
ThensManual
(formerlynsNotes and Documentation)1

The VINT Project

A Collaboration between researchers at

UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Kevin Fall 〈kfall@ee.lbl.gov〉, Editor

Kannan Varadhan〈kannan@catarina.usc.edu〉, Editor

December 17, 2014

ns c© is LBNL’s Network Simulator [?]. The simulator is written in C++; it uses OTcl as a command and configuration
interface.nsv2 has three substantial changes fromnsv1: (1) the more complex objects innsv1 have been decomposed into
simpler components for greater flexibility and composability; (2) the configuration interface is now OTcl, an object oriented
version of Tcl; and (3) the interface code to the OTcl interpreter is separate from the main simulator.

Ns documentation is available in html, Postscript, and PDF formats. Seehttp://www.isi.edu/nsnam/ns/ns-documentation.
html for pointers to these.

1The VINT project is a joint effort by people from UC Berkeley,USC/ISI, LBL, and Xerox PARC. The project is supported by theDefense Advanced
Research Projects Agency (DARPA) at LBL under DARPA grant DABT63-96-C-0105, at USC/ISI under DARPA grant ABT63-96-C-0054, at Xerox PARC
under DARPA grant DABT63-96-C-0105. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA.

Contents

1

Chapter 1

Introduction

Let’s start at the very beginning,
a very nice place to start,
when you sing, you begin with A, B, C,
when you simulate, you begin with the topology,1

. . .

This document (ns Notes and Documentation) provides reference documentation for ns. Although we begin with a simple
simulation script, resources like Marc Greis’s tutorial web pages (originally at his web site, now athttp://www.isi.
edu/nsnam/ns/tutorial/) or the slides from one of the ns tutorials are problably better places to begin for the ns
novice.

We first begin by showing a simple simulation script. This script is also available in the sources in ~ns/tcl/ex/simple.tcl.

This script defines a simple topology of four nodes, and two agents, a UDP agent with a CBR traffic generator, and a TCP
agent. The simulation runs for3s. The output is two trace files,out.tr andout.nam . When the simulation completes at
the end of3s, it will attempt to run a nam visualisation of the simulationon your screen.

The preamble
set ns [new Simulator] ;# initialise the simulation

Predefine tracing
set f [open out.tr w]
$ns trace-all $f
set nf [open out.nam w]
$ns namtrace-all $nf

1with apologies to Rodgers and Hammerstein

2

so, we lied. now, we define the topology
#
n0
\
5Mb \
2ms \
\
n2 --------- n3
/ 1.5Mb
5Mb / 10ms
2ms /
/
n1
#
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplex-link $n0 $n2 5Mb 2ms DropTail
$ns duplex-link $n1 $n2 5Mb 2ms DropTail
$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

Some agents.
set udp0 [new Agent/UDP] ;# A UDP agent
$ns attach-agent $n0 $udp0 ;# on node $n0
set cbr0 [new Application/Traffic/CBR] ;# A CBR traffic generator agent
$cbr0 attach-agent $udp0 ;# attached to the UDP agent
$udp0 set class_ 0 ;# actually, the default, but. . .

set null0 [new Agent/Null] ;# Its sink
$ns attach-agent $n3 $null0 ;# on node $n3

$ns connect $udp0 $null0
$ns at 1.0 "$cbr0 start"

puts [$cbr0 set packetSize_]
puts [$cbr0 set interval_]

A FTP over TCP/Tahoe from $n1 to $n3, flowid 2
set tcp [new Agent/TCP]
$tcp set class_ 1
$ns attach-agent $n1 $tcp

set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink

set ftp [new Application/FTP] ;# TCP does not generate its own traffic
$ftp attach-agent $tcp
$ns at 1.2 "$ftp start"

$ns connect $tcp $sink
$ns at 1.35 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3 $sink"

3

4

The simulation runs for3s.
The simulation comes to an end when the scheduler invokes the finish{} procedure below.
This procedure closes all trace files, and invokes nam visualization on one of the trace files.

$ns at 3.0 "finish"
proc finish {} {

global ns f nf
$ns flush-trace
close $f
close $nf

puts "running nam..."
exec nam out.nam &
exit 0

}

Finally, start the simulation.
$ns run

5

Chapter 2

Undocumented Facilities

Ns is often growing to include new protocols. Unfortunatelythe documention doesn’t grow quite as often. This section lists
what remains to be documented, or what needs to be improved.

(The documentation is in the doc subdirectory of the ns source code if you want to add to it. :-)

Interface to the Interpreter • nothing currently

Simulator Basics • LANs need to be updated for new wired/wireless support (Yuriupdated this?)

• wireless support needs to be added (done)

• should explicitly list queueing options in the queue mgt chapter?

Support • should pick a single list mgt package and document it

• should document the trace-post-processing utilities in bin

Routing • The usage and design of link state and MPLS routing modules are not documented at all. (Note: link state and
MPLS appeared only in daily snapshots and releases after 09/14/2000.)

• need to document hierarchical routing/addressing (Padma has done)

• need a chapter on supported ad-hoc routing protocols

Queueing • CBQ needs documentation (can maybe build off offtp://ftp.ee.lbl.gov/papers/cbqsims.
ps.Z ?)

Transport • need to document MFTP

• need to document RTP (session-rtp.cc, etc.)

• need to document multicast building blocks

• should repair and document snoop and tcp-int

Traffic and scenarios (new section)

• should add a description of how to drive the simulator from traces

• should add discussion of the scenario generator

• should add discussion of http traffic sources

Application • is the non-Haobo http stuff documented? no.

6

Scale • should add disucssion of mixed mode (pending)

Emulation • nothing currently

Other • should document admission control policies?

• should add a validation chapter and snarf up the contents of ns-tests.html

• should snarf up Marc Greis’ tutorial rather than just referring to it?

7

Part I

Interface to the Interpreter

8

Chapter 3

OTcl Linkage

ns is an object oriented simulator, written in C++, with an OTclinterpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in thisdocument), and a similar class hierarchy within the OTcl inter-
preter (also called the interpreted hierarchy in this document). The two hierarchies are closely related to each other;from the
user’s perspective, there is a one-to-one correspondence between a class in the interpreted hierarchy and one in the compiled
hierarchy. The root of this hierarchy is the class TclObject. Users create new simulator objects through the interpreter; these
objects are instantiated within the interpreter, and are closely mirrored by a corresponding object in the compiled hierarchy.
The interpreted class hierarchy is automatically established through methods defined in the class TclClass. user instantiated
objects are mirrored through methods defined in the class TclObject. There are other hierarchies in the C++ code and OTcl
scripts; these other hierarchies are not mirrored in the manner of TclObject.

3.1 Concept Overview

Why two languages? nsuses two languages because simulator has two different kinds of things it needs to do. On one hand,
detailed simulations of protocols requires a systems programming language which can efficiently manipulate bytes, packet
headers, and implement algorithms that run over large data sets. For these tasks run-time speed is important and turn-around
time (run simulation, find bug, fix bug, recompile, re-run) isless important.

On the other hand, a large part of network research involves slightly varying parameters or configurations, or quickly exploring
a number of scenarios. In these cases, iteration time (change the model and re-run) is more important. Since configuration
runs once (at the beginning of the simulation), run-time of this part of the task is less important.

nsmeets both of these needs with two languages, C++ and OTcl. C++ is fast to run but slower to change, making it suitable
for detailed protocol implementation. OTcl runs much slower but can be changed very quickly (and interactively), making it
ideal for simulation configuration.ns(via tclcl) provides glue to make objects and variables appear on both langauges.

For more information about the idea of scripting languages and split-language programming, see Ousterhout’s article in IEEE
Computer [?]. For more information about split level programming for network simulation, see the ns paper [?].

Which language for what?Having two languages raises the question of which language should be used for what purpose.

Our basic advice is to use OTcl:

• for configuration, setup, and “one-time” stuff

9

• if you can do what you want by manipulating existing C++ objects

and use C++:

• if you are doinganythingthat requires processing each packet of a flow

• if you have to change the behavior of an existing C++ class in ways that weren’t anticipated

For example, links are OTcl objects that assemble delay, queueing, and possibly loss modules. If your experiment can be
done with those pieces, great. If instead you want do something fancier (a special queueing dicipline or model of loss), then
you’ll need a new C++ object.

There are certainly grey areas in this spectrum: most routing is done in OTcl (although the core Dijkstra algorithm is in C++).
We’ve had HTTP simulations where each flow was started in OTcland per-packet processing was all in C++. This approache
worked OK until we had 100s of flows starting per second of simulated time. In general, if you’re ever having to invoke Tcl
many times per second, you problably should move that code toC++.

3.2 Code Overview

In this document, we use the term “interpreter” to be synonymous with the OTcl interpreter. The code to interface with the
interpreter resides in a separate directory,tclcl . The rest of the simulator code resides in the directory,ns-2 . We will use
the notation ~tclcl/〈file〉 to refer to a particular〈file〉 in theTcl directory. Similarly, we will use the notation, ~ns/〈file〉 to
refer to a particular〈file〉 in thens-2 directory.

There are a number of classes defined in ~tclcl/. We only focus on the six that are used inns: The Class Tcl (Section??)
contains the methods that C++ code will use to access the interpreter. The class TclObject (Section??) is the base class for
all simulator objects that are also mirrored in the compiledhierarchy. The class TclClass (Section??) defines the interpreted
class hierarchy, and the methods to permit the user to instantiate TclObjects. The class TclCommand (Section??) is used to
define simple global interpreter commands. The class EmbeddedTcl (Section??) contains the methods to load higher level
builtin commands that make configuring simulations easier.Finally, the class InstVar (Section??) contains methods to access
C++ member variables as OTcl instance variables.

The procedures and functions described in this chapter can be found in ~tclcl/Tcl.{cc, h}, ~tclcl/Tcl2.cc, ~tclcl/tcl-object.tcl,
and, ~tclcl/tracedvar.{cc, h}. The file ~tclcl/tcl2c++.c is used in buildingns, and is mentioned briefly in this chapter.

3.3 Class Tcl

Theclass Tcl encapsulates the actual instance of the OTcl interpreter, and provides the methods to access and communi-
cate with that interpreter. The methods described in this section are relevant to thensprogrammer who is writing C++ code.
The class provides methods for the following operations:

• obtain a reference to the Tcl instance;

• invoke OTcl procedures through the interpreter;

• retrieve, or pass back results to the interpreter;

• report error situations and exit in an uniform manner; and

10

• store and lookup “TclObjects”.

• acquire direct access to the interpreter.

We describe each of the methods in the following subsections.

3.3.1 Obtain a Reference to the class Tcl instance

A single instance of the class is declared in ~tclcl/Tcl.cc as a static member variable; the programmer must obtain a reference
to this instance to access other methods described in this section. The statement required to access this instance is:

Tcl& tcl = Tcl::instance();

3.3.2 Invoking OTcl Procedures

There are four different methods to invoke an OTcl command through the instance,tcl . They differ essentially in their
calling arguments. Each function passes a string to the interpreter, that then evaluates the string in a global context.These
methods will return to the caller if the interpreter returnsTCL_OK. On the other hand, if the interpreter returns TCL_ERROR,
the methods will calltkerror {}. The user can overload this procedure to selectively disregard certain types of errors. Such
intricacies of OTcl programming are outside the scope of this document. The next section (Section??) describes methods to
access the result returned by the interpreter.

• tcl.eval (char*s) invokesTcl_GlobalEval () to executes through the interpreter.

• tcl.evalc (const char*s) preserves the argument strings. It copies the strings into its internal buffer; it then invokes
the previouseval (char*s) on the internal buffer.

• tcl.eval () assumes that the command is already stored in the class’ internalbp_ ; it directly invokestcl.eval (char*
bp_). A handle to the buffer itself is available through the methodtcl.buffer (void).

• tcl.evalf (const char*s, . . .) is aPrintf (3) like equivalent. It usesvsprintf (3) internally to create the input
string.

As an example, here are some of the ways of using the above methods:

Tcl& tcl = Tcl::instance();
char wrk[128];
strcpy(wrk, "Simulator set NumberInterfaces_ 1");
tcl.eval(wrk);

sprintf(tcl.buffer(), "Agent/SRM set requestFunction_ %s", "Fixed");
tcl.eval();

tcl.evalc("puts stdout hello world");
tcl.evalf("%s request %d %d", name_, sender, msgid);

3.3.3 Passing Results to/from the Interpreter

When the interpreter invokes a C++ method, it expects the result back in the private member variable,tcl_->result . Two
methods are available to set this variable.

11

• tcl.result (const char*s)

Pass the result strings back to the interpreter.

• tcl.resultf (const char* fmt, . . .)

varargs (3) variant of above to format the result usingvsprintf (3), pass the result string back to the interpreter.

if (strcmp(argv[1], "now") == 0) {
tcl.resultf("%.17g", clock());
return TCL_OK;

}
tcl.result("Invalid operation specified");
return TCL_ERROR;

Likewise, when a C++ method invokes an OTcl command, the interpreter returns the result intcl_->result .

• tcl.result (void) must be used to retrieve the result. Note that the result is a string, that must be converted into an
internal format appropriate to the type of result.

tcl.evalc("Simulator set NumberInterfaces_");
char * ni = tcl.result();
if (atoi(ni) != 1)

tcl.evalc("Simulator set NumberInterfaces_ 1");

3.3.4 Error Reporting and Exit

This method provides a uniform way to report errors in the compiled code.

• tcl.error (const char*s) performs the following functions: writes to stdout; writetcl_->result to stdout; exit
with error code 1.

tcl.resultf("cmd = %s", cmd);
tcl.error("invalid command specified");
/ * NOTREACHED* /

Note that there are minor differences between returning TCL_ERROR as we did in the previous subsection (Section??),
and callingTcl::error (). The former generates an exception within the interpreter; the user can trap the exception and
possibly recover from the error. If the user has not specifiedany traps, the interpreter will print a stack trace and exit.However,
if the code invokeserror (), then the simulation user cannot trap the error; in addition,nswill not print any stack trace.

3.3.5 Hash Functions within the Interpreter

ns stores a reference to every TclObject in the compiled hierarchy in a hash table; this permits quick access to the objects.
The hash table is internal to the interpreter.nsuses the name of theTclObject as the key to enter, lookup, or delete the
TclObject in the hash table.

12

• tcl.enter (TclObject*o) will insert a pointer to the TclObjecto into the hash table.

It is used byTclClass::create_shadow () to insert an object into the table, when that object is created.

• tcl.lookup (char*s) will retrieve the TclObject with the names.

It is used byTclObject::lookup ().

• tcl.remove (TclObject*o) will delete references to the TclObjecto from the hash table.

It is used byTclClass::delete_shadow () to remove an existing entry from the hash table, when that object is
deleted.

These functions are used internally by the class TclObject and class TclClass.

3.3.6 Other Operations on the Interpreter

If the above methods are not sufficient, then we must acquire the handle to the interpreter, and write our own functions.

• tcl.interp (void) returns the handle to the interpreter that is stored within the class Tcl.

3.4 Class TclObject

class TclObject is the base class for most of the other classes in the interpreted and compiled hierarchies. Every object
in the class TclObject is created by the user from within the interpreter. An equivalent shadow object is created in the compiled
hierarchy. The two objects are closely associated with eachother. The class TclClass, described in the next section, contains
the mechanisms that perform this shadowing.

In the rest of this document, we often refer to an object as a TclObject1. By this, we refer to a particular object that is either
in the class TclObject, or in a class that is derived from the class TclObject. If it is necessary, we will explicitly qualify
whether that object is an object within the interpreter, or an object within the compiled code. In such cases, we will use the
abbreviations “interpreted object”, and “compiled object” to distinguish the two. and within the compiled code respectively.

Differences fromns v1 Unlike nsv1, the class TclObject subsumes the earlier functions of the NsObject class. It therefore
stores the interface variable bindings (Section??) that tie OTcl instance variables in the interpreted objectto corresponding
C++ member variables in the compiled object. The binding is stronger than innsv1 in that any changes to the OTcl variables
are trapped, and the current C++ and OTcl values are made consistent after each access through the interpreter. The consis-
tency is done through the class InstVar (Section??). Also unlikensv1, objects in the class TclObject are no longer stored as
a global link list. Instead, they are stored in a hash table inthe class Tcl (Section??).

Example configuration of a TclObject The following example illustrates the configuration of an SRM agent (class
Agent/SRM/Adaptive).

set srm [new Agent/SRM/Adaptive]
$srm set packetSize_ 1024
$srm traffic-source $s0

1In the latest release ofnsandns/tclcl, this object has been renamed toSplitObjefct , which more accurately reflects its nature of existence. However,
for the moment, we will continue to use the term TclObject to refer to these objects and this class.

13

By convention inns, the class Agent/SRM/Adaptive is a subclass of Agent/SRM, is a subclass of Agent, is a subclass of
TclObject. The corresponding compiled class hierarchy is the ASRMAgent, derived from SRMAgent, derived from Agent,
derived from TclObject respectively. The first line of the above example shows how a TclObject is created (or destroyed)
(Section??); the next line configures a bound variable (Section??); and finally, the last line illustrates the interpreted object
invoking a C++ method as if they were an instance procedure (Section??).

3.4.1 Creating and Destroying TclObjects

When the user creates a new TclObject, using the proceduresnew{} and delete {}; these procedures are defined in
~tclcl/tcl-object.tcl. They can be used to create and destroy objects in all classes, including TclObjects.2. In this section,
we describe the internal actions executed when a TclObject is created.

