ThensManual
(formerly nsNotes and Documentatioh)

The VINT Project

A Collaboration between researchers at
UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Kevin Fall (kfall@ee.Ibl.goy, Editor
Kannan Varadhatkannan@catarina.usc.ed&ditor

December 17, 2014

ns (© is LBNL's Network Smulator [?]. The simulator is written in C++; it uses OTcl as a command aanfiguration
interface.nsv2 has three substantial changes fresvl: (1) the more complex objects msv1 have been decomposed into
simpler components for greater flexibility and compos#ahili2) the configuration interface is now OTcl, an objeceoted
version of Tcl; and (3) the interface code to the OTcl inteter is separate from the main simulator.

Ns documentation is available in html, Postscript, and Ridféts. Sebttp://www.isi.edu/nsnam/ns/ns-documentation.
html for pointers to these.

1The VINT project is a joint effort by people from UC BerkeldySC/ISI, LBL, and Xerox PARC. The project is supported by Brefense Advanced
Research Projects Agency (DARPA) at LBL under DARPA granB&3-96-C-0105, at USC/ISI under DARPA grant ABT63-96-058, at Xerox PARC
under DARPA grant DABT63-96-C-0105. Any opinions, findingad conclusions or recommendations expressed in thigialatse those of the author(s)

and do not necessarily reflect the views of the DARPA.

Contents

Chapter 1

Introduction

Let’s start at the very beginning,

a very nice place to start,

when you sing, you begin with A, B, C,

when you simulate, you begin with the topology,

This documentr{s Notes and Documentatipprovides reference documentation for ns. Although we begth a simple
simulation script, resources like Marc Greis'’s tutorialoagages (originally at his web site, now latp://www.isi.
edu/nsnam/ns/tutorial/) or the slides from one of the ns tutorials are problablydygtlaces to begin for the ns
novice.

We first begin by showing a simple simulation script. Thisads also available in the sources ingtcl/ex/simple.tcl.

This script defines a simple topology of four nodes, and twenégy a UDP agent with a CBR traffic generator, and a TCP
agent. The simulation runs f8s. The output is two trace filegut.tr ~ andout.nam . When the simulation completes at
the end of3s, it will attempt to run a nam visualisation of the simulatiomyour screen.

The preamble
set ns [new Simulator] ;# initialise the simulation

Predefine tracing

set f [open out.tr w]
$ns trace-all $f

set nf [open out.nam w]
$ns namtrace-all $nf

lwith apologies to Rodgers and Hammerstein

so0, we lied. now, we define the topology

#

no

\

5Mb \

2ms |\

\

n2 --------- n3
/ 1.5Mb
5Mb / 10ms
2ms /

/

nl

#

set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplex-link $n0 $n2 5Mb 2ms DropTall
$ns duplex-link $n1 $n2 5Mb 2ms DropTail
$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

Some agents.

set udpO [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO0 [new Application/Traffic/CBR]
$cbr0 attach-agent $udpO

$udpO0 set class_ 0

set null0 [new Agent/Null]
$ns attach-agent $n3 $nullo

$ns connect $udp0 $null0
$ns at 1.0 "$cbr0 start"

puts [$cbr0 set packetSize]
puts [$cbrO set interval_]

A FTP over TCP/Tahoe from $n1 to $n3, flowid 2
set tcp [new Agent/TCP]

$tcp set class_ 1

$ns attach-agent $n1 S$tcp

set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink

set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 1.2 "$ftp start”

$ns connect $tcp $sink

$ns at 1.35 "$ns detach-agent $n0 S$tcp ; $ns detach-agent $n3

A UDP agent
;# on node $n0
A CBR traffic generator agent
;# attached to the UDP agent
;# actually, the default, but. ..

Its sink
on node $n3

TCP does not generate its own traffic

$sink”

The simulation runs fass.
The simulation comes to an end when the scheduler invo&dimtbh{} procedure below.
This procedure closes all trace files, and invokes nam limteon on one of the trace files.

$ns at 3.0 “finish"

proc finish {} {
global ns f nf
$ns flush-trace
close $f
close $nf

puts "running nam..."
exec nam out.nam &
exit 0

}

Finally, start the simulation.
$ns run

Chapter 2

Undocumented Facilities

Ns is often growing to include new protocols. Unfortunatilg documention doesn’t grow quite as often. This sect&s li
what remains to be documented, or what needs to be improved.

(The documentation is in the doc subdirectory of the ns socode if you want to add to it. :-)

Interface to the Interpreter e nothing currently

Simulator Basics e LANSs need to be updated for new wired/wireless support (Mpdated this?)
e wireless support needs to be added (done)
e should explicitly list queueing options in the queue mgtathea?

