivation

• The IETF has become an architectural pretzel factory.
– Layer violations

– Sub-layer proliferation
• E.g., MPLS at 2.5, IPsec at 3.5, and TLS at 4.5.

– Feature interactions
• Cross-product complexity

– Erosion of E2E model -- middleboxes
• Firewalls, NATs, proxies, caches, ...

• A paradise for lovers of complexity

• Can we somehow reduce the complexity and increase
the architectural flexibility?
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Motivation ...

• Suggestion 1: Replace the traditional protocol layering
paradigm with a more general model.

• Many of these problems seem to be related to traditional layering.

• Suggestion 2: Provide a protocol mechanism to attach
additional metadata to data packets -- “in-band
signaling” -- for middleboxes.

• Attach color-coded “stickies” to packets in the network.

• These suggestions led to the concepts of Role-Based
Architecture (RBA)

• Giving up layering has profound consequences for how
we think about protocols.
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What Does Non-Layered Mean?

• Traditional layered architecture
– Modularity

•  Functional unit for each protocol layer.

– Packet header format:
• Sub-header for each layer, forming a logical stack.

– Header processing rules:
• Order: Headers processed in order by layer (LOFO)

• Access: A functional module can read/write only its own sub-
header
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• Non-Layered architecture
– Modularity:

• Role: Functional spec of a communication building block.

– Packet header format:
• An arbitrary collection of sub-headers: “role data”.

• These are Role-Specific Headers (RSHs).

• RSHs are addressed to roles.

• Header data structure is now a logical heap of RSHs.

– Processing rules: need new rules for order, access.
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RSH Processing in a Node
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Objectives of RBA (1)

• Clarity:
– Replace “layer violations” with architected role interactions

• Flexibility
– Roles have more flexible relationships than layers

• Extensibility
– Roles are modular and hopefully orthogonal.  No layer

restrictions.

• Inband Signaling
– RSHs can act as “stickies”, e.g., to control middle boxes.

• Auditability
– Can leave RSHs after they have been “consumed”, to signal to

downstream nodes that a function has been performed.
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Objectives of RBA (2)

• Portability
– Allow roles to be sited arbitrarily on nodes.

• For extra credit: mobile roles that migrate among nodes

• Re-Modularization
– Current monolithic protocol layers are large and complex;

can re-modularize into smaller units.
• This is not a new idea

• It is unclear how far one should go towards micro-roles

• But RBA gives us freedom of choice on functional granularity

• Security
– Hide particular role data (Don’t muck with my meta-data!)

– RSH might be unit for encryption of role data
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Brief Overview of RBA

• Outline
– Role Data

– Role Definition

– Naming and Addressing

– Processing Rules

– Trivial Example

– Implementation: Packet Layout
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More About Role Data

• RSHs can be added, modified, or deleted as a packet
is forwarded.

• RSHs subdivide the header information (meta-data)
along role boundaries.

• Granularity of RSHs is an important design parameter

• Trade off processing overhead against reusability

• RSHs generally carry metadata, but some may not,
only modifying processing by their presence.
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Defining Roles

• Roles communicate with each other only via RSHs
–  (for role mobility)

• Roles may have local APIs to node software.

• A fully-specified role will be specified by:
– Its internal state, its algorithms, its APIs, and the RSHs it will

send and receive.

• Generic roles
– Want to be able to derive a full role specification from a

generic functional definition by stepwise refinement.

– Aid reasoning about protocols and for developing new roles.
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More about Roles

• A role instantiation called an actor.
• (MJH doesn’t like the Hollywoodiness of this term)

• Roles are often coupled in conjugate pairs
– E.g., {Encrypt, Decrypt}  {Compress, Expand}  {Fragment,

Reassemble}
• (Undecided: Is a conjugate pair one distributed role with two

actors, or two interrelated roles?)
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Naming and Addressing in RBA

• Role type is identified by unique name: RoleID
• “Color-coded”

• RSHs are addressed to role(s)
– Assume an address space for nodes {NodeID}     [~IP addr]

– <RoleAddr> ::= <RoleID> @ <NodeID>  |  <RoleID> @ *

Wildcard NodeID: RSH will be processed by any instance
of the RoleID that it encounters along the path.

• Symbolically, an RSH is:
 RSH( <RoleAddr>, ...  ; <RSHbody> )

(More accurately: RSH( <RoleAddr>:<access bits>, ...  )  )
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Processing Rules

• A Role R on node X may access an RSH if:
(1) The RSH is explicitly addressed to R

 RoleAddr = R@X or R@*,

(2) or R is promiscously listening for RoleID R’ that is addressed by RSH

Either may be restricted by access control bits.

• Enforce Sequencing rules
– Legal ordering of conjugate roles

• compress -> expand, or encrypt -> decrypt

– Proper nesting: compress -> encrypt -> decrypt -> expand

– Use presence/absence of RSHs (between nodes) plus
precedence rules for roles (within the same node).
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Simple Example Using RBA

    { RSH( HBHforward@* ; dest-NodeID, src-NodeID ),
              /* -> Forwarding role instance in every router */

  RSH( Deliver@dest-NodeID ; serviceID, src-processID, 
payload ),

             /* Deliver payload to specific service at dest node */

  RSH( Reassemble@dest-NodeID ; offset, MFflag},

  RSH( TrustScope@* ; <local scope> )

   }
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Possble RBA Packet Layout
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Using RBA -- Possibilities

• Pure RBA architecture
• All functions, from current link layer to applications, using roles.

• RBA only above the Link Layer
• Probably want to treat the link layer as god-given.

• RBA only above IP layer
• Retain forwarding efficiency of IP in routers.

• RBA overhead then only in end systems and middleboxes

• RBA only in app layer
• We need an application layer architecture; RBA could be a nifty

framework for it. Would still help immensely with middleboxes.

• RBA only as abstraction for reasoning about protocols.
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Related Work

• Hasn’t this all been done before?  Not really...

• Modular construction of protocol stacks
– Peterson et. al. 1991 (X-kernel), Tschudin 1991.

• Protocol decomposition into micro-protocols
– For re-usability & customization --

O’Malley & Peterson 1992, Bhatti&Schlichting 1995,
 Kohler et al 2000 (Click), Kohler et al 1999 (Prolac).

– For paralleism -- Haas 1991, Zitterbart et al 1993.

• These all focused on protocol implementations, not on the
protocols themselves.

• RBA is orthogonal concept; in fact, the earlier work may provide a
basis for realizing RBA.
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Conclusions ...

• This is a position paper.
– We have not yet built an RBA prototype, although a USC grad

student is working on it.

– We have worked through some simple examples.

– Some of the basic definitions are still subject to debate.

• I hope I have convinced you that a non-layered
approach to protocols might not be totally crazy.
– But we are so used to thinking in a layerist manner that using

RBA does twist the head a bit.
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Conclusions

• Advantages of RBA
– Modularizes functionality better then layering does.

– Provides an explicit place for middlebox metadata

– Should create fewer unexpected feature interactions

• Disadvantages of RBA
– Replacement of deployed protocols

– Less efficient (header space, processing).

– Greater flexibility may itself increase complexity and confusion.
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Conclusions ...

• RBA might be:
– The Next Great Thing in networking, or

– only useful for re-organizing particular protocol layers, e.g., the
application layer, or

– only an abstraction for reasoning about protocols.

• RBA appears to have considerable richness and scope
for further research.