Creating TclObjects By usingnew{}, the user creates an interpreted TclObject. the interpreter will execute the constructor
for that object,init {}, passing it any arguments provided by the user.ns is responsible for automatically creating the
compiled object. The shadow object gets created by the base class TclObject’s constructor. Therefore, the constructorfor
the new TclObject must call the parent class constructor first. new{} returns a handle to the object, that can then be used for
further operations upon that object.

The following example illustrates the Agent/SRM/Adaptiveconstructor:

Agent/SRM/Adaptive instproc init args {
eval $self next $args
$self array set closest_ "requestor 0 repairor 0"
$self set eps_ [$class set eps_]

}

The following sequence of actions are performed by the interpreter as part of instantiating a new TclObject. For ease of
exposition, we describe the steps that are executed to create an Agent/SRM/Adaptive object. The steps are:

1. Obtain an unique handle for the new object from the TclObject name space. The handle is returned to the user. Most
handles inns have the form_o〈NNN〉, where〈NNN〉 is an integer. This handle is created bygetid {}. It can be
retrieved from C++ with thename() {} method.

2. Execute the constructor for the new object. Any user-specified arguments are passed as arguments to the constructor.
This constructor must invoke the constructor associated with its parent class.

In our example above, the Agent/SRM/Adaptive calls its parent class in the very first line.

Note that each constructor, in turn invokes its parent class’ constructorad nauseum. The last constructor inns is the
TclObject constructor. This constructor is responsible for setting up the shadow object, and performing other initial-
izations and bindings, as we explain below.It is preferable to call the parent constructors first beforeperforming the
initializations required in this class.This allows the shadow objects to be set up, and the variable bindings established.

3. The TclObject constructor invokes the instance procedurecreate-shadow {} for the class Agent/SRM/Adaptive.

4. When the shadow object is created,nscalls all of the constructors for the compiled object, each of which may establish
variable bindings for objects in that class, and perform other necessary initializations. Hence our earlier injunction that
it is preferable to invoke the parent constructors prior to performing the class initializations.

5. After the shadow object is successfully created,create_shadow (void)

2As an example, the classes Simulator, Node, Link, or rtObject, are classes that arenotderived from the class TclObject. Objects in these classes are not,
therefore, TclObjects. However, a Simulator, Node, Link, or route Object is also instantiated using thenew procedure inns.

14

(a) adds the new object to hash table of TclObjects describedearlier (Section??).

(b) makescmd{} an instance procedure of the newly created interpreted object. This instance procedure invokes the
command() method of the compiled object. In a later subsection (Section ??), we describe how thecommand
method is defined, and invoked.

Note that all of the above shadowing mechanisms only work when the user creates a new TclObject through the interpreter.
It will not work if the programmer creates a compiled TclObject unilaterally. Therefore, the programmer is enjoined notto
use the C++ new method to create compiled objects directly.

Deletion of TclObjects Thedelete operation destroys the interpreted object, and the corresponding shadow object. For
example,use-scheduler { 〈scheduler〉} uses thedelete procedure to remove the default list scheduler, and instantiate
an alternate scheduler in its place.

Simulator instproc use-scheduler type {
$self instvar scheduler_

delete scheduler_ ;# first delete the existing list scheduler
set scheduler_ [new Scheduler/$type]

}

As with the constructor, the object destructor must call thedestructor for the parent class explicitly as the very last statement
of the destructor. The TclObject destructor will invoke theinstance proceduredelete-shadow , that in turn invokes the
equivalent compiled method to destroy the shadow object. The interpreter itself will destroy the interpreted object.

3.4.2 Variable Bindings

In most cases, access to compiled member variables is restricted to compiled code, and access to interpreted member variables
is likewise confined to access via interpreted code; however, it is possible to establish bi-directional bindings such that both
the interpreted member variable and the compiled member variable access the same data, and changing the value of either
variable changes the value of the corresponding paired variable to same value.

The binding is established by the compiled constructor whenthat object is instantiated; it is automatically accessible by the
interpreted object as an instance variable.nssupports five different data types: reals, bandwidth valuedvariables, time valued
variables, integers, and booleans. The syntax of how these values can be specified in OTcl is different for each variable type.

• Real and Integer valued variables are specified in the “normal” form. For example,

$object set realvar 1.2e3
$object set intvar 12

• Bandwidth is specified as a real value, optionally suffixed bya ‘k’ or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean
mega-quantities. A final optional suffix of ‘B’ indicates that the quantity expressed is in Bytes per second. The default
is bandwidth expressed in bits per second. For example, all of the following are equivalent:

$object set bwvar 1.5m
$object set bwvar 1.5mb
$object set bwvar 1500k

15

$object set bwvar 1500kb
$object set bwvar .1875MB
$object set bwvar 187.5kB
$object set bwvar 1.5e6

• Time is specified as a real value, optionally suffixed by a ‘m’ to express time in milli-seconds, ‘n’ to express time in
nano-seconds, or ‘p’ to express time in pico-seconds. The default is time expressed in seconds. For example, all of the
following are equivalent:

$object set timevar 1500m
$object set timevar 1.5
$object set timevar 1.5e9n
$object set timevar 1500e9p

Note that we can also safely add as to reflect the time unit of seconds.nswill ignore anything other than a valid real
number specification, or a trailing ‘m’, ‘n’, or ‘p’.

• Booleans can be expressed either as an integer, or as ‘T’ or ‘t’ for true. Subsequent characters after the first letter are
ignored. If the value is neither an integer, nor a true value,then it is assumed to be false. For example,

$object set boolvar t ;# set to true
$object set boolvar true
$object set boolvar 1 ;# or any non-zero value

$object set boolvar false ;# set to false
$object set boolvar junk
$object set boolvar 0

The following example shows the constructor for the ASRMAgent3.

ASRMAgent::ASRMAgent() {
bind("pdistance_", &pdistance_); / * real variable* /
bind("requestor_", &requestor_); / * integer variable* /
bind_time("lastSent_", &lastSessSent_); / * time variable* /
bind_bw("ctrlLimit_", &ctrlBWLimit_); / * bandwidth variable* /
bind_bool("running_", &running_); / * boolean variable* /

}

Note that all of the functions above take two arguments, the name of an OTcl variable, and the address of the corresponding
compiled member variable that is linked. While it is often the case that these bindings are established by the constructor of
the object, it need not always be done in this manner. We will discuss such alternate methods when we describe the class
InstVar (Section??) in detail later.

Each of the variables that is bound is automatically initialised with default values when the object is created. The default
values are specified as interpreted class variables. This initialisation is done by the routinginit-instvar {}, invoked by
methods in the class Instvar, described later (Section??). init-instvar {} checks the class of the interpreted object, and
all of the parent class of that object, to find the first class inwhich the variable is defined. It uses the value of the variable in
that class to initialise the object. Most of the bind initialisation values are defined in ~ns/tcl/lib/ns-default.tcl.

For example, if the following class variables are defined forthe ASRMAgent:

3Note that this constructor is embellished to illustrate thefeatures of the variable binding mechanism.

16

Agent/SRM/Adaptive set pdistance_ 15.0
Agent/SRM set pdistance_ 10.0
Agent/SRM set lastSent_ 8.345m
Agent set ctrlLimit_ 1.44M
Agent/SRM/Adaptive set running_ f

Therefore, every new Agent/SRM/Adaptive object will havepdistance_ set to 15.0;lastSent_ is set to 8.345m from
the setting of the class variable of the parent class;ctrlLimit_ is set to 1.44M using the class variable of the parent class
twice removed;running is set to false; the instance variablepdistance_ is not initialised, because no class variable exists
in any of the class hierarchy of the interpreted object. In such instance,init-instvar {} will invoke warn-instvar {},
to print out a warning about such a variable. The user can selectively override this procedure in their simulation scripts, to
elide this warning.

Note that the actual binding is done by instantiating objects in the class InstVar. Each object in the class InstVar bindsone
compiled member variable to one interpreted member variable. A TclObject stores a list of InstVar objects corresponding to
each of its member variable that is bound in this fashion. Thehead of this list is stored in its member variableinstvar_ of
the TclObject.

One last point to consider is thatnswill guarantee that the actual values of the variable, both in the interpreted object and the
compiled object, will be identical at all times. However, ifthere are methods and other variables of the compiled objectthat
track the value of this variable, they must be explicitly invoked or changed whenever the value of this variable is changed.
This usually requires additional primitives that the user should invoke. One way of providing such primitives inns is through
thecommand() method described in the next section.

3.4.3 Variable Tracing

In addition to variable bindings, TclObject also supports tracing of both C++ and Tcl instance variables. A traced variable
can be created and configured either in C++ or Tcl. To establish variable tracing at the Tcl level, the variable must be visible
in Tcl, which means that it must be a bounded C++/Tcl or a pure Tcl instance variable. In addition, the object that owns
the traced variable is also required to establish tracing using the Tcltrace method of TclObject. The first argument to the
trace method must be the name of the variable. The optional second argument specifies the trace object that is responsible
for tracing that variable. If the trace object is not specified, the object that own the variable is responsible for tracing it.

For a TclObject to trace variables, it must extend the C++trace method that is virtually defined in TclObject. The Trace
class implements a simpletrace method, thereby, it can act as a generic tracer for variables.

class Trace : public Connector {
...
virtual void trace(TracedVar *);

};

Below is a simple example for setting up variable tracing in Tcl:

$tcp tracing its own variable cwnd_
$tcp trace cwnd_

the variable ssthresh_ of $tcp is traced by a generic $trace r
set tracer [new Trace/Var]
$tcp trace ssthresh_ $tracer

17

For a C++ variable to be traceable, it must belong to a class that derives from TracedVar. The virtual base class TracedVar
keeps track of the variable’s name, owner, and tracer. Classes that derives from TracedVar must implement the virtual method
value , that takes a character buffer as an argument and writes the value of the variable into that buffer.

class TracedVar {
...
virtual char * value(char * buf) = 0;

protected:
TracedVar(const char * name);
const char * name_; // name of the variable
TclObject * owner_; // the object that owns this variable
TclObject * tracer_; // callback when the variable is changed
...

};

The TclCL library exports two classes of TracedVar:TracedInt andTracedDouble . These classes can be used in
place of the basic type int and double respectively. Both TracedInt and TracedDouble overload all the operators that can
change the value of the variable such as assignment, increment, and decrement. These overloaded operators use theassign
method to assign the new value to the variable and call the tracer if the new value is different from the old one. TracedInt and
TracedDouble also implement theirvalue methods that output the value of the variable into string. The width and precision
of the output can be pre-specified.

3.4.4 command Methods: Definition and Invocation

For every TclObject that is created,nsestablishes the instance procedure,cmd{}, as a hook to executing methods through the
compiled shadow object. The procedurecmd{} invokes the methodcommand() of the shadow object automatically, passing
the arguments tocmd{} as an argument vector to thecommand() method.

The user can invoke thecmd{} method in one of two ways: by explicitly invoking the procedure, specifying the desired
operation as the first argument, or implicitly, as if there were an instance procedure of the same name as the desired operation.
Most simulation scripts will use the latter form, hence, we will describe that mode of invocation first.

Consider the that the distance computation in SRM is done by the compiled object; however, it is often used by the interpreted
object. It is usually invoked as:

$srmObject distance? 〈agentAddress 〉

If there is no instance procedure calleddistance? , the interpreter will invoke the instance procedureunknown {}, defined
in the base class TclObject. The unknown procedure then invokes

$srmObject cmd distance? 〈agentAddress 〉

to execute the operation through the compiled object’scommand() procedure.

Ofcourse, the user could explicitly invoke the operation directly. One reason for this might be to overload the operation by
using an instance procedure of the same name. For example,

Agent/SRM/Adaptive instproc distance? addr {

18

$self instvar distanceCache_
if ![info exists distanceCache_($addr)] {

set distanceCache_($addr) [$self cmd distance? $addr]
}
set distanceCache_($addr)

}

We now illustrate how thecommand() method usingASRMAgent::command () as an example.

int ASRMAgent::command(int argc, const char * const * argv) {
Tcl& tcl = Tcl::instance();
if (argc == 3) {

if (strcmp(argv[1], "distance?") == 0) {
int sender = atoi(argv[2]);
SRMinfo * sp = get_state(sender);
tcl.tesultf("%f", sp->distance_);
return TCL_OK;

}
}
return (SRMAgent::command(argc, argv));

}

We can make the following observations from this piece of code:

• The function is called with two arguments:

The first argument (argc) indicates the number of arguments specified in the command line to the interpreter.

The command line arguments vector (argv) consists of

— argv[0] contains the name of the method, “cmd”.

— argv[1] specifies the desired operation.

— If the user specified any arguments, then they are placed inargv[2...(argc - 1)] .

The arguments are passed as strings; they must be converted to the appropriate data type.

• If the operation is successfully matched, the match should return the result of the operation using methods described
earlier (Section??).

• command() itself must return eitherTCL_OKor TCL_ERRORto indicate success or failure as its return code.

• If the operation is not matched in this method, it must invokeits parent’s command method, and return the corresponding
result.

This permits the user to concieve of operations as having thesame inheritance properties as instance procedures or
compiled methods.

In the event that thiscommandmethod is defined for a class with multiple inheritance, the programmer has the liberty
to choose one of two implementations:

1) Either they can invoke one of the parent’scommandmethod, and return the result of that invocation, or

2) They can each of the parent’scommandmethods in some sequence, and return the result of the first invocation that
is successful. If none of them are successful, then they should return an error.

In our document, we call operations executed through thecommand() instproc-likes. This reflects the usage of these opera-
tions as if they were OTcl instance procedures of an object, but can be very subtly different in their realisation and usage.

19

3.5 Class TclClass

This compiled class (class TclClass) is a pure virtual class. Classes derived from this base class provide two functions:
construct the interpreted class hierarchy to mirror the compiled class hierarchy; and provide methods to instantiate new
TclObjects. Each such derived class is associated with a particular compiled class in the compiled class hierarchy, andcan
instantiate new objects in the associated class.

As an example, consider a class such as the classRenoTcpClass . It is derived from classTclClass , and is associated
with the classRenoTcpAgent . It will instantiate new objects in the classRenoTcpAgent . The compiled class hierarchy
for RenoTcpAgent is that it derives fromTcpAgent , that in turn derives fromAgent , that in turn derives (roughly) from
TclObject . RenoTcpClass is defined as

static class RenoTcpClass: public TclClass {
public:

RenoTcpClass() : TclClass("Agent/TCP/Reno") {}
TclObject * create(int argc, const char * const * argv) {

return (new RenoTcpAgent());
}

} class_reno;

We can make the following observations from this definition:

1. The class defines only the constructor, and one additionalmethod, tocreate instances of the associated TclObject.

2. nswill execute theRenoTcpClass constructor for the static variableclass_reno , when it is first started. This sets
up the appropriate methods and the interpreted class hierarchy.

3. The constructor specifies the interpreted class explicitly as Agent/TCP/Reno . This also specifies the interpreted
class hierarchy implicitly.

Recall that the convention inns is to use the character slash (’/’) is a separator. For any given classA/B/C/D , the
classA/B/C/D is a sub-class ofA/B/C , that is itself a sub-class ofA/B , that, in turn, is a sub-class ofA. A itself is a
sub-class ofTclObject .

In our case above, the TclClass constructor creates three classes,Agent/TCP/Reno sub-class ofAgent/TCP sub-
class ofAgent sub-class ofTclObject .

4. This class is associated with the classRenoTcpAgent ; it creats new objects in this associated class.

5. TheRenoTcpClass::create method returns TclObjects in the classRenoTcpAgent .

6. When the user specifiesnew Agent/TCP/Reno , the routineRenoTcpClass::create is invoked.

7. The arguments vector (argv) consists of

— argv[0] contains the name of the object.

— argv[1...3] contain$self , $class , and$proc .Sincecreate is called through the instance procedure
create-shadow , argv[3] containscreate-shadow .

— argv[4] contain any additional arguments (passed as a string) provided by the user.

Theclass Trace illustrates argument handling by TclClass methods.

class TraceClass : public TclClass {
public:

20

TraceClass() : TclClass("Trace") {}
TclObject * create(int args, const char * const * argv) {

if (args >= 5)
return (new Trace(* argv[4]));

else
return NULL;

}
} trace_class;

A new Trace object is created as

new Trace "X"

Finally, the nitty-gritty details of how the interpreted class hierarchy is constructed:

1. The object constructor is executed whennsfirst starts.

2. This constructor calls the TclClass constructor with thename of the interpreted class as its argument.

3. The TclClass constructor stores the name of the class, andinserts this object into a linked list of the TclClass objects.

4. During initialization of the simulator,Tcl_AppInit (void) invokesTclClass::bind (void)

5. For each object in the list of TclClass objects,bind () invokesregister {}, specifying the name of the interpreted
class as its argument.

6. register {} establishes the class hierarchy, creating the classes that are required, and not yet created.

7. Finally,bind () defines instance procedurescreate-shadow anddelete-shadow for this new class.

3.5.1 How to Bind Static C++ Class Member Variables

In Section??, we have seen how to expose member variables of a C++ object into OTcl space. This, however, does not apply
to static member variables of a C++ class. Of course, one may create an OTcl variable for the static member variable of every
C++ object; obviously this defeats the whole meaning of static members.