Support e should pick a single list mgt package and document it
¢ should document the trace-post-processing utilitiesiin bi
Routing e The usage and design of link state and MPLS routing moduéesatrdocumented at all. (Note: link state and
MPLS appeared only in daily snapshots and releases afte4/2800.)
e need to document hierarchical routing/addressing (Padmabne)
e need a chapter on supported ad-hoc routing protocols
Queueing e CBQ needs documentation (can maybe build offtpf//ftp.ee.lbl.gov/papers/cbgsims.
ps.Z ?)
Transport e need to document MFTP
e needto document RTP (session-rtp.cc, etc.)
e need to document multicast building blocks
e should repair and document snoop and tcp-int

Traffic and scenarios (new section)

e should add a description of how to drive the simulator froatés
e should add discussion of the scenario generator
¢ should add discussion of http traffic sources

Application ¢ is the non-Haobo http stuff documented? no.

Scale e should add disucssion of mixed mode (pending)
Emulation e nothing currently

Other e should document admission control policies?
e should add a validation chapter and snarf up the contents-tésts.html
e should snarf up Marc Greis’ tutorial rather than just refegto it?

Part |

Interface to the Interpreter

Chapter 3

OTcl Linkage

nsis an object oriented simulator, written in C++, with an Ofrderpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in thigument), and a similar class hierarchy within the OT@&rint
preter (also called the interpreted hierarchy in this doenitn The two hierarchies are closely related to each offwn the
user’s perspective, there is a one-to-one correspondeteedn a class in the interpreted hierarchy and one in th@itean
hierarchy. The root of this hierarchy is the class TclObjélgers create new simulator objects through the intempriiese
objects are instantiated within the interpreter, and aveaty mirrored by a corresponding object in the compiledanizhy.

The interpreted class hierarchy is automatically esthbtishrough methods defined in the class TclClass. useniietted
objects are mirrored through methods defined in the claxStjett. There are other hierarchies in the C++ code and OTcl
scripts; these other hierarchies are not mirrored in thermaiaof TclObject.

3.1 Concept Overview

Why two languages? nsses two languages because simulator has two differens kifithings it needs to do. On one hand,
detailed simulations of protocols requires a systems jragring language which can efficiently manipulate byteskeiac
headers, and implement algorithms that run over large @és$a Bor these tasks run-time speed is important and taumdr
time (run simulation, find bug, fix bug, recompile, re-runjgss important.

On the other hand, a large part of network research involigitly varying parameters or configurations, or quicklypkxing

a number of scenarios. In these cases, iteration time (ehdregmodel and re-run) is more important. Since configumatio
runs once (at the beginning of the simulation), run-timehag part of the task is less important.

nsmeets both of these needs with two languages, C++ and OTel.i<fast to run but slower to change, making it suitable
for detailed protocol implementation. OTcl runs much slotmat can be changed very quickly (and interactively), mgkin
ideal for simulation configuratioms(viatclcl) provides glue to make objects and variables appear on antfaliges.

For more information about the idea of scripting languagessplit-language programming, see Ousterhout’s articlEEE
Computer P]. For more information about split level programming fotwerk simulation, see the ns papé€i.|

Which language for what®laving two languages raises the question of which langulageld be used for what purpose.

Our basic advice is to use OTcl:

e for configuration, setup, and “one-time” stuff

o if you can do what you want by manipulating existing C++ obgec

and use C++:

o if you are doinganythingthat requires processing each packet of a flow

o if you have to change the behavior of an existing C++ classapsthat weren't anticipated

For example, links are OTcl objects that assemble delayy@jng, and possibly loss modules. If your experiment can be
done with those pieces, great. If instead you want do somgfancier (a special queueing dicipline or model of lodsnt
you'll need a new C++ object.

There are certainly grey areas in this spectrum: most rgigidone in OTcl (although the core Dijkstra algorithm is irJ.
We've had HTTP simulations where each flow was started in @mdlper-packet processing was all in C++. This approache
worked OK until we had 100s of flows starting per second of &tedl time. In general, if you're ever having to invoke Tcl
many times per second, you problably should move that co@s-to

3.2 Code Overview

In this document, we use the term “interpreter” to be synooyswith the OTcl interpreter. The code to interface with the
interpreter resides in a separate directtrlgl . The rest of the simulator code resides in the directosy? . We will use
the notation tclcl/(file) to refer to a particulaffile) in the Tcl directory. Similarly, we will use the notationng/(file) to
refer to a particulaffile) in thens-2 directory.

There are a number of classes definedtiticl/. We only focus on the six that are usednia The Class Tcl (Sectiof2?)
contains the methods that C++ code will use to access thimster. The class TclObject (Secti@f) is the base class for
all simulator objects that are also mirrored in the compliedarchy. The class TclClass (Sect®P) defines the interpreted
class hierarchy, and the methods to permit the user to itistad clObjects. The class TclICommand (SectB@his used to
define simple global interpreter commands. The class Endafldd (Sectior??) contains the methods to load higher level
builtin commands that make configuring simulations easierxally, the class InstVar (Secti®?) contains methods to access
C++ member variables as OTcl instance variables.