We cannot solve this binding problem using a similar solution as binding in TclObject, which is based on InstVar, because
InstVars in TclCL require the presence of a TclObject. However, we can create a method of the corresponding TclClass and
access static members of a C++ class through the methods of its corresponding TclClass. The procedure is as follows:

1. Create your own derived TclClass as described above;

2. Declare methodsbind () andmethod () in your derived class;

3. Create your binding methods in the implementation of yourbind () with add_method("your_method") , then
implement the handler inmethod () in a similar way as you would do inTclObject::command (). Notice that the
number of arguments passed toTclClass::method () are different from those passed toTclObject::command ().
The former has two more arguments in the front.

As an example, we show a simplified version ofPacketHeaderClass in ~ns/packet.cc. Suppose we have the following
classPacket which has a static variablehdrlen_ that we want to access from OTcl:

21

class Packet {
......
static int hdrlen_;

};

Then we do the following to construct an accessor for this variable:

class PacketHeaderClass : public TclClass {
protected:

PacketHeaderClass(const char * classname, int hdrsize);
TclObject * create(int argc, const char * const * argv);

/ * These two implements OTcl class access methods* /
virtual void bind();
virtual int method(int argc, const char * const * argv);

};

void PacketHeaderClass::bind()
{

/ * Call to base class bind() must precede add_method()* /
TclClass::bind();
add_method("hdrlen");

}

int PacketHeaderClass::method(int ac, const char * const * av)
{

Tcl& tcl = Tcl::instance();
/ * Notice this argument translation; we can then handle them asif in TclObject::command()* /

int argc = ac - 2;
const char * const * argv = av + 2;
if (argc == 2) {

if (strcmp(argv[1], "hdrlen") == 0) {
tcl.resultf("%d", Packet::hdrlen_);
return (TCL_OK);

}
} else if (argc == 3) {

if (strcmp(argv[1], "hdrlen") == 0) {
Packet::hdrlen_ = atoi(argv[2]);
return (TCL_OK);

}
}
return TclClass::method(ac, av);

}

After this, we can then use the following OTcl command to access and change values ofPacket::hdrlen_ :

PacketHeader hdrlen 120
set i [PacketHeader hdrlen]

22

3.6 Class TclCommand

This class (class TclCommand) provides just the mechanism fornsto export simple commands to the interpreter, that can
then be executed within a global context by the interpreter.There are two functions defined in ~ns/misc.cc:ns-random and
ns-version . These two functions are initialized by the functioninit_misc (void), defined in ~ns/misc.cc;init_misc
is invoked byTcl_AppInit (void) during startup.

• class VersionCommand defines the commandns-version . It takes no argument, and returns the currentns
version string.

% ns-version ;# get the current version
2.0a12

• class RandomCommand defines the commandns-random . With no argument,ns-random returns an integer,
uniformly distributed in the interval[0, 231 − 1].

When specified an argument, it takes that argument as the seed. If this seed value is 0, the command uses a heuristic
seed value; otherwise, it sets the seed for the random numbergenerator to the specified value.

% ns-random ;# return a random number
2078917053
% ns-random 0 ;# set the seed heuristically
858190129
% ns-random 23786 ;# set seed to specified value
23786

Note that, it is generally not advisable to construct top-level commands that are available to the user.We now describe how
to define a new command using the exampleclass say_hello . The example defines the commandhi , to print the string
“hello world”, followed by any command line arguments specified by the user. For example,

% hi this is ns [ns-version]
hello world, this is ns 2.0a12

1. The command must be defined within a class derived from theclass TclCommand . The class definition is:

class say_hello : public TclCommand {
public:

say_hello();
int command(int argc, const char * const * argv);

};

2. The constructor for the class must invoke the TclCommand constructor with the command as argument;i.e.,

say_hello() : TclCommand("hi") {}

TheTclCommand constructor sets up "hi" as a global procedure that invokesTclCommand::dispatch_cmd ().

3. The methodcommand() must perform the desired action.

The method is passed two arguments. The first argument,argc , contains the number of actual arguments passed by
the user.

23

The actual arguments passed by the user are passed as an argument vector (argv) and contains the following:

— argv[0] contains the name of the command (hi).

— argv[1...(argc - 1)] contains additional arguments specified on the command lineby the user.

command() is invoked bydispatch_cmd ().

#include <streams.h> / * because we are using stream I/O* /

int say_hello::command(int argc, const char * const * argv) {
cout << "hello world:";
for (int i = 1; i < argc; i++)

cout << ’ ’ << argv[i];
cout << ’ \ n’;
return TCL_OK;

}

4. Finally, we require an instance of this class.TclCommand instances are created in the routineinit_misc (void).

new say_hello;

Note that there used to be more functions such asns-at andns-now that were accessible in this manner. Most of these
functions have been subsumed into existing classes. In particular,ns-at andns-now are accessible through the scheduler
TclObject. These functions are defined in ~ns/tcl/lib/ns-lib.tcl.

% set ns [new Simulator] ;# get new instance of simulator
_o1
% $ns now ;# query simulator for current time
0
% $ns at ... ;# specify at operations for simulator
...

3.7 Class EmbeddedTcl

nspermits the development of functionality in either compiled code, or through interpreter code, that is evaluated at initializa-
tion. For example, the scripts ~tclcl/tcl-object.tcl or the scripts in ~ns/tcl/lib. Such loading and evaluation of scripts is done
through objects in theclass EmbeddedTcl .

The easiest way to extendns is to add OTcl code to either ~tclcl/tcl-object.tcl or through scripts in the ~ns/tcl/lib directory.
Note that, in the latter case,nssources ~ns/tcl/lib/ns-lib.tcl automatically, and hence the programmer must add a couple of lines
to this file so that their script will also get automatically sourced bynsat startup. As an example, the file ~ns/tcl/mcast/srm.tcl
defines some of the instance procedures to run SRM. In ~ns/tcl/lib/ns-lib.tcl, we have the lines:

source tcl/mcast/srm.tcl

to automatically get srm.tcl sourced bynsat startup.

Three points to note with EmbeddedTcl code are that firstly, if the code has an error that is caught during the eval, thennswill
not run. Secondly, the user can explicitly override any of the code in the scripts. In particular, they can re-source the entire

24

script after making their own changes. Finally, after adding the scripts to ~ns/tcl/lib/ns-lib.tcl, and every time thereafter that
they change their script, the user must recompilens for their changes to take effect. Of course, in most cases4, the user can
source their script to override the embedded code.

The rest of this subsection illustrate how to integrate individual scripts directly intons. The first step is convert the script into
an EmbeddedTcl object. The lines below expand ns-lib.tcl and create the EmbeddedTcl object instance calledet_ns_lib :

tclsh bin/tcl-expand.tcl tcl/lib/ns-lib.tcl | \
../Tcl/tcl2c++ et_ns_lib > gen/ns_tcl.cc

The script, ~ns/bin/tcl-expand.tcl expandsns-lib.tcl by replacing allsource lines with the corresponding source files.
The program, ~tclcl/tcl2cc.c, converts the OTcl code into an equivalent EmbeddedTcl object,et_ns_lib .

During initialization, invoking the methodEmbeddedTcl::load explicitly evaluates the array.

— ~tclcl/tcl-object.tcl is evaluated by the methodTcl::init (void); Tcl_AppInit () invokesTcl::Init (). The
exact command syntax for the load is:

et_tclobject.load();

— Similarly, ~ns/tcl/lib/ns-lib.tcl is evaluated directly byTcl_AppInit in ~ns/ns_tclsh.cc.

et_ns_lib.load();

3.8 Class InstVar

This section describes the internals of theclass InstVar . This class defines the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified OTcl instance variable in the equivalent interpreted object. The
binding is set up such that the value of the variable can be setor accessed either from within the interpreter, or from within
the compiled code at all times.

There are five instance variable classes:class InstVarReal , class InstVarTime , class InstVarBandwidth ,
class InstVarInt , andclass InstVarBool , corresponding to bindings for real, time, bandwidth, integer, and
boolean valued variables respectively.

We now describe the mechanism by which instance variables are set up. We use theclass InstVarReal to illustrate the
concept. However, this mechanism is applicable to all five types of instance variables.

When setting up an interpreted variable to access a member variable, the member functions of the class InstVar assume that
they are executing in the appropriate method execution context; therefore, they do not query the interpreter to determine the
context in which this variable must exist.

In order to guarantee the correct method execution context,a variable must only be bound if its class is already established
within the interpreter, and the interpreter is currently operating on an object in that class. Note that the former requires that
when a method in a given class is going to make its variables accessible via the interpreter, there must be an associated

4The few places where this might not work are when certain variables might have to be defined or undefined, or otherwise the script contains code other
than procedure and variable definitions and executes actions directly that might not be reversible.

25

class TclClass (Section??) defined that identifies the appropriate class hierarchy to the interpreter. The appropriate method
execution context can therefore be created in one of two ways.

An implicit solution occurs whenever a new TclObject is created within the interpreter. This sets up the method execution
context within the interpreter. When the compiled shadow object of the interpreted TclObject is created, the constructor for
that compiled object can bind its member variables of that object to interpreted instance variables in the context of thenewly
created interpreted object.

An explicit solution is to define abind-variables operation within acommand function, that can then be invoked
via thecmd method. The correct method execution context is established in order to execute thecmd method. Likewise,
the compiled code is now operating on the appropriate shadowobject, and can therefore safely bind the required member
variables.

An instance variable is created by specifying the name of theinterpreted variable, and the address of the member variable in
the compiled object. The constructor for the base class InstVar creates an instance of the variable in the interpreter, and then
sets up a trap routine to catch all accesses to the variable through the interpreter.

Whenever the variable is read through the interpreter, the trap routine is invoked just prior to the occurrence of the read. The
routine invokes the appropriateget function that returns the current value of the variable. This value is then used to set the
value of the interpreted variable that is then read by the interpreter.

Likewise, whenever the variable is set through the interpreter, the trap routine is invoked just after to the write is completed.
The routine gets the current value set by the interpreter, and invokes the appropriateset function that sets the value of the
compiled member to the current value set within the interpreter.

26

Part II

Simulator Basics

27

Chapter 4

The Class Simulator

The overall simulator is described by a Tclclass Simulator . It provides a set of interfaces for configuring a simulation
and for choosing the type of event scheduler used to drive thesimulation. A simulation script generally begins by creating an
instance of this class and calling various methods to createnodes, topologies, and configure other aspects of the simulation.
A subclass of Simulator calledOldSim is used to supportnsv1 backward compatibility.

The procedures and functions described in this chapter can be found in ~ns/tcl/lib/ns-lib.tcl, ~ns/scheduler.{cc,h}, and,
~ns/heap.h.

4.1 Simulator Initialization

When a new simulation object is created in tcl, the initialization procedure performs the following operations:

• initialize the packet format (callscreate_packetformat)

• create a scheduler (defaults to a calendar scheduler)

• create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets within packets used by the entire simulation. It is described in more detail
in the following chapter on packets (Chapter??). The scheduler runs the simulation in an event-driven manner and may be
replaced by alternative schedulers which provide somewhatdifferent semantics (see the following section for more detail).
The null agent is created with the following call:

set nullAgent_ [new Agent/Null]

This agent is generally useful as a sink for dropped packets or as a destination for packets that are not counted or recorded.

4.2 Schedulers and Events

The simulator is an event-driven simulator. There are presently four schedulers available in the simulator, each of which is
implemented using a different data structure: a simple linked-list, heap, calendar queue (default), and a special typecalled

28

“real-time”. Each of these are described below. The scheduler runs by selecting the next earliest event, executing it to
completion, and returning to execute the next event.Unit oftime used by scheduler is seconds. Presently, the simulatoris
single-threaded, and only one event in execution at any given time. If more than one event are scheduled to execute at the
same time, their execution is performed on the first scheduled – first dispatched manner. Simultaneous events are not re-
ordered anymore by schedulers (as it was in earlier versions) and all schedulers should yeild the same order of dispatching
given the same input.

No partial execution of events or pre-emption is supported.

An eventgenerally comprises a “firing time” and a handler function. The actual definition of an event is found in ~ns/scheduler.h:

class Event {
public:

Event * next_; / * event list* /
Handler * handler_; / * handler to call when event ready* /
double time_; / * time at which event is ready* /
int uid_; / * unique ID* /
Event() : time_(0), uid_(0) {}

};
/ *

* The base class for all event handlers. When an event’s scheduled
* time arrives, it is passed to handle which must consume it.

* i.e., if it needs to be freed it, it must be freed by the handler.

* /
class Handler {

public:
virtual void handle(Event * event);

};

Two types of objects are derived from the baseclass Event : packets and “at-events”. Packets are described in detail
in the next chapter (Chapter??). An at-event is a tcl procedure execution scheduled to occur at a particular time. This is
frequently used in simulation scripts. A simple example of how it is used is as follows:

...
set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 "$self complete_sim"
...

This tcl code fragment first creates a simulation object, then changes the default scheduler implementation to be heap-based
(see below), and finally schedules the function$self complete_sim to be executed at time 300.5 (seconds)(Note that
this particular code fragment expects to be encapsulated inan object instance procedure, where the appropriate reference to
$self is correctly defined.). At-events are implemented as eventswhere the handler is effectively an execution of the tcl
interpreter.

4.2.1 The List Scheduler

The list scheduler (class Scheduler/List) implements the scheduler using a simple linked-list structure. The list is
kept in time-order (earliest to latest), so event insertionand deletion require scanning the list to find the appropriate entry.
Choosing the next event for execution requires trimming thefirst entry off the head of the list. This implementation preserves
event execution in a FIFO manner for simultaneous events.

29

4.2.2 the heap scheduler

The heap scheduler (class Scheduler/Heap) implements the scheduler using a heap structure. This structure is su-
perior to the list structure for a large number of events, as insertion and deletion times are inO(log n) for n events. This
implementation innsv2 is borrowed from the MaRS-2.0 simulator [?]; it is believed that MaRS itself borrowed the code from
NetSim [?], although this lineage has not been completely verified.

4.2.3 The Calendar Queue Scheduler

The calendar queue scheduler (class Scheduler/Calendar) uses a data structure analogous to a one-year desk cal-
endar, in which events on the same month/day of multiple years can be recorded in one day. It is formally described in [?],
and informally described in Jain (p. 410) [?]. The implementation of Calendar queues inns v2 was contributed by David
Wetherall (presently at MIT/LCS).

The calendar queue scheduler sincensv2.33 is improved by the following three algorithms:

• A heuristic improvement that changes the linear search direction in enqueue operations. The original implementation
searches the events in a bucket inchronological orderto find the in-order spot for the event that is being inserted.The
new implementation searches the bucket inreverse chronological orderbecause the event being inserted is usually later
than most of the events that are already in the bucket.

• A new bucket width estimation that uses the average intervalof dequeued eventsas the estimation of bucket width. It is
stated in [?] that the optimal bucket width should be theaverage inverval of all events in the future. The original
implementation uses the average interval offuture events currently in the most crowded bucketas the estimation.
This estimation is unstable because it is very likely that many future events will be inserted into the bucket after this
estimation, significantly changing the averaged event interval in the bucket. The new implementation uses the observed
event interval in the past, which will not change, to estimate the event interval in future.

• SNOOPy Calendar Queue: a Calendar queue variant that dynamically tunes the bucket width according to the cost
trade-off between enqueue operation and dequeue operation. The SNOOPy queue improvement is described in [?].
In this implementation, there is one tcl parameteradjust_new_width_interval_ specifying the interval with
which the SNOOPy queue should re-calculate the bucket width. Setting this parameter to 0 turns off the SNOOPy
queue algorithm and degrades the scheduler back to the original Calendar Queue. In general, normal simulation users
are not expected to change this parameter.

The details of these improvements are described in [?].

The implementation of these three improvements was contributed by Xiaoliang (David) Wei at Caltech/NetLab.

4.2.4 The Real-Time Scheduler

The real-time scheduler (class Scheduler/RealTime) attempts to synchronize the execution of events with real-time.
It is currently implemented as a subclass of the list scheduler. The real-time capability in ns is still under development,
but is used to introduce anns simulated network into a real-world topology to experimentwith easily-configured network
topologies, cross-traffic, etc. This only works for relatively slow network traffic data rates, as the simulator must be able to
keep pace with the real-world packet arrival rate, and this synchronization is not presently enforced.

30

4.2.5 Precision of the scheduler clock used in ns

Precision of the scheduler clock can be defined as the smallest time-scale of the simulator that can be correctly represented.
The clock variable for ns is represented by a double. As per the IEEE std for floating numbers, a double, consisting of 64 bits
must allocate the following bits between its sign, exponentand mantissa fields.

sign exponent mantissa
1 bit 11 bits 52 bits

Any floating number can be represented in the form (X ∗2n) where X is the mantissa and n is the exponent. Thus the precision
of timeclock in ns can be defined as (1/2(52)). As simulation runs for longer times the number of remaining bits to represent
the time educes thus reducing the accuracy. Given 52 bits we can safely say time upto around (2(40)) can be represented with
considerable accuracy. Anything greater than that might not be very accurate as you have remaining 12 bits to represent the
time change. However (2(40)) is a very large number and we donot anticipate any problem regarding precision of time in ns.

4.3 Other Methods

TheSimulator class provides a number of methods used to set up the simulation. They generally fall into three categories:
methods to create and manage the topology (which in turn consists of managing the nodes (Chapter??) and managing the
links (Chapter??)), methods to perform tracing (Chapter??), and helper functions to deal with the scheduler. The following
is a list of the non-topology related simulator methods:

Simulator instproc now ;# return scheduler’s notion of current time
Simulator instproc at args ;# schedule execution of code at specified time
Simulator instproc cancel args ;# cancel event
Simulator instproc run args ;# start scheduler
Simulator instproc halt ;# stop (pause) the scheduler
Simulator instproc flush-trace ;# flush all trace object write buffers
Simulator instproc create-trace type files src dst ;# create trace object
Simulator instproc create_packetformat ;# set up the simulator’s packet format

31

4.4 Commands at a glance

Synopsis:
ns <otclfile> <arg> <arg>..

Description:
Basic command to run a simulation script in ns.
The simulator (ns) is invoked via the ns interpreter, an exte nsion of the
vanilla otclsh command shell. A simulation is defined by a OT cl script
(file). Several examples of OTcl scripts can be found under ns/tcl/ex
directory.

The following is a list of simulator commands commonly used i n simulation
scripts:

set ns_ [new Simulator]

This command creates an instance of the simulator object.

set now [$ns_ now]

The scheduler keeps track of time in a simulation. This retur ns scheduler’s
notion of current time.

$ns_ halt

This stops or pauses the scheduler.

$ns_ run

This starts the scheduler.

$ns_ at <time> <event>

This schedules an <event> (which is normally a piece of code) to be executed
at the specified <time>.
e.g $ns_ at $opt(stop) "puts N̈S EXITING..¨ ; $ns_ halt"
or, $ns_ at 10.0 "$ftp start"

32

$ns_ cancel <event>

Cancels the event. In effect, event is removed from schedule r’s list of
ready to run events.

$ns_ create-trace <type> <file> <src> <dst> <optional arg: op>

This creates a trace-object of type <type> between <src> and <dst> objects
and attaches trace-object to <file> for writing trace-outp uts. If op is defined
as "nam", this creates nam tracefiles; otherwise if op is not defined, ns
tracefiles are created on default.

$ns_ flush-trace

Flushes all trace object write buffers.

$ns_ gen-map

This dumps information like nodes, node components, links e tc created for a
given simulation. This may be broken for some scenarios (lik e wireless).

$ns_ at-now <args>

This is in effect like command "$ns_ at $now $args". Note that this function
may not work because of tcl’s string number resolution.

These are additional simulator (internal) helper function s (normally used
for developing/changing the ns core code) :

$ns_ use-scheduler <type>

Used to specify the type of scheduler to be used for simulatio n. The different
types of scheduler available are List, Calendar, Heap and Re alTime. Currently
Calendar is used as default.

$ns_ after <delay> <event>

Scheduling an <event> to be executed after the lapse of time < delay>.

$ns_ clearMemTrace

Used for memory debugging purposes.

$ns_ is-started

This returns true if simulator has started to run and false if not.

33

$ns_ dumpq

Command for dumping events queued in scheduler while schedu ler is halted.

$ns_ create_packetformat

This sets up simulator’s packet format.

34

Chapter 5

Nodes and Packet Forwarding

This chapter describes one aspect of creating a topology inns, i.e., creating the nodes. In the next chapter (Chapter??), we
will describe second aspect of creating the topology,i.e., connecting the nodes to form links.

Recall that each simulation requires a single instance of the class Simulator to control and operate that simulation.
The class provides instance procedures to create and managethe topology, and internally stores references to each element
of the topology. We begin by describing the procedures in theclass Simulator (Section??). We then describe the instance
procedures in the class Node (Section??) to access and operate on individual nodes. We conclude withdetailed descriptions
of the Classifier (Section??) from which the more complex node objects are formed.

The procedures and functions described in this chapter can be found in ~ns/tcl/lib/ns-lib.tcl, ~ns/tcl/lib/ns-node.tcl,
~ns/tcl/lib/ns-rtmodule.tcl, ~ns/rtmodule.{cc,h}, ~ns/classifier.{cc, h}, ~ns/classifier-addr.cc, ~ns/classifier-mcast.cc, ~ns/classifier-
mpath.cc, and, ~ns/replicator.cc.

5.1 Node Basics

The basic primitive for creating a node is

set ns [new Simulator]
$ns node

The instance procedurenode constructs a node out of more simple classifier objects (Section ??). The Node itself is a
standalone class in OTcl. However, most of the components ofthe node are themselves TclObjects. The typical structure of a
(unicast) node is as shown in Figure??. This simple structure consists of two TclObjects: an address classifer (classifer_)
and a port classifier (dmux_). The function of these classifiers is to distribute incoming packets to the correct agent or
outgoing link.

All nodes contain at least the following components:

• an address orid_ , monotonically increasing by 1 (from initial value 0) across the simulation namespace as nodes are
created,

• a list of neighbors (neighbor_),

35

Link LinkLink

Node entry

Addr
Classifier

Port
Classifier

NODE
Agent

Agent

Agentdmux_

classifier_

agents_

entry_

Figure 5.1: Structure of a Unicast Node. Notice that entry_ is simply a label variable instead of a real object, e.g., the
classifier_.

• a list of agents (agent_),

• a node type identifier (nodetype_), and

• a routing module (described in Section??below)

By default, nodes innsare constructed for unicast simulations. In order to enablemulticast simulation, the simulation should
be created with an option “-multicast on”, e.g.:

set ns [new Simulator -multicast on]

The internal structure of a typical multicast node is shown in Figure??.

When a simulation uses multicast routing, the highest bit ofthe address indicates whether the particular address is a multicast
address or an unicast address. If the bit is 0, the address represents a unicast address, else the address represents a multicast
address.

36

Link LinkLink

Node entry

MULTICAST
NODE

Agent

Agent

Agent

dmux_

classifier_

agents_

entry_

Multicast
Classifier

multiclassifier_

Replicators

<S1,G1>

<S2,G2>

switch_

Figure 5.2: Internal Structure of a Multicast Node.

5.2 Node Methods: Configuring the Node

Procedures to configure an individual node can be classified into:

— Control functions

— Address and Port number management, unicast routing functions

— Agent management

— Adding neighbors

We describe each of the functions in the following paragraphs.

Control functions

1. $node entry returns the entry point for a node. This is the first element which will handle packets arriving at that
node.

37

The Node instance variable,entry_ , stores the reference this element. For unicast nodes, thisis the address classifier
that looks at the higher bits of the destination address. Theinstance variable,classifier_ contains the reference
to this classifier. However, for multicast nodes, the entry point is theswitch_ which looks at the first bit to decide
whether it should forward the packet to the unicast classifier, or the multicast classifier as appropriate.

2. $node reset will reset all agents at the node.

Address and Port number management The procedure$node id returns the node number of the node. This number
is automatically incremented and assigned to each node at creation by the class Simulator method,$ns node .The class
Simulator also stores an instance variable array1, Node_, indexed by the node id, and contains a reference to the node with
that id.

The procedure$node agent 〈port 〉 returns the handle of the agent at the specified port. If no agent at the specified port
number is available, the procedure returns the null string.

The procedurealloc-port returns the next available port number. It uses an instance variable,np_ , to track the next
unallocated port number.

The procedures,add-route andadd-routes , are used by unicast routing (Chapter??) to add routes to populate the
classifier_ The usage syntax is$node add-route 〈destination id 〉 〈TclObject 〉. TclObject is the
entry ofdmux_, the port demultiplexer at the node, if the destination id isthe same as this node’s id, it is often the head of a
link to send packets for that destination to, but could also be the the entry for other classifiers or types of classifiers.

$node add-routes 〈destination id 〉 〈TclObjects 〉 is used to add multiple routes to the same destination that
must be used simultaneously in round robin manner to spread the bandwidth used to reach that destination across all links
equally. It is used only if the instance variablemultiPath_ is set to 1, and detailed dynamic routing strategies are in effect,
and requires the use of a multiPath classifier. We describe the implementation of the multiPath classifier later in this chapter
(Section??); however, we defer the discussion of multipath routing (Chapter??) to the chapter on unicast routing.

The dual ofadd-routes {} is delete-routes {}. It takes the id, a list ofTclObjects , and a reference to the simula-
tor’s nullagent . It removes the TclObjects in the list from the installed routes in the multipath classifier. If the route entry
in the classifier does not point to a multipath classifier, theroutine simply clears the entry fromclassifier_ , and installs
thenullagent in its place.

Detailed dynamic routing also uses two additional methods:the instance procedureinit-routing {} sets the instance
variablemultiPath_ to be equal to the class variable of the same name. It also addsa reference to the route controller
object at that node in the instance variable,rtObject_ . The procedurertObject? {} returns the handle for the route
object at the node.

Finally, the procedureintf-changed {} is invoked by the network dynamics code if a link incident on the node changes
state. Additional details on how this procedure is used are discussed later in the chapter on network dynamics (Chapter??).

Agent management Given an〈agent〉, the procedureattach {} will add the agent to its list ofagents_ , assign a port
number the agent and set its source address, set the target ofthe agent to be its (i.e., the node’s)entry {}, and add a pointer
to the port demultiplexer at the node (dmux_) to the agent at the corresponding slot in thedmux_ classifier.

Conversely,detach {}will remove the agent fromagents_ , and point the agent’s target, and the entry in the nodedmux_
to nullagent .

1i.e., an instance variable of a class that is also an array variable

38

Tracking Neighbors Each node keeps a list of its adjacent neighbors in its instance variable,neighbor_ . The procedure
add-neighbor {} adds a neighbor to the list. The procedureneighbors {} returns this list.

5.3 Node Configuration Interface

NOTE: This API, especially its internal implementation which ismessy at this point, is still a moving target. It may undergo
significant changes in the near future. However, we will do our best to maintain the same interface as described in this chapter.
In addition, this API currently does not cover all existing nodes in the old format, namely, nodes built using inheritance, and
parts of mobile IP. It is principally oriented towards wireless and satellite simulation. [Sep 15, 2000; updated June 2001].

Simulator::node-config {} accommodates flexible and modular construction of different node definitions within the
same base Node class. For instance, to create a mobile node capable of wireless communication, one no longer needs a
specialized node creation command, e.g.,dsdv-create-mobile-node {}; instead, one changes default configuration
parameters, such as

$ns node-config -adhocRouting dsdv

before actually creating the node with the command:$ns node . Together with routing modules, this allows one to com-
bine “arbitrary” routing functionalities within a single node without resorting to multiple inheritance and other fancy object
gimmicks. We will describe this in more detail in Section??. The functions and procedures relevant to the new node APIs
may be found in ~ns/tcl/lib/ns-node.tcl.

The node configuration interface consists of two parts. The first part deals with node configuration, while the second part
actually creates nodes of the specified type. We have alreadyseen the latter in Section??, in this section we will describe the
configuration part.

Node configuration essentially consists of defining the different node characteristics before creating them. They may consist
of the type of addressing structure used in the simulation, defining the network components for mobilenodes, turning on or
off the trace options at Agent/Router/MAC levels, selecting the type of adhoc routing protocol for wireless nodes or defining
their energy model.

As an example, node-configuration for a wireless, mobile node that runs AODV as its adhoc routing protocol in a hierarchical
topology would be as shown below. We decide to turn tracing onat the agent and router level only. Also we assume a topology
has been instantiated with "set topo [new Topography]". Thenode-config command would look like the following:

$ns_ node-config -addressType hierarchical \
-adhocRouting AODV \
-llType LL \
-macType Mac/802_11 \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topologyInstance $topo \
-channel Channel/WirelessChannel \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF

39

The default values for all the above options are NULL except-addressingType whose default value is flat. The option
-reset can be used to reset all node-config parameters to their default value.

Note that the config command can be broken down into separate lines like

$ns_ node-config -addressingType hier
$ns_ node-config -macTrace ON

The options that need to be changed may only be called. For example after configuring for AODV mobilenodes as shown
above (and after creating AODV mobilenodes), we may configure for AODV base-station nodes in the following way:

$ns_ node-config -wiredRouting ON

While all other features for base-station nodes and mobilenodes are same, the base-station nodes are capable of wired routing,
while mobilenodes are not. In this way we can change node-configuration only when it is required.

All node instances created after a given node-configurationcommand will have the same property unless a part or all of the
node-config command is executed with different parameter values. And all parameter values remain unchanged unless they
are expicitly changed. So after creation of the AODV base-station and mobilenodes, if we want to create simple nodes, we
will use the following node-configuration command:

$ns_ node-config -reset

This will set all parameter values to their default setting which basically defines configuration of a simple node.

Currently, this type of node configuration is oriented towards wireless and satellite nodes. Table 5.1 lists the available op-
tions for these kinds of nodes. The example scripts ~ns/tcl/ex/simple-wireless.tcl and ~ns/tcl/ex/sat-mixed.tcl provide usage
examples.

5.4 The Classifier

The function of a node when it receives a packet is to examine the packet’s fields, usually its destination address, and on
occasion, its source address. It should then map the values to an outgoing interface object that is the next downstream
recipient of this packet.

In ns, this task is performed by a simpleclassifierobject. Multiple classifier objects, each looking at a specific portion of the
packet forward the packet through the node. A node innsuses many different types of classifiers for different purposes. This
section describes some of the more common, or simpler, classifier objects inns.

We begin with a description of the base class in this section.The next subsections describe the address classifier (Section??),
the multicast classifier (Section??), the multipath classifier (Section??), the hash classifier (Section??), and finally, the
replicator (Section??).

A classifier provides a way to match a packet against some logical criteria and retrieve a reference to another simulation
object based on the match results. Each classifier contains atable of simulation objects indexed byslot number. The job of
a classifier is to determine the slot number associated with areceived packet and forward that packet to the object referenced
by that particular slot. The C++class Classifier (defined in ~ns/classifier.h) provides a base class from which other
classifiers are derived.

40

option available values default

general

addressType flat, hierarchical flat

MPLS ON, OFF OFF

both satellite- and wireless-oriented

wiredRouting ON, OFF OFF

llType LL, LL/Sat ""

macType Mac/802_11, Mac/Csma/Ca, Mac/Sat,

Mac/Sat/UnslottedAloha, Mac/Tdma ""

ifqType Queue/DropTail, Queue/DropTail/PriQueue ""

phyType Phy/WirelessPhy, Phy/Sat ""

wireless-oriented

adhocRouting DIFFUSION/RATE, DIFFUSION/PROB, DSDV,

DSR, FLOODING, OMNIMCAST, AODV, TORA, M-DART

PUMA ""

propType Propagation/TwoRayGround, Propagation/Shadowing ""

propInstance Propagation/TwoRayGround, Propagation/Shadowing ""

antType Antenna/OmniAntenna ""

channel Channel/WirelessChannel, Channel/Sat ""

topoInstance <topology file> ""

mobileIP ON, OFF OFF

energyModel EnergyModel ""

initialEnergy <value in Joules> ""

rxPower <value in W> ""

txPower <value in W> ""

idlePower <value in W> ""

agentTrace ON, OFF OFF

routerTrace ON, OFF OFF

macTrace ON, OFF OFF

movementTrace ON, OFF OFF

errProc UniformErrorProc ""

FECProc ? ?

toraDebug ON, OFF OFF

satellite-oriented

satNodeType polar, geo, terminal, geo-repeater ""

downlinkBW <bandwidth value, e.g. "2Mb"> ""

Table 5.1: Available options for node configuration (see tcl/lib/ns-lib.tcl).

class Classifier : public NsObject {
public:

~Classifier();
void recv(Packet * , Handler * h = 0);

protected:
Classifier();
void install(int slot, NsObject *);
void clear(int slot);
virtual int command(int argc, const char * const * argv);
virtual int classify(Packet * const) = 0;
void alloc(int);
NsObject ** slot_; / * table that maps slot number to a NsObject* /
int nslot_;
int maxslot_;

41

};

Theclassify () method is pure virtual, indicating the classClassifier is to be used only as a base class. Thealloc ()
method dynamically allocates enough space in the table to hold the specified number of slots. Theinstall () andclear ()
methods add or remove objects from the table. Therecv () method and the OTcl interface are implemented as follows in
~ns/classifier.cc:

/ *
* objects only ever see "packet" events, which come either

* from an incoming link or a local agent (i.e., packet source).
* /

void Classifier::recv(Packet * p, Handler *)
{

NsObject * node;
int cl = classify(p);
if (cl < 0 || cl >= nslot_ || (node = slot_[cl]) == 0) {

Tcl::instance().evalf("%s no-slot %d", name(), cl);
Packet::free(p);
return;

}
node->recv(p);

}

int Classifier::command(int argc, const char * const * argv)
{

Tcl& tcl = Tcl::instance();
if (argc == 3) {

/ *
* $classifier clear $slot

* /
if (strcmp(argv[1], "clear") == 0) {

int slot = atoi(argv[2]);
clear(slot);
return (TCL_OK);

}
/ *

* $classifier installNext $node

* /
if (strcmp(argv[1], "installNext") == 0) {

int slot = maxslot_ + 1;
NsObject * node = (NsObject *)TclObject::lookup(argv[2]);
install(slot, node);
tcl.resultf("%u", slot);
return TCL_OK;

}
if (strcmp(argv[1], "slot") == 0) {

int slot = atoi(argv[2]);
if ((slot >= 0) || (slot < nslot_)) {

tcl.resultf("%s", slot_[slot]->name());
return TCL_OK;

}
tcl.resultf("Classifier: no object at slot %d", slot);
return (TCL_ERROR);

42

}
} else if (argc == 4) {

/ *
* $classifier install $slot $node

* /
if (strcmp(argv[1], "install") == 0) {

int slot = atoi(argv[2]);
NsObject * node = (NsObject *)TclObject::lookup(argv[3]);
install(slot, node);
return (TCL_OK);

}
}
return (NsObject::command(argc, argv));

}

When a classifierrecv ()’s a packet, it hands it to theclassify () method. This is defined differently in each type of
classifier derived from the base class. The usual format is for theclassify () method to determine and return a slot index
into the table of slots. If the index is valid, and points to a valid TclObject, the classifier will hand the packet to that object
using that object’srecv () method. If the index is not valid, the classifier will invoke the instance procedureno-slot {} to
attempt to populate the table correctly. However, in the base classClassifier::no-slot {} prints and error message
and terminates execution.

Thecommand() method provides the following instproc-likes to the interpreter:

• clear { 〈slot〉} clears the entry in a particular slot.

• installNext { 〈object〉} installs the object in the next available slot, and returnsthe slot number.

Note that this instproc-like is overloaded by an instance procedure of the same name that stores a reference to the object
stored. This then helps quick query of the objects installedin the classifier from OTcl.

• slot { 〈index〉} returns the object stored in the specified slot.

• install { 〈index〉, 〈object〉} installs the specified〈object〉 at the slot〈index〉.

Note that this instproc-like too is overloaded by an instance procedure of the same name that stores a reference to the
object stored. This is also to quickly query of the objects installed in the classifier from OTcl.

5.4.1 Address Classifiers

An address classifier is used in supporting unicast packet forwarding. It applies a bitwise shift and mask operation to a
packet’s destination address to produce a slot number. The slot number is returned from theclassify () method. The
class AddressClassifier (defined in ~ns/classifier-addr.cc) ide defined as follows:

class AddressClassifier : public Classifier {
public:

AddressClassifier() : mask_(~0), shift_(0) {
bind("mask_", (int *)&mask_);
bind("shift_", &shift_);

}
protected:

int classify(Packet * const p) {
IPHeader * h = IPHeader::access(p->bits());
return ((h->dst() >> shift_) & mask_);

43

}
nsaddr_t mask_;
int shift_;

};

The class imposes no direct semantic meaning on a packet’s destination address field. Rather, it returns some number of bits
from the packet’sdst_ field as the slot number used in theClassifier::recv () method. Themask_ andshift_
values are set through OTcl.

5.4.2 Multicast Classifiers

The multicast classifier classifies packets according to both source and destination (group) addresses. It maintains a (chained
hash) table mapping source/group pairs to slot numbers. When a packet arrives containing a source/group unknown to the
classifier, it invokes an Otcl procedureNode::new-group {} to add an entry to its table. This OTcl procedure may use the
methodset-hash to add new (source, group, slot) 3-tuples to the classifier’stable. The multicast classifier is defined in
~ns/classifier-mcast.cc as follows:

static class MCastClassifierClass : public TclClass {
public:

MCastClassifierClass() : TclClass("Classifier/Multica st") {}
TclObject * create(int argc, const char * const * argv) {

return (new MCastClassifier());
}

} class_mcast_classifier;

class MCastClassifier : public Classifier {
public:

MCastClassifier();
~MCastClassifier();

protected:
int command(int argc, const char * const * argv);
int classify(Packet * const p);
int findslot();
void set_hash(nsaddr_t src, nsaddr_t dst, int slot);
int hash(nsaddr_t src, nsaddr_t dst) const {

u_int32_t s = src ^ dst;
s ^= s >> 16;
s ^= s >> 8;
return (s & 0xff);

}
struct hashnode {

int slot;
nsaddr_t src;
nsaddr_t dst;
hashnode * next;

};
hashnode * ht_[256];
const hashnode * lookup(nsaddr_t src, nsaddr_t dst) const;

};

int MCastClassifier::classify(Packet * const pkt)

44

{
IPHeader * h = IPHeader::access(pkt->bits());
nsaddr_t src = h->src() >> 8; / * XXX* /
nsaddr_t dst = h->dst();
const hashnode * p = lookup(src, dst);
if (p == 0) {

/ *
* Didn’t find an entry.

* Call tcl exactly once to install one.

* If tcl doesn’t come through then fail.

* /
Tcl::instance().evalf("%s new-group %u %u", name(), src, dst);
p = lookup(src, dst);
if (p == 0)

return (-1);
}
return (p->slot);

}

The class MCastClassifier mplements a chained hash table and applies a hash function onboth the packet source
and destination addresses. The hash function returns the slot number to index theslot_ table in the underlying object. A
hash miss implies packet delivery to a previously-unknown group; OTcl is called to handle the situation. The OTcl code is
expected to insert an appropriate entry into the hash table.

5.4.3 MultiPath Classifier

This object is devised to support equal cost multipath forwarding, where the node has multiple equal cost routes to the same
destination, and would like to use all of them simultaneously. This object does not look at any field in the packet. With
every succeeding packet, it simply returns the next filled slot in round robin fashion. The definitions for this classifierare in
~ns/classifier-mpath.cc, and are shown below:

class MultiPathForwarder : public Classifier {
public:

MultiPathForwarder() : ns_(0), Classifier() {}
virtual int classify(Packet * const) {

int cl;
int fail = ns_;
do {

cl = ns_++;
ns_ %= (maxslot_ + 1);

} while (slot_[cl] == 0 && ns_ != fail);
return cl;

}
private:

int ns_; / * next slot to be used. Probably a misnomer?* /
};

45

5.4.4 Hash Classifier

This object is used to classify a packet as a member of a particular flow. As their name indicates, hash classifiers use a
hash table internally to assign packets to flows. These objects are used where flow-level information is required (e.g. in
flow-specific queuing disciplines and statistics collection). Several “flow granularities” are available. In particular, pack-
ets may be assigned to flows based on flow ID, destination address, source/destination addresses, or the combination of
source/destination addresses plus flow ID. The fields accessed by the hash classifier are limited to theip header:src(),
dst(), flowid() (seeip.h).

The hash classifier is created with an integer argument specifying the initial size of its hash table. The current hash table
size may be subsequently altered with theresize method (see below). When created, the instance variablesshift_ and
mask_ are initialized with the simulator’s currentNodeShift andNodeMask values, respectively. These values are retrieved
from theAddrParams object when the hash classifier is instantiated. The hash classifier will fail to operate properly if the
AddrParams structure is not initialized. The following constructors are used for the various hash classifiers:

Classifier/Hash/SrcDest
Classifier/Hash/Dest
Classifier/Hash/Fid
Classifier/Hash/SrcDestFid

The hash classifier receives packets, classifies them according to their flow criteria, and retrieves the classifierslot indicating
the next node that should receive the packet. In several circumstances with hash classifiers, most packets should be associated
with a single slot, while only a few flows should be directed elsewhere. The hash classifier includes adefault_ instance
variable indicating which slot is to be used for packets thatdo not match any of the per-flow criteria. Thedefault_ may be
set optionally.

The methods for a hash classifier are as follows:

$hashcl set-hash buck src dst fid slot
$hashcl lookup buck src dst fid
$hashcl del-hash src dst fid
$hashcl resize nbuck

The set-hash () method inserts a new entry into the hash table within the hash classifier. Thebuck argument specifies
the hash table bucket number to use for the insertion of this entry. When the bucket number is not known,buck may be
specified asauto . Thesrc, dst andfid arguments specify the IP source, destination, and flow IDs tobe matched for
flow classification. Fields not used by a particular classifier (e.g. specifyingsrc for a flow-id classifier) is ignored. Theslot
argument indicates the index into the underlying slot tablein the baseClassifier object from which the hash classifier is
derived. Thelookup function returns the name of the object associated with the given buck/src/dst/fid tuple. The
buck argument may beauto , as forset-hash . Thedel-hash function removes the specified entry from the hash table.
Currently, this is done by simply marking the entry as inactive, so it is possible to populate the hash table with unused entries.
Theresize function resizes the hash table to include the number of buckets specified by the argumentnbuck .

Provided no default is defined, a hash classifier will performa call into OTcl when it receives a packet which matches no flow
criteria. The call takes the following form:

$obj unknown-flow src dst flowid buck

Thus, when a packet matching no flow criteria is received, themethodunknown-flow of the instantiated hash classifier
object is invoked with the source, destination, and flow id fields from the packet. In addition, thebuck field indicates the hash

46

bucket which should contain this flow if it were inserted using set-hash . This arrangement avoids another hash lookup
when performing insertions into the classifier when the bucket is already known.

5.4.5 Replicator

The replicator is different from the other classifiers we have described earlier, in that it does not use the classify function.
Rather, it simply uses the classifier as a table ofn slots; it overloads therecv () method to producen copies of a packet, that
are delivered to alln objects referenced in the table.

To support multicast packet forwarding, a classifier receiving a multicast packet from sourceS destined for groupG computes
a hash functionh(S,G) giving a “slot number” in the classifier’s object table. In multicast delivery, the packet must be copied
once for each link leading to nodes subscribed toG minus one. Production of additional copies of the packet is performed by
a Replicator class, defined inreplicator.cc :

/ *
* A replicator is not really a packet classifier but

* we simply find convenience in leveraging its slot table.
* (this object used to implement fan-out on a multicast

* router as well as broadcast LANs)

* /
class Replicator : public Classifier {
public:

Replicator();
void recv(Packet * , Handler * h = 0);
virtual int classify(Packet * const) {};

protected:
int ignore_;

};

void Replicator::recv(Packet * p, Handler *)
{

IPHeader * iph = IPHeader::access(p->bits());
if (maxslot_ < 0) {

if (!ignore_)
Tcl::instance().evalf("%s drop %u %u", name(),

iph->src(), iph->dst());
Packet::free(p);
return;

}
for (int i = 0; i < maxslot_; ++i) {

NsObject * o = slot_[i];
if (o != 0)

o->recv(p->copy());
}
/ * we know that maxslot is non-null* /
slot_[maxslot_]->recv(p);

}

As we can see from the code, this class does not really classify packets. Rather, it replicates a packet, one for each entryin
its table, and delivers the copies to each of the nodes listedin the table. The last entry in the table gets the “original” packet.
Since theclassify () method is pure virtual in the base class, the replicator defines an emptyclassify () method.

47

5.5 Routing Module and Classifier Organization

As we have seen, ansnode is essentially a collection of classifiers. The simplest node (unicast) contains only one address
classifier and one port classifier, as shown in Figure??. When one extends the functionality of the node, more classifiers are
added into the base node, for instance, the multicast node shown in Figure??. As more function blocks is added, and each of
these blocks requires its own classifier(s), it becomes important for the node to provide auniform interface to organize these
classifiers and to bridge these classifiers to the route computation blocks.

The classical method to handle this case is through class inheritance. For instance, if one wants a node that supports hierarchi-
cal routing, one simply derive a Node/Hier from the base nodeand override the classifier setup methods to insert hierarchical
classifiers. This method works well when the new function blocks are independent and cannot be “arbitrarily” mixed. For
instance, both hierarchical routing and ad hoc routing use their own set of classifiers. Inheritance would require that we have
Node/Hier that supports the former, and Node/Mobile for thelatter. This becomes slightly problematic when one wants anad
hoc routing node that supports hierarchical routing. In this simple case one may use multiple inheritance to solve the problem,
but this quickly becomes infeasible as the number of such function blocks increases.

The only method to solve this problem is object composition.The base node needs to define a set of interfaces for classifier
access and organization. These interfaces should

• allow individual routing modules that implement their own classifiers to insert their classifiers into the node;

• allow route computation blocks to populate routes to classifiers in all routing modules that need this information,

• provide a single point of management for existing routing modules.

In addition, we should also define a uniform interface for routing modules to connect to the node interfaces, so as to provide
a systematic approach to extending node functionality. In this section we will describe the design of routing modules aswell
as that of the corresponding node interfaces.

5.5.1 Routing Module

In general, every routing implementation innsconsists of three function blocks:

• Routing agentexchanges routing packet with neighbors,

• Route logicuses the information gathered by routing agents (or the global topology database in the case of static routing)
to perform the actual route computation,

• Classifierssit inside a Node. They use the computed routing table to perform packet forwarding.

Notice that when implementing a new routing protocol, one does not necessarily implement all of these three blocks. For
instance, when one implements a link state routing protocol, one simply implement a routing agent that exchanges information
in the link state manner, and a route logic that does Dijkstraon the resulting topology database. It can then use the same
classifiers as other unicast routing protocols.

When a new routing protocol implementation includes more than one function blocks, especially when it contains its own
classifier, it is desirable to have another object, which we call a routing module, that manages all these function blocks and to
interface with node to organize its classifiers. Figure?? shows functional relation among these objects. Notice thatrouting
modules may have direct relationship with route computation blocks, i.e., route logic and/or routing agents. However,route
computation MAY not install their routes directly through arouting module, because there may exists other modules that

48

Node
routing

add-route
delete-route

transport
attach
detach

Classifier
insert-entry
install-entry
install-demux

RtModule/Base
routing

add-route
delete-route

transport
attach
detach

Management
register
unregister

Routing
Modules

Base

Hier

Mcast

MPLS

......

Route
Computation

User
Simulation

Figure 5.3: Interaction among node, routing module, and routing. The dashed line shows the details of one routing module.

are interested in learning about the new routes. This is not arequirement, however, because it is possible that some route
computation is specific to one particular routing module, for instance, label installation in the MPLS module.

A routing module contains three major functionalities:

1. A routing module initializes its connection to a node through register {}, and tears the connection down via
unregister {}. Usually, in register {} a routing module (1) tells the node whether it interests inknowing route
updates and transport agent attachments, and (2) creates its classifiers and install them in the node (details described
in the next subsection). Inunregister {} a routing module does the exact opposite: it deletes its classifiers and
removes its hooks on routing update in the node.

2. If a routing module is interested in knowing routing updates, the node will inform the module via
RtModule::add-route {dst, target} andRtModule::delete-route {dst, nullagent}.

3. If a routing module is interested in learning about transport agent attachment and detachment in a node, the node will
inform the module via
RtModule::attach {agent, port} andRtModule::detach {agent, nullagent}.

There are two steps to write your own routing module:

1. You need to declare the C++ part of your routing module (see~ns/rtmodule.{cc,h}). For many modules this only
means to declare a virtual methodname() which returns a string descriptor of the module. However, you are free
to implement as much functionality as you like in C++; if necessary you may later move functionality from OTcl into
C++ for better performance.

2. You need to look at the above interfaces implemented in thebase routing module (see ~ns/tcl/lib/ns-rtmodule.tcl) and
decide which one you’ll inherit, which one you’ll override,and put them in OTcl interfaces of your own module.

There are several derived routing module examples in ~ns/tcl/lib/ns-rtmodule.tcl, which may serve as templates for your
modules.

Currently, there are six routing modules implemented inns:

49

Module Name Functionality

RtModule/Base Interface to unicast routing protocols. Provide basic functionality to add/delete route and
attach/detach agents.

RtModule/Mcast Interface to multicast routing protocols. Its only purposeis establishes multicast classifiers.
All other multicast functionalities are implemented as instprocs of Node. This should be
converted in the future.

RtModule/Hier Hierarchical routing. It’s a wrapper for managing hierarchical classifiers and route instal-
lation. Can be combined with other routing protocols, e.g.,ad hoc routing.

RtModule/Manual Manual routing.

RtModule/VC Uses virtual classifier instead of vanilla classifier.

RtModule/MPLS Implements MPLS functionality. This is the only existing module that is completely self-
contained and does not pollute the Node namespace.

Table 5.2: Available routing modules

5.5.2 Node Interface

To connect to the above interfaces of routing module, a node provides a similar set of interfaces:

• In order to know which module to register during creation, the Node class keeps a list of modules as a class variable.
The default value of this list contains only the base routingmodule. The Node class provides the following twoprocs
to manipulate this module list:

Node::enable-module {name} If moduleRtModule/[name] exists, this proc puts [name] into the module
list.

Node::disable-module {name} If [name] is in the module list, remove it from the list.

When a node is created, it goes through the module list of the Node class, creates all modules included in the list, and
register these modules at the node.

After a node is created, one may use the following instprocs to list modules registered at the node, or to get a handle of
a module with a particular name:

Node::list-modules {} Return a list of the handles (shadow objects) of all registered modules.

Node::get-module {name} Return a handle of the registered module whose name matches the given one. Notice
that any routing module can only have a single instance registered at any node.

• To allow routing modules register their interests of routing updates, a node object provide the following instprocs:

Node::route-notify {module} Add module into route update notification list.

Node::unreg-route-notify {module} Removemodule from route update notification list.

Similarly, the following instprocs provide hooks on the attachment of transport agents:

Node::port-notify {module} Add module into agent attachment notification list.

Node::unreg-port-notify {module} Removemodule from agent attachment notification list.

Notice that in all of these instprocs, parametermodule should be a module handle instead of a module name.

• Node provides the following instprocs to manipulate its address and port classifiers:

– Node::insert-entry {module, clsfr, hook} inserts classifierclsfr into the entry point of the node. It also
associates the new classifier withmodule so that if this classifier is removed later,module will be unregistered.
If hook is specified as a number, the existing classifier will be inserted into slothook of the new classifier. In
this way, one may establish a “chain” of classifiers; see Figure ?? for an example.NOTE: clsfr needs NOT

50

to be a classifier. In some cases one may want to put an agent, orany class derived from Connector, at the entry
point of a node. In such cases, one simply suppliestarget to parameterhook .

– Node::install-entry {module, clsfr, hook} differs fromNode::insert-entry in that it deletes the
existing classifier at the node entry point, unregisters anyassociated routing module, and installs the new classifier
at that point. Ifhook is given, and the old classifier is connected into a classifierchain, it will connect the chain
into slothook of the new classifier. As above, ifhook equals totarget , clsfr will be treated as an object
derived from Connector instead of a classifier.

– Node::install-demux {demux, port} places the given classifierdemux as the default demultiplexer. If
port is given, it plugs the existing demultiplexer into slotport of the new one. Notice that in either case it does
not delete the existing demultiplexer.

5.6 Commands at a glance

Following is a list of common node commands used in simulation scripts:

$ns_ node [<hier_addr>]
Command to create and return a node instance. If <hier_addr>is given, assign the node address to be <hier_addr>. Note that
the latter MUST only be used when hierarchical addressing isenabled via eitherset-address-format
hierarchical {} or node-config -addressType hierarchical {}.

$ns_ node-config -<config-parameter> <optional-val>
This command is used to configure nodes. The different config-parameters are addressingType, different type of the network
stack components, whether tracing will be turned on or not, mobileIP flag is truned or not, energy model is being used or not
etc. An option -reset maybe used to set the node configurationto its default state. The default setting of node-config, i.eif no
values are specified, creates a simple node (base class Node)with flat addressing/routing. For the syntax details see
Section??.

$node id
Returns the id number of the node.

$node node-addr
Returns the address of the node. In case of flat addressing, the node address is same as its node-id. In case of hierarchical
addressing, the node address in the form of a string (viz. "1.4.3") is returned.

$node reset
Resets all agent attached to this node.

$node agent <port_num>
Returns the handle of the agent at the specified port. If no agent is found at the given port, a null string is returned.

$node entry
Returns the entry point for the node. This is first object thathandles packet receiving at this node.

$node attach <agent> <optional:port_num>
Attaches the <agent> to this node. Incase no specific port number is passed, the node allocates a port number and binds the
agent to this port. Thus once the agent is attached, it receives packets destined for this host (node) and port.

$node detach <agent> <null_agent>
This is the dual of "attach" described above. It detaches theagent from this node and installs a null-agent to the port this
agent was attached. This is done to handle transit packets that may be destined to the detached agent. These on-the-fly
packets are then sinked at the null-agent.

51

$node neighbors
This returns the list of neighbors for the node.

$node add-neighbor <neighbor_node>
This is a command to add<neighbor_node> to the list of neighbors maintained by the node.

Following is a list of internal node methods:

$node add-route <destination_id> <target>
This is used in unicast routing to populate the classifier. The target is a Tcl object, which may be the entry ofdmux_ (port
demultiplexer in the node) incase the<destination_id> is same as this node-id. Otherwise it is usually the head of the
link for that destination. It could also be the entry for other classifiers.

$node alloc-port <null_agent>
This returns the next available port number.

$node incr-rtgtable-size
The instance variablertsize_ is used to keep track of size of routing-table in each node. This command is used to
increase the routing-table size every time an routing-entry is added to the classifiers.

There are other node commands that supports hierarchical routing, detailed dynamic routing, equal cost multipath routing,
manual routing, and energy model for mobile nodes. These andother methods described earlier can be found in
~ns/tcl/lib/ns-node.tcl and ~ns/tcl/lib/ns-mobilenode.tcl.

52

Chapter 6

Links: Simple Links

This is the second aspect of defining the topology. In the previous chapter (Chapter??), we had described how to create the
nodes in the topology inns. We now describe how to create the links to connect the nodes and complete the topology. In this
chapter, we restrict ourselves to describing the simple point to point links.nssupports a variety of other media, including an
emulation of a multi-access LAN using a mesh of simple links,and other true simulation of wireless and broadcast media.
They will be described in a separate chapter. The CBQlink is derived from simple links and is a considerably more complex
form of link that is also not described in this chapter.

We begin by describing the commands to create a link in this section. As with the node being composed of classifiers, a simple
link is built up from a sequence of connectors. We also brieflydescribe some of the connectors in a simple link. We then
describe the instance procedures that operate on the various components of defined by some of these connectors (Section??).
We conclude the chapter with a description the connector object (Section??), including brief descriptions of the common link
connectors.

Theclass Link is a standalone class in OTcl, that provides a few simple primitives. Theclass SimpleLink provides
the ability to connect two nodes with a point to point link.nsprovides the instance proceduresimplex-link {} to form a
unidirectional link from one node to another. The link is in the class SimpleLink. The following describes the syntax of the
simplex link:

set ns [new Simulator]
$ns simplex-link 〈node0 〉 〈node1 〉 〈bandwidth 〉 〈delay 〉 〈queue_type 〉

The command creates a link from〈node0 〉 to 〈node1 〉, with specified〈bandwidth 〉 and〈delay 〉 characteristics. The
link uses a queue of type〈queue_type 〉. The procedure also adds a TTL checker to the link. Five instance variables define
the link:

head_ Entry point to the link, it points to the first object in the link.

queue_ Reference to the main queue element of the link. Simple linksusually
have one queue per link. Other more complex types of links mayhave
multiple queue elements in the link.

link_ A reference to the element that actually models the link, in terms of the
delay and bandwidth characteristics of the link.

ttl_ Reference to the element that manipulates the ttl in every packet.

drophead_ Reference to an object that is the head of a queue of elements that process
link drops.

In addition, if the simulator instance variable,$traceAllFile_ , is defined, the procedure will add trace elements that

53

head_
enqT_

drophead_

deqT_queue_ link_ ttl_

Link

drpT_

rcvT_

Figure 6.1: Composite Construction of a Unidirectional Link

track when a packet is enqueued and dequeued fromqueue_ . Furthermore, tracing interposes a drop trace element after the
drophead_ . The following instance variables track the trace elements:

enqT_ Reference to the element that traces packets enteringqueue_ .

deqT_ Reference to the element that traces packets leavingqueue_ .

drpT_ Reference to the element that traces packets dropped fromqueue_ .

rcvT_ Reference to the element that traces packets received by thenext node.

Note however, that if the user enable tracing multiple timeson the link, these instance variables will only store a reference to
the last elements inserted.

Other configuration mechanisms that add components to a simple link are network interfaces (used in multicast routing),
link dynamics models, and tracing and monitors. We give a brief overview of the related objects at the end of this chapter
(Section??), and discuss their functionality/implementation in other chapters.

The instance procedureduplex-link {} constructs a bi-directional link from two simplex links.

6.1 Instance Procedures for Links and SimpleLinks

Link procedures The class Link is implemented entirely in Otcl. The OTclSimpleLink class uses the C++
LinkDelay class to simulate packet delivery delays. The instance procedures in the class Link are:

54

head {} returns the handle forhead_ .

queue {} returns the handle forqueue_ .

link {} returns the handle for the delay element,link_ .

up{} set link status to “up” in thedynamics_ element. Also, writes out a trace line to each file
specified through the proceduretrace-dynamics {}.

down{} As with up{}, set link status to “down” in thedynamics_ element. Also, writes out a trace
line to each file specified through the proceduretrace-dynamics {}.

up? {} returns status of the link. Status is “up” or “down”; status is “up” if link dynamics is not enabled.

all-connectors {} Apply specified operation to all connectors on the link.p An example of such usage islink
all-connectors reset .

cost {} set link cost to value specified.

cost? {} returns the cost of the link. Default cost of link is 1, if nocost has been specified earlier.

SimpleLink Procedures The Otcl class SimpleLink implements a simple point-to-point link with an associated
queue and delay1. It is derived from the base Otcl class Link as follows:

Class SimpleLink -superclass Link
SimpleLink instproc init { src dst bw delay q { lltype "DelayL ink" } } {

$self next $src $dst
$self instvar link_ queue_ head_ toNode_ ttl_
...
set queue_ $q
set link_ [new Delay/Link]
$link_ set bandwidth_ $bw
$link_ set delay_ $delay

$queue_ target $link_
$link_ target [$toNode_ entry]

...
XXX
put the ttl checker after the delay
so we don’t have to worry about accounting
for ttl-drops within the trace and/or monitor
fabric
#
set ttl_ [new TTLChecker]
$ttl_ target [$link_ target]
$link_ target $ttl_

}

Notice that when aSimpleLink object is created, newDelay/Link andTTLChecker objects are also created. Note
also that, theQueue object must have already been created.

There are two additional methods implemented (in OTcl) as part of theSimpleLink class:trace andinit-monitor .
These functions are described in further detail in the section on tracing (Chapter??).

1The current version also includes an object to examine the network layer “ttl” field and discard packets if the field reaches zero.

55

6.2 Connectors

Connectors, unlink classifiers, only generate data for one recipient; either the packet is delivered to thetarget_ neighbor,
or it is sent to hedrop-target_ .

A connector will receive a packet, perform some function, and deliver the packet to its neighbor, or drop the packet. There
are a number of different types of connectors inns. Each connector performs a different function.

networkinterface labels packets with incoming interface identifier—it is used by some multicast routing protocols. The
class variable “Simulator NumberInterfaces_ 1” tellsns to add these interfaces, and then, it is added
to either end of the simplex link. Multicast routing protocols are discussed in a separate chapter
(Chapter??).

DynaLink Object that gates traffic depending on whether the link is up or down. It expects to be at the head of the
link, and is inserted on the link just prior to simulation start. It’s status_ variable control whether
the link is up or down. The description of how the DynaLink object is used is in a separate chapter
(Chapter??).

DelayLink Object that models the link’s delay and bandwidthcharacteristics. If the link is not dynamic, then this
object simply schedules receive events for the downstream object for each packet it receives at the
appropriate time for that packet. However, if the link is dynamic, then it queues the packets internally,
and schedules one receives event for itself for the next packet that must be delivered. Thus, if the
link goes down at some point, this object’sreset () method is invoked, and the object will drop all
packets in transit at the instant of link failure. We discussthe specifics of this class in another chapter
(Chapter??).

Queues model the output buffers attached to a link in a “real”router in a network. Inns, they are attached to,
and are considered as part of the link. We discuss the detailsof queues and different types of queues
in nsin another chapter (Chapter??).

TTLChecker will decrement the ttl in each packet that it receives. If that ttl then has a positive value, the packet is
forwarded to the next element on the link. In the simple links, TTLCheckers are automatically added,
and are placed as the last element on the link, between the delay element, and the entry for the next
node.

6.3 Object hierarchy

The base class used to represent links is called Link. Methods for this class are listed in the next section. Other link objects
derived from the base class are given as follows:

• SimpleLink Object A SimpleLink object is used to represent asimple unidirectional link. There are no state variables
or configuration parameters associated with this object. Methods for this class are:$simplelink enable-mcast
<src> <dst>
This turns on multicast for the link by creating an incoming network interface for the destination and adds an outgoing
interface for the source.

$simplelink trace <ns> <file> <optional:op>
Build trace objects for this link and update object linkage.If op is specified as "nam" create nam trace files.

$simplelink nam-trace <ns> <file>
Sets up nam tracing in the link.

$simplelink trace-dynamics <ns> <file> <optional:op>
This sets up tracing specially for dynamic links. <op> allows setting up of nam tracing as well.

56

$simplelink init-monitor <ns> <qtrace> <sampleInterval>
Insert objects that allow us to monitor the queue size of thislink. Return the name of the object that can be queried to
determine the average queue size.

$simplelink attach-monitors <insnoop> <outsnoop> <drops noop> <qmon>
This is similar to init-monitor, but allows for specification of more of the items.

$simplelink dynamic
Sets up the dynamic flag for this link.

$simplelink errormodule <args>
Inserts an error module before the queue.

$simpleilnk insert-linkloss <args>
Inserts the error module after the queue.

//Other link objects derived from class SimpleLink are FQLink, CBQLink and IntServLink.

Configuration parameters for FQLink are:

queueManagement_The type of queue management used in the link. Default value is DropTail.

No configuration parameters are specified for CBQLink and IntServLink objects.

• DelayLink Object The DelayLink Objects determine the amount of time required for a packet to traverse a link. This is
defined to be size/bw + delay where size is the packet size, bw is the link bandwidth and delay is the link propagation
delay. There are no methods or state variables associated with this object.

Configuration Parameters are:

bandwidth_ Link bandwidth in bits per second.

delay_ Link propagation delay in seconds.

6.4 Commands at a glance

Following is a list of common link commands used in simulation scripts:

$ns_ simplex-link <node1> <node2> <bw> <delay> <qtype> <ar gs>
This command creates an unidirectional link between node1 and node2 with specified bandwidth (BW) and delay
characteristics. The link uses a queue type of <qtype> and depending on the queue type different arguments are passed
through <args>.

$ns_ duplex-link <node1> <node2> <bw> <delay> <qtype> <arg s>
This creates a bi-directional link between node1 and node2.This procedure essentially creates a duplex-link from two
simplex links, one from node1 to node2 and the other from node2 to node1. The syntax for duplex-link is same as that of
simplex-link described above.

$ns_ duplex-intserv-link <n1> <n2> <bw> <dly> <sched> <sig nal> <adc> <args>
This creates a duplex-link between n1 and n2 with queue type of intserv, with specified BW and delay. This type of queue
implements a scheduler with two level services priority. The type of intserv queue is given by <sched>, with admission
control unit type of <adc> and signal module of type <signal>.

$ns_ simplex-link-op <n1> <n2> <op> <args>
This is used to set attributes for a simplex link. The attributes may be the orientation, color, label, or queue-position.

$ns_ duplex-link-op <n1> <n2> <op> <args>
This command is used to set link attributes (like orientation of the links, color, label, or queue-position) for duplex links.

57

$ns_ link-lossmodel <lossobj> <from> <to>
This function generates losses (using the loss model <lossobj> inserted in the link between <from> node and <to> node) in
the link that can be visualized by nam.

$ns_ lossmodel <lossobj> <from> <to>
This is used to insert a loss module in regular links.

Following is a list of internal link-related procedures:

$ns_ register-nam-linkconfig <link>
This is an internal procedure used by"$link orient" to register/update the order in which links should be created in
nam.

$ns_ remove-nam-linkconfig <id1> <id2>
This procedure is used to remove any duplicate links (duplicate links may be created by GT-ITM topology generator).

$link head
Returns the instance variablehead_ for the link. Thehead_ is the entry pont to the link and it points to the first object in
the link.

$link add-to-head <connector>
This allows the <connector> object to be now pointed by thehead_ element in the link, i.e, <connector> now becomes the
first object in the link.

$link link
Returns the instance variablelink_ . Thelink_ is the element in the link that actually models the link in terms of delay
and bandwidth characteristics of the link.

$link queue
Returns the instance variablequeue_ . queue_ is queue element in the link. There may be one or more queue elements in
a particular link.

$link cost <c>
This sets a link cost of <c>.

$link cost?
Returns the cost value for the link. Default cost of link is set to 1.

$link if-label?
Returns the network interfaces associated with the link (for multicast routing).

$link up
This sets the link status to "up". This command is a part of network dynamics support inns.

$link down
Similar to up, this command marks the link status as "down".

$link up?
Returns the link status. The status is always "up" as default, if link dynamics is not enabled.

$link all-connectors op
This command applies the specified operation <op> to all connectors in the link. Like,$link all-connectors
reset or $link all-connectors isDynamic .

58

$link install-error <errmodel>
This installs an error module after thelink_ element.

In addition to the Link and link-related commands listed above, there are other procedures to support the specific
requirements of different types of links derived from the base class "Link" like simple-link (SimpleLink), integratedservice
(IntServLink), class-based queue (CBQLink), fair queue (FQLink) and procedures to support multicast routing, sessionsim,
nam etc. These and the above procedures may be found inns/tcl/lib(ns-lib.tcl, ns-link.tcl, ns-intserv.tcl, ns-namsupp.tcl,
ns-queue.tcl),ns/tcl/mcast/(McastMonitor.tcl, ns-mcast.tcl),ns/tcl/session/session.tcl.

59

Chapter 7

Queue Management and Packet Scheduling

Queues represent locations where packets may be held (or dropped). Packet scheduling refers to the decision process used
to choose which packets should be serviced or dropped. Buffer management refers to any particular discipline used to
regulate the occupancy of a particular queue. At present, support is included for drop-tail (FIFO) queueing, RED buffer
management, CBQ (including a priority and round-robin scheduler), and variants of Fair Queueing including, Fair Queueing
(FQ), Stochastic Fair Queueing (SFQ), and Deficit Round-Robin (DRR). In the common case where adelay element is
downstream from a queue, the queue may beblockeduntil it is re-enabled by its downstream neighbor. This is the mechanism
by which transmission delay is simulated. In addition, queues may be forcibly blocked or unblocked at arbitrary times by
their neighbors (which is used to implement multi-queue aggregate queues with inter-queue flow control). Packet drops are
implemented in such a way that queues contain a “drop destination”; that is, an object that receives all packets dropped by a
queue. This can be useful to (for example) keep statistics ondropped packets.

7.1 The C++ Queue Class

The Queue class is derived from aConnector base class. It provides a base class used by particular typesof (derived)
queue classes, as well as a call-back function to implement blocking (see next section). The following definitions are provided
in queue.h :

class Queue : public Connector {
public:

virtual void enque(Packet *) = 0;
virtual Packet * deque() = 0;
void recv(Packet * , Handler *);
void resume();
int blocked();
void unblock();
void block();

protected:
Queue();
int command(int argc, const char * const * argv);
int qlim_; / * maximum allowed pkts in queue* /
int blocked_;
int unblock_on_resume_; / * unblock q on idle?* /
QueueHandler qh_;

60

};

Theenque anddeque functions are pure virtual, indicating theQueue class is to be used as a base class; particular queues
are derived fromQueue and implement these two functions as necessary. Particularqueues do not, in general, override the
recv function because it invokes the the particularenque anddeque .

TheQueue class does not contain much internal state. Often these are special monitoring objects (Chapter??). Theqlim_
member is constructed to dictate a bound on the maximum queueoccupancy, but this is not enforced by theQueue class
itself; it must be used by the particular queue subclasses ifthey need this value. Theblocked_ member is a boolean
indicating whether the queue is able to send a packet immediately to its downstream neighbor. When a queue is blocked, it is
able to enqueue packets but not send them.

7.1.1 Queue blocking

A queue may be either blocked or unblocked at any given time. Generally, a queue is blocked when a packet is in transit
between it and its downstream neighbor (most of the time if the queue is occupied). A blocked queue will remain blocked as
long as it downstream link is busy and the queue has at least one packet to send. A queue becomes unblocked only when its
resume function is invoked (by means of a downstream neighbor scheduling it via a callback), usually when no packets are
queued. The callback is implemented by using the following class and methods:

class QueueHandler : public Handler {
public:

inline QueueHandler(Queue& q) : queue_(q) {}
void handle(Event *); / * calls queue_.resume() * /

private:
Queue& queue_;

};
void QueueHandler::handle(Event *)
{

queue_.resume();
}

Queue::Queue() : drop_(0), blocked_(0), qh_(* this)
{

Tcl& tcl = Tcl::instance();
bind("limit_", &qlim_);

}
void Queue::recv(Packet * p, Handler *)
{

enque(p);
if (!blocked_) {

/ *
* We’re not block. Get a packet and send it on.

* We perform an extra check because the queue

* might drop the packet even if it was

* previously empty! (e.g., RED can do this.)

* /
p = deque();
if (p != 0) {

blocked_ = 1;
target_->recv(p, &qh_);

61

}
}

}
void Queue::resume()
{

Packet * p = deque();
if (p != 0)

target_->recv(p, &qh_);
else {

if (unblock_on_resume_)
blocked_ = 0;

else
blocked_ = 1;

}
}

The handler management here is somewhat subtle. When a newQueue object is created, it includes aQueueHandler
object (qh_) which is initialized to contain a reference to the newQueue object (Queue& QueueHandler::queue_).
This is performed by theQueue constructor using the expressionqh_(* this) . When a Queue receives a packet it calls
the subclass (i.e. queueing discipline-specific) version of the enque function with the packet. If the queue is not blocked,
it is allowed to send a packet and calls the specificdeque function which determines which packet to send, blocks the
queue (because a packet is now in transit), and sends the packet to the queue’s downstream neighbor. Note that any future
packets received from upstream neighbors will arrive to a blocked queue. When a downstream neighbor wishes to cause
the queue to become unblocked it schedules the QueueHandler’s handle function by passing&qh_ to the simulator sched-
uler. Thehandle function invokesresume , which will send the next-scheduled packet downstream (andleave the queue
blocked), or unblock the queue when no packet is ready to be sent. This process is made more clear by also referring to the
LinkDelay::recv () method (Section??).

7.1.2 PacketQueue Class

The Queue class may implement buffer management and scheduling but donot implement the low-level operations on a
particular queue. ThePacketQueue class is used for this purpose, and is defined as follows (seequeue.h):

class PacketQueue {
public:

PacketQueue();
int length(); / * queue length in packets * /
void enque(Packet * p);
Packet * deque();
Packet * lookup(int n);
/ * remove a specific packet, which must be in the queue * /
void remove(Packet *);

protected:
Packet * head_;
Packet ** tail_;
int len_; // packet count

};

This class maintains a linked-list of packets, and is commonly used by particular scheduling and buffer management dis-
ciplines to hold an ordered set of packets. Particular scheduling or buffer management schemes may make use of several

62

PacketQueue objects. ThePacketQueue class maintains current counts of the number of packets heldin the queue
which is returned by thelength () method. Theenque function places the specified packet at the end of the queue and
updates thelen_ member variable. Thedeque function returns the packet at the head of the queue and removes it from
the queue (and updates the counters), or returns NULL if the queue is empty. Thelookup function returns thenth packet
from the head of the queue, or NULL otherwise. Theremove function deletes the packet stored in the given address from
the queue (and updates the counters). It causes an abnormal program termination if the packet does not exist.

7.2 Example: Drop Tail

The following example illustrates the implementation of theQueue/DropTail object, which implements FIFO scheduling
and drop-on-overflow buffer management typical of most present-day Internet routers. The following definitions declare the
class and its OTcl linkage:

/ *
* A bounded, drop-tail queue
* /

class DropTail : public Queue {
protected:

void enque(Packet *);
Packet * deque();
PacketQueue q_;

};

The base classQueue, from whichDropTail is derived, provides most of the needed functionality. The drop-tail queue
maintains exactly one FIFO queue, implemented by includingan object of thePacketQueue class. Drop-tail implements
its own versions ofenque anddeque as follows:

/ *
* drop-tail

* /
void DropTail::enque(Packet * p)
{

q_.enque(p);
if (q_.length() >= qlim_) {

q_.remove(p);
drop(p);

}
}

Packet * DropTail::deque()
{

return (q_.deque());
}

Here, theenque function first stores the packet in the internal packet queue(which has no size restrictions), and then checks
the size of the packet queue versusqlim_ . Drop-on-overflow is implemented by dropping the packet most recently added
to the packet queue if the limit is reached or exceeded.Note: in the implementation ofenque above, settingqlim_ to n
actually means a queue size ofn-1 . Simple FIFO scheduling is implemented in thedeque function by always returning the
first packet in the packet queue.

63

7.3 Different types of Queue objects

A queue object is a general class of object capable of holdingand possibly marking or discarding packets as they travel
through the simulated topology. Configuration Parameters used for queue objects are:

limit_ The queue size in packets.

blocked_ Set to false by default, this is true if the queue is blocked (unable to send a packet to its downstream neighbor).

unblock_on_resume_Set to true by default, indicates a queue should unblock itself at the time the last packet packet sent
has been transmitted (but not necessarily received).

Other queue objects derived from the base class Queue are drop-tail, FQ, SFQ, DRR, RED, CBQ, CoDel, and SFQ-CoDel
queue objects. Each are described as follows:

• Drop-tail objects: Drop-tail objects are a subclass of Queue objects that implement simple FIFO queue. There are no
methods, configuration parameter, or state variables that are specific to drop-tail objects.

• FQ objects: FQ objects are a subclass of Queue objects that implement Fair queuing. There are no methods that are
specific to FQ objects. Configuration Parameters are:

secsPerByte_

There are no state variables associated with this object.

• SFQ objects: SFQ objects are a subclass of Queue objects thatimplement Stochastic Fair queuing. There are no
methods that are specific to SFQ objects. Configuration Parameters are:

maxqueue_

buckets_

There are no state variables associated with this object.

• DRR objects: DRR objects are a subclass of Queue objects thatimplement deficit round robin scheduling. These
objects implement deficit round robin scheduling amongst different flows (A particular flow is one which has packets
with the same node and port id OR packets which have the same node id alone). Also unlike other multi-queue objects,
this queue object implements a single shared buffer space for its different flows. Configuration Parameters are:

buckets_ Indicates the total number of buckets to be used for hashing each of the flows.

blimit_ Indicates the shared buffer size in bytes.

quantum_ Indicates (in bytes) how much each flow can send during its turn.

mask_ mask_, when set to 1, means that a particular flow consists of packets having the same node id (and possibly
different port ids), otherwise a flow consists of packets having the same node and port ids.

• RED objects: RED objects are a subclass of Queue objects thatimplement random early-detection gateways. The
object can be configured to either drop or “mark” packets. There are no methods that are specific to RED objects.
Configuration Parameters are:

bytes_ Set to "true" to enable “byte-mode” RED, where the size of arriving packets affect the likelihood of marking
(dropping) packets.

queue-in-bytes_Set to "true" to measure the average queue size in bytes rather than packets. Enabling this option also
causes thresh_ and maxthresh_ to be automatically scaled bymean_pktsize_ (see below).

thresh_ The minimum threshold for the average queue size in packets.

64

maxthresh_ The maximum threshold for the average queue size in packets.

mean_pktsize_A rough estimate of the average packet size in bytes. Used in updating the calculated average queue
size after an idle period.

q_weight_ The queue weight, used in the exponential-weighted moving average for calculating the average queue size.

wait_ Set to true to maintain an interval between dropped packets.

linterm_ As the average queue size varies between "thresh_" and "maxthresh_", the packet dropping probability varies
between 0 and "1/linterm".

setbit_ Set to "true" to mark packets by setting the congestion indication bit in packet headers rather than drop packets.

drop-tail_ Set to true to use drop-tail rather than randomdrop when the queue overflows or the average queue size
exceeds "maxthresh_". For a further explanation of these variables, see [2].

None of the state variables of the RED implementation are accessible.

• CBQ objects: CBQ objects are a subclass of Queue objects thatimplement class-based queueing.

$cbq insert <class>
Insert traffic class class into the link-sharing structure associated with link object cbq.

$cbq bind <cbqclass> <id1> [$id2]
Cause packets containing flow id id1 (or those in the range id1to id2 inclusive) to be associated with the traffic class
cbqclass.

$cbq algorithm <alg>
Select the CBQ internal algorithm. <alg> may be set to one of:"ancestor-only", "top-level", or "formal".

• CBQ/WRR objects: CBQ/WRR objects are a subclass of CBQ objects that implement weighted round-robin scheduling
among classes of the same priority level. In contrast, CBQ objects implement packet-by-packet round-robin scheduling
among classes of the same priority level. Configuration Parameters are:

maxpkt_ The maximum size of a packet in bytes. This is used only by CBQ/WRR objects in computing maximum
bandwidth allocations for the weighted round-robin scheduler.

• CoDel objects: CoDel objects are a subclass of Queue objectsthat implement the Controlled Delay (CoDel) active
queue manager. Configuration Parameters are:

interval_ The CoDel measurement interval. This is typically set to a value that is on the order of the worst-case RTT
of connections utilizing the queue.

target_ The CoDel latency target. This is an upper bound on acceptable standing queue delay.

• SFQ-CoDel objects: SFQ-CoDel objects are a subclass of Queue objects that implement the Stochastic Flow Queuing
- Controlled Delay queue manager. Configuration Parametersare:

interval_ The CoDel measurement interval. This is typically set to a value that is on the order of the worst-case RTT
of connections utilizing the queue.

target_ The CoDel latency target. This is an upper bound on acceptable standing queue delay.

maxbins_ The number of SFQ "bins" implemented by the SFQ-CoDel queue.

quantum_ The deficit-round-robin quantum used for dequeuing packetsfrom the SFQ structure.

CBQCLASS OBJECTS

CBQClass objects implement the traffic classes associated with CBQ objects.

$cbqclass setparams <parent> <okborrow> <allot> <maxidle > <prio> <level>
Sets several of the configuration parameters for the CBQ traffic class (see below).

$cbqclass parent <cbqcl|none>
specify the parent of this class in the link-sharing tree. The parent may be specified as “none” to indicate this class is a root.

65

$cbqclass newallot <a>
Change the link allocation of this class to the specified amount (in range 0.0 to 1.0). Note that only the specified class is
affected.

$cbqclass install-queue <q>
Install a Queue object into the compound CBQ or CBQ/WRR link structure. When a CBQ object is initially created, it
includes no internal queue (only a packet classifier and scheduler).

Configuration Parameters are:

okborrow_ is a boolean indicating the class is permitted to borrow bandwidth from its parent.

allot_ is the maximum fraction of link bandwidth allocated to the class expressed as a real number between 0.0 and 1.0.

maxidle_ is the maximum amount of time a class may be required to have its packets queued before they are permitted to be
forwarded

priority_ is the class’ priority level with respect to other classes. This value may range from 0 to 10, and more than one class
may exist at the same priority. Priority 0 is the highest priority.

level_ is the level of this class in the link-sharing tree. Leaf nodes in the tree are considered to be at level 1; their parents are
at level 2, etc.

extradelay_ increase the delay experienced by a delayed class by the specified time

QUEUE-MONITOR OBJECTS

QueueMonitor Objects are used to monitor a set of packet and byte arrival, departure and drop counters. It also includes
support for aggregate statistics such as average queue size, etc.

$queuemonitor
reset all the cumulative counters described below (arrivals, departures, and drops) to zero. Also, reset the integrators and
delay sampler, if defined.

$queuemonitor set-delay-samples <delaySamp_>
Set up the Samples object delaySamp_ to record statistics about queue delays. delaySamp_ is a handle to a Samples object
i.e the Samples object should have already been created.

$queuemonitor get-bytes-integrator
Returns an Integrator object that can be used to find the integral of the queue size in bytes.

$queuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find the integral of the queue size in packets.

$queuemonitor get-delay-samples
Returns a Samples object delaySamp_ to record statistics about queue delays.
There are no configuration parameters specific to this object.
State Variables are:

size_ Instantaneous queue size in bytes.

pkts_ Instantaneous queue size in packets.

parrivals_ Running total of packets that have arrived.

barrivals_ Running total of bytes contained in packets that have arrived.

66

pdepartures_ Running total of packets that have departed (not dropped).

bdepartures_ Running total of bytes contained in packets that have departed (not dropped).

pdrops_ Total number of packets dropped.

bdrops_ Total number of bytes dropped.

bytesInt_ Integrator object that computes the integral of the queue size in bytes. The sum_ variable of this object has the
running sum (integral) of the queue size in bytes.

pktsInt_ Integrator object that computes the integral of the queue size in packets. The sum_ variable of this object has the
running sum (integral) of the queue size in packets.

QUEUEMONITOR/ED OBJECTS

This derived object is capable of differentiating regular packet drops from early drops. Some queues distinguish regular drops
(e.g. drops due to buffer exhaustion) from other drops (e.g.random drops in RED queues). Under some circumstances, it is
useful to distinguish these two types of drops.
State Variables are:

epdrops_ The number of packets that have been dropped “early”.

ebdrops_ The number of bytes comprising packets that have been dropped “early”.

Note: because this class is a subclass of QueueMonitor, objects of this type also have fields such as pdrops_ and bdrops_.
These fields describe the total number of dropped packets andbytes, including both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON OBJECTS

These objects may be used in the place of a conventional QueueMonitor object when wishing to collect per-flow counts and
statistics in addition to the aggregate counts and statistics provided by the basic QueueMonitor.

$fmon classifier <cl>
This inserts (read) the specified classifier into (from) the flow monitor object. This is used to map incoming packets to which
flows they are associated with.

$fmon dump
Dump the current per-flow counters and statistics to the I/O channel specified in a previous attach operation.

$fmon flows
Return a character string containing the names of all flow objects known by this flow monitor. Each of these objects are of
type QueueMonitor/ED/Flow.

$fmon attach <chan>
Attach a tcl I/O channel to the flow monitor. Flow statistics are written to the channel when the dump operation is executed.

Configuration Parameters are:

enable_in_ Set to true by default, indicates that per-flow arrival stateshould be kept by the flow monitor. If set to false, only
the aggregate arrival information is kept.

enable_out_ Set to true by default, indicates that per-flow departure state should be kept by the flow monitor. If set to false,
only the aggregate departure information is kept.

enable_drop_ Set to true by default, indicates that per-flow drop state should be kept by the flow monitor. If set to false,
only the aggregate drop information is kept.

67

enable_edrop_Set to true by default, indicates that per-flow early drop state should be kept by the flow monitor. If set to
false, only the aggregate early drop information is kept.

QUEUEMONITOR/ED/FLOW OBJECTS

These objects contain per-flow counts and statistics managed by a QueueMonitor/ED/Flowmon object. They are generally
created in an OTcl callback procedure when a flow monitor is given a packet it cannot map on to a known flow. Note that the
flow monitor’s classifier is responsible for mapping packetsto flows in some arbitrary way. Thus, depending on the type of
classifier used, not all of the state variables may be relevant (e.g. one may classify packets based only on flow id, in which
case the source and destination addresses may not be significant). State Variables are:

src_ The source address of packets belonging to this flow.

dst_ The destination address of packets belonging to this flow.

flowid_ The flow id of packets belonging to this flow.

7.4 Commands at a glance

Following is a list of queue commands used in simulation scripts:

$ns_ queue-limit <n1> <n2> <limit>
This sets a limit on the maximum buffer size of the queue in thelink between nodes <n1> and <n2>.

$ns_ trace-queue <n1> <n2> <optional:file>
This sets up trace objects to log events in the queue. If tracefile is not passed, it usestraceAllFile_ to write the events.

$ns_ namtrace-queue <n1> <n2> <optional:file>
Similar to trace-queue above, this sets up nam-tracing in the queue.

$ns_ monitor-queue <n1> <n2> <optional:qtrace> <optional :sampleinterval>
This command inserts objects that allows us to monitor the queue size. This returns a handle to the object that may be
queried to determine the average queue size. The default value for sampleinterval is 0.1.

7.5 Queue/JoBS

JoBS is developed and contributed by Nicolas Christin <nicolas@cs.virginia.edu>

This chapter describes the implementation of the Joint Buffer Management and Scheduling (JoBS) algorithm inns. This
chapter is in three parts. The first part summarizes the objectives of the JoBS algorithm. The second part explains how to
configure a JoBS queue inns. The third part focuses on the tracing mechanisms implemented for JoBS.

The procedures and functions described in this chapter can be found inns/jobs.{cc, h}, ns/marker.{cc, h},ns/demarker.{cc,
h}. Example scripts can be found inns/tcl/ex/jobs-{lossdel, cn2002}.tcl.

Additional information can be found at http://qosbox.cs.virginia.edu.

68

7.5.1 The JoBS algorithm

This section gives an overview of the objectives the JoBS algorithm aims at achieving, and of the mechanisms employed to
reach these objectives. The original JoBS algorithm, as described in [?], was using the solution to a non-linear optimization
problem. Thisns-2implementation uses the feedback-control based heuristicdescribed in [?].

Important Note:Thisns-2implementation results from the merge between old code forns-2.1b5, and code derived from the
BSD kernel-level implementation of the JoBS algorithm.It is still considered experimental.Due to the absence of binding
facilities for arrays between Tcl and C++ intclcl at the moment,the number of traffic classes is statically set to 4 and cannot
be changed without modifying the C++ code.

Objective

The objective of the JoBS algorithm is to provide absolute and relative (proportional) loss and delay differentiation inde-
pendently at each node forclassesof traffic. JoBS therefore provides service guarantees on aper-hopbasis. The set of
performance requirements are specified to the algorithm as aset of per-class Qualtiy of Service (QoS) constraints. As an
example, for three classes, the QoS constraints could be of the form:

• Class-1 Delay≈ 2 · Class-2 Delay,

• Class-2 Loss Rate≈ 10−1 · Class-3 Loss Rate, or

• Class-3 Delay≤ 5ms.

Here, the first two constraints are relative constraints andthe last one is an absolute constraint. The set of constraints can be
any mix of relative and absolute constraints. More specifically, JoBS supports the five following types of constraints:

• Relative delay constraints (RDC)specify a proportional delay differentiation between classes. As an example, for
two classes1 and2, the RDC enforces a relationship

Delay of Class 2
Delay of Class 1

≈ constant.

• Absolute delay constraints (ADC): An ADC on classi requires that the delays of classi satisfy a worst-case bound
di.

• Relative loss constraints (RLC)specify a proportional loss differentiation between classes.

• Absolute loss constraints (ALC): An ALC on classi requires that the loss rate of classi be bounded by an upper
boundLi.

• Absolute rate constraints (ARC): An ARC on classi means that the throughput of classi is bounded by a lower
boundµi.

JoBS does not rely on admission control or traffic policing, nor does it make any assumption on traffic arrivals. Therefore, a
system of constraints may become infeasible, and some constraints may need to be relaxed. QoS constraints are prioritized in
the following order.

ALC > ADC, ARC > Relative Constraints.

That is, if JoBS is unable to satisfy both absolute and relative constraints, it will give preference to the absolute constraints.

69

Mechanisms

JoBS performs scheduling and buffer management in a single pass. JoBS dynamically allocates service rates to classes in
order to satisfy the delay constraints. The service rates needed for enforcing absolute delay constraints are allocated upon each
packet arrival, while service rates derived from relative delay constraints are computed only everyN packet arrivals. If no
feasible service rate allocation exists1, or if the packet buffer overflows, packets are dropped according to the loss constraints.

The service rates are translated into packet scheduling decisions by an algorithm resembling Deficit Round Robin. That is,
the scheduler tries to achieve the desired service rates by keeping track of the difference between the actual transmission rate
for each class and the desired service rate for each class. Scheduling in JoBS is work-conserving.

7.5.2 Configuration

Running a JoBS simulation requires to create and configure the JoBS “link(s)”, to create and configure the Markers and
Demarkers in charge of marking/demarking the traffic, to attach an application-level data source (traffic generator), and to
start the traffic generator.

Initial Setup

set ns [new Simulator] ;# preamble initialization

Queue/JoBS set drop_front_ false ;# use drop-tail
Queue/JoBS set trace_hop_ true ;# enable statistic traces
Queue/JoBS set adc_resolution_type_ 0 ;# see ‘‘commands at a glance’’
Queue/JoBS set shared_buffer_ 1 ;# all classes share a common buffer
Queue/JoBS set mean_pkt_size_ 4000 ;# we expect to receive 500-Byte pkts
Queue/Demarker set demarker_arrvs1_ 0 ;# reset arrivals everywhere
Queue/Demarker set demarker_arrvs2_ 0
Queue/Demarker set demarker_arrvs3_ 0
Queue/Demarker set demarker_arrvs4_ 0
Queue/Marker set marker_arrvs1_ 0
Queue/Marker set marker_arrvs2_ 0
Queue/Marker set marker_arrvs3_ 0
Queue/Marker set marker_arrvs4_ 0

set router(1) [$ns node] ;# set first router
set router(2) [$ns node] ;# set second router
set source [$ns node] ;# set source
set sink [$ns node] ;# set traffic sink
set bw 10000000 ;# 10 Mbps
set delay 0.001 ;# 1 ms
set buff 500 ;# 500 packets

Creating the JoBS links

$ns duplex-link $router(1) $router(2) $bw $delay JoBS ;# Creates the JoBS link

1For instance, if the sum of the service rates needed is greater than the output link capacity.

70

$ns_ queue-limit $router(1) $router(2) $buff
set l [$ns_ get-link $router(1) $router(2)]
set q [$l queue]
$q init-rdcs -1 2 2 2 ;# Classes 2, 3 and 4 are bound by proportional delay differentiation with a factor of 2
$q init-rlcs -1 2 2 2 ;# Classes 2, 3 and 4 are bound by proportional loss differentiation with a factor of 2
$q init-alcs 0.01 -1 -1 -1 ;# Class 1 is provided with a loss rate bound of 1%
$q init-adcs 0.005 -1 -1 -1 ;# Class 1 is provided with a delay bound of 5 ms
$q init-arcs -1 -1 -1 500000 ;# Class 4 is provided with a minimumthroughput of 500 Kbps
$q link [$l link] ;# The link is attached to the queue (required)
$q trace-file jobstrace ;# Trace per-hop, per-class metrics to the file jobstrace
$q sampling-period 1 ;# Reevaluate rate allocation upon each arrival
$q id 1 ;# Assigns an ID of 1 to the JoBS queue
$q initialize ;# Proceed with the initialization

Marking the traffic

Marking the traffic is handled by Marker objects. Markers areFIFO queues that set the class index of each packet. To ensure
accuracy of the simulations, it is best to configure these queues to have a very large buffer, so that no packets are droppedin
the Marker. Demarkers are used to gather end-to-end delay statistics.

$ns_ simplex-link $source $router(1) $bw $delay Marker ;# set-up marker
$ns_ queue-limit $source $router(1) [expr $buff * 10] ;# Select huge buffers for markers
$ns_ queue-limit $router(1) $source [expr $buff * 10] ;# to avoid traffic drops
set q [$ns_ get-queue $source $router(1)] ;# in the marker
$q marker_type 2 ;# Statistical marker
$q marker_frc 0.1 0.2 0.3 0.4 ;# 10% Class 1, 20% Class 2, 30% Class 3, 40% Class 4.
$ns_ simplex-link $router(2) $sink $bw $delay Demarker ;# set-up demarker
$ns_ queue-limit $router(2) $sink [expr $buff * 10]
$q trace-file e2e ;# trace end-to-end delays to file e2e

The remaining steps (attaching agents and traffic generators or applications to the nodes) are explained in Chapters?? and
??, and are handled as usual. We refer to these chapters and the example scripts provided with yournsdistribution.

7.5.3 Tracing

Tracing in JoBS is handled internally, by the scheduler. Each JoBS queue can generate a trace file containing the following
information. Each line of the tracefile consists of 17 columns. The first column is the simulation time, columns 2 to 5 represent
the loss rates over the current busy period for classes 1 to 4,columns 6 to 9 represent the delays for each class (average over
a 0.5 seconds sliding window), columns 10 to 13 represent theaverage service rates allocated to each class over the last 0.5
seconds, and columns 14 to 17 represent the instantaneous queue length in packets. Additionally, Demarkers can be used to
trace end-to-end delays.

7.5.4 Variables

This section summarizes the variables that are used by JoBS,Marker and Demarker objects.

71

JoBS objects

trace_hop_ Can be true or false. If set to true, per-hop, per-class metrics will be traced. (Trace files have then to be specified,
using<JoBS object> trace-file <filename> .) Defaults to false.

drop_front_ Can be true or false. If set to true, traffic will be dropped from the front of the queue. Defaults to false
(drop-tail).

adc_resolution_type_Can be 0 or 1. If set to 0, traffic will be dropped from classes that have an ADC if the ADC cannot
be met by adjusting the service rates. If set to 1, traffic willbe dropped from all classes. A resolution mode set to 1 is
therefore fairer, in the sense that the pain is shared by all classes, but can lead to more deadline violations. Defaults to
0.

shared_buffer_ Can be 0 or 1. If set to 0, all classes use a separate per-class buffer (which is required if only rate guarantees
are to provided). All per-class buffers have the same size. If set to 1, all classes share the same buffer (which is required
if loss differentiation is to be provided). Defaults to 1.

mean_pkt_size_Used to set the expected mean packet size of packets arrivingat a JoBS link. Setting this variable is required
to ensure proper delay differentiation.

Marker objects

marker_arrvs1_ Number of Class-1 packets to have entered a Marker link.

marker_arrvs2_ Number of Class-2 packets to have entered a Marker link.

marker_arrvs3_ Number of Class-3 packets to have entered a Marker link.

marker_arrvs4_ Number of Class-4 packets to have entered a Marker link.

Demarker objects

demarker_arrvs1_ Number of Class-1 packets to have entered a Demarker link.

demarker_arrvs2_ Number of Class-2 packets to have entered a Demarker link.

demarker_arrvs3_ Number of Class-3 packets to have entered a Demarker link.

demarker_arrvs4_ Number of Class-4 packets to have entered a Demarker link.

7.5.5 Commands at a glance

The following is a list of commands used to configure the JoBS,Marker and Demarker objects.

JoBS objects

set q [new Queue/JoBS]
This creates an instance of the JoBS queue.

$q init-rdcs <k1> <k2> <k3> <k4>
This assigns the RDCs for the four JoBS classes. For instance, using a value of 4 for k2 means that Class-3 delays will be
roughly equal to four times Class-2 delays. A value of -1 indicates that the class is not concerned by RDCs.

72

Important Note:Since RDCs bound two classes, one would expect only three parameters to be passed (k1, k2, and k3, since
k4 theoretically binds Classes 4 and 5, and Class 5 does not exist). However, in this prototype implementation, it is
imperative to specify a value different from 0 and -1 to k4 if Class 4 is to be concerned by RDCs.

Examples:$q init-rdcs -1 2 1 -1 specifies that classes 2 and 3 are bound by a delay differentiation factor of 2,$q
init-rdcs 4 4 4 4 specifies that all classes are bound by a delay differentiation factor of 4 and is equivalent to$q
init-rdcs 4 4 4 1 , since the last coefficient is only used to specify that Class4 is to be bound by proportional
differentiation.

$q init-rlcs <k’1> <k’2> <k’3> <k’4>
This assigns the RLCs for the four JoBS classes. For instance, using a value of 3 for k1 means that Class-2 loss rates will be
roughly equal to four times Class-2 loss rates. A value of -1 indicates that the class is not concerned by RLCs. As with
RDCs, each RLC binds two classes, thus, one would expect onlythree parameters to be passed (k’1, k’2, and k’3, since k’4
theoretically bounds Classes 4 and 5, and Class 5 does not exist). As explained above, it is imperative to specify a value
different from 0 and -1 to k’4 if Class 4 is to be concerned by RLCs.

$q init-alcs <L1> <L2> <L3> <L4>
This assigns the absolute loss guarantees (ALCs) to all fourclasses. L1 to L4 are given in fraction of 1. For instance, setting
L1 to 0.05 means that Class-1 loss rate will be guarantees to be less than 5%. A value of -1 indicates that the corresponding
class is not subject to an ALC.

$q init-adcs <D1> <D2> <D3> <D4>
This assigns the absolute loss guarantees (ADCs) to all fourclasses. D1 to D4 are given in milliseconds. A value of -1
indicates that the corresponding class is not subject to an ADC.

$q trace-file <filename>
This specifies the trace file for all per-hop metrics. JoBS uses an internal module to trace loss and delays, service rates,and
per-class queue lengths in packets. If filename is set tonull , no trace will be provided.

$q link [<link-object> link]
This command is required to bind a link to a JoBS queue. Note that JoBS needs to know the capacity of the link. Thus, this
commandhas tobe issued before the simulation is started.

$q sampling-period <sampling-interval>
This command specifies the sampling interval (in packets) atwhich the service rate adjustments for proportional
differentiation will be performed. The default is a sampling interval of 1 packet, meaning that the rate allocation is
reevaluated upon each packet arrival. Larger sampling intervals speed up the simulations, but typically result in poorer
proportional differentiation.

$q id <num_id>
This command affects a numerical ID to the JoBS queue.

$q initialize
This command is required, and should be run after all configuration operations have been performed. This command will
perform the final checks and configuration of the JoBS queue.

$q copyright-info
Displays authors and copyright information.

A simple example script (with nam output), fully annotated and commented can be found inns/tcl/ex/jobs-lossdel.tcl. A
more realistic example of a simulation with JoBS queues can be found inns/tcl/ex/jobs-cn2002.tcl. This script is very
similar to what was used in a simulation presented in [?]. Associated tracefiles andgnuplotscripts for visualization (in case
you favorgnuplotoverxgraphcan be found inns/tcl/ex/jobs-lossdel, andns/tcl/ex/jobs-cn2002.

73

Marker objects

$q marker_type <1|2>
Selects the type of marker. 1 is DETERMINISTIC, 2 is STATISTICAL.

$q marker_class <1|2|3|4>
For a deterministic marker, selects which class packets should be marked with.

$q marker_frc <f1> <f2> <f3> <f4>
For a statistical marker, gives the fraction of packets thatshould be marked from each class. For instance, using 0.1 forf1
means that 10 percent of the traffic coming to the Marker link will be marked as Class 1.

Demarker objects

$q trace-file <filename>
This command specifies the trace file used for the demarker object. filename.1 will contain the end-to-end delays of each
Class-1 packet to have reached the Demarker link, filename.2will contain the end-to-end delays of each Class-2 packet to
have reached the Demarker link, and so forth. (There will of course be 4 trace files, one for each class.)

74

Chapter 8

DOCSIS links

ns-2 contains models for sending Internet traffic over cablemodems using the Data Over Cable Service Interface Specification
(DOCSIS) specification: http://www.cablemodem.com. These models directly simulate DOCSIS 1.1 and DOCSIS 2.0 links
and can be used to simulate DOCSIS 3.0 links and DOCSIS 3.1 SC-QAM links. Channel bonding for DOCSIS 3.x links is
simulated by setting the link rate equal to the aggregate link rate for the bonding group.

DelayTb (Link/DelayTb) models a DOCSIS downstream link (from CMTS to the cable modem). More specifically, it
models a single downstream service flow providing service toa single cable modem. It takes the following parameters:

rate_ "Maximum Sustained Traffic Rate": i.e. Token bucket rate (bits/s)

bucket_ "Maximum Traffic Burst": i.e. Token bucket maximum size (bytes)

peakrate_ "Peak Traffic Rate": i.e. Peak rate token generation rate (bits/s)

peakbucket_ Peak rate token bucket maximum rate (bytes): leave at 1522 tomodel
DOCSIS

As per the DOCSIS 3.0/3.1 specifications, DelayTb uses two token buckets for rate shaping that will accumulate tokens
according to their parameters. A departing packet gets the peak or normal transmission rate depending on the available
tokens. To model DOCSIS 1.1/2.0, setpeakrate_ equal to the line rate.

DocsisLink (Link/DocsisLink) models a DOCSIS upstream link (from cable modem to the CMTS). More specifically,
it models a single upstream service flow with best effort scheduling service. It takes the following parameters:

mapint_ The MAP interval (seconds); typically 2ms

maxgrant_ The maximum grant size (bytes) per MAP interval

mgvar_ The variability of maximum grant size (0..100: percentage)

rate_ Token generation rate (bits/s)

bucket_ Token bucket maximum size (bytes)

peakrate_ Peak rate token generation rate (bits/s)

peakbucket_ Peak rate token bucket maximum rate (bytes)

DOCSIS’s upstream transmission is scheduled at a regular interval called "MAP interval". Before the beginning of each MAP
interval, the cable modem receives a grant for how many bytesit can send. This byte count varies as a result of congestion
from other users on the shared upstream link;maxgrant_ andmgvar_ are for emulating this congestion. The parameter
maxgrant_ is used to cap the average available capacity of the upstreamlink, andmgvar_ provides a way to simulate the
variability of congestion.

The remaining DocsisLink parameters implement the DOCSIS token bucket rate shaping, just like DelayTb.

75