The procedures and functions described in this chaptere&ound in +clcl/Tcl.{cc, h}, ~tclcl/Tcl2.cc, +clcl/tcl-object.tcl,
and, ~clcl/tracedvar.{cc, h}. The file telcl/tcl2c++.c is used in buildings, and is mentioned briefly in this chapter.

3.3 Class Tcl

Theclass Tcl encapsulates the actual instance of the OTcl interpretdmpeovides the methods to access and communi-
cate with that interpreter. The methods described in this@eare relevant to thesprogrammer who is writing C++ code.
The class provides methods for the following operations:

e obtain a reference to the Tcl instance;

e invoke OTcl procedures through the interpreter;

e retrieve, or pass back results to the interpreter;

e report error situations and exit in an uniform manner; and

10

e store and lookup “TclObjects”.
e acquire direct access to the interpreter.

We describe each of the methods in the following subsections

3.3.1 Obtain a Reference to the class Tcl instance

A single instance of the class is declared folel/Tcl.cc as a static member variable; the programmer musimhtreference
to this instance to access other methods described in tttisseThe statement required to access this instance is:

Tcl& tcl = Tcl::instance();

3.3.2 Invoking OTcl Procedures

There are four different methods to invoke an OTcl commamdutph the instancdgl . They differ essentially in their
calling arguments. Each function passes a string to thepirgter, that then evaluates the string in a global confEkese
methods will return to the caller if the interpreter retufis._ OK. On the other hand, if the interpreter returns TCL REFR,
the methods will caltkerror ~ {}. The user can overload this procedure to selectivelyetisird certain types of errors. Such
intricacies of OTcl programming are outside the scope af dlicument. The next section (Secti®?) describes methods to
access the result returned by the interpreter.

e tcl.eval (char*s) invokesTcl_GlobalEval () to executes through the interpreter.

e tcl.evalc (constchar%) preserves the argument stringlt copies the string into its internal buffer; it then invokes
the previousval (char*s) on the internal buffer.

e tcl.eval () assumesthatthe commandis already stored in the clasmaibp_; it directly invokedcl.eval ~ (char*
bp_). A handle to the buffer itself is available through thethodtcl.buffer (void).

o tcl.evalf (const char?*s, ...) is aPrintf (3) like equivalent. It usessprintf (3) internally to create the input
string.

As an example, here are some of the ways of using the abovedseth

Tcl& tcl = Tcl::instance();

char wrk[128];

strepy(wrk, "Simulator set Numberinterfaces_ 1");
tcl. eval (wrk);

sprintf(tcl. buffer(), "Agent/SRM set requestFunction_ %s", "Fixed");
tcl.eval ();

tcl . eval c("puts stdout hello world");
tcl.eval f ("%s request %d %d", name_, sender, msgid);

3.3.3 Passing Results to/from the Interpreter

When the interpreter invokes a C++ method, it expects thdtrieack in the private member variabtel_->result . Two
methods are available to set this variable.

11

o tcl.result (const char*s)
Pass the result stringback to the interpreter.

o tcl.resultf (constchar* fmt, ...)
varargs (3) variant of above to format the result usiwgprintf (3), pass the result string back to the interpreter.

if (strcmp(argv[l], "now") == 0) {
tcl.resultf("%.17g", clock();
return TCL_OK;

}

tcl.result ("Invalid operation specified");
return TCL_ERROR;

Likewise, when a C++ method invokes an OTcl command, thepnéter returns the result tal_->result

o tcl.result (void) must be used to retrieve the result. Note that theltr&sa string, that must be converted into an
internal format appropriate to the type of result.

tcl.evalc("Simulator set Numberinterfaces ");
char * ni = tcl.result();
if (atoi(ni) != 1)
tcl.evalc("Simulator set Numberinterfaces_ 1");

3.3.4 Error Reporting and Exit
This method provides a uniform way to report errors in the pibedl code.

e tcl.error (const char*s) performs the following functions: write to stdout; writetcl_->result to stdout; exit
with error code 1.

tcl.resultf("emd = %s", cmd);
tcl.error("invalid command specified");
/ * NOTREACHEDB/

Note that there are minor differences between returning TERROR as we did in the previous subsection (Sect9n
and callingTcl::error (). The former generates an exception within the interpréte user can trap the exception and
possibly recover from the error. If the user has not spec#figdraps, the interpreter will print a stack trace and éxawever,

if the code invokegrror (), then the simulation user cannot trap the error; in addjtiswill not print any stack trace.

3.3.5 Hash Functions within the Interpreter

nsstores a reference to every TclObject in the compiled hidsain a hash table; this permits quick access to the objects.
The hash table is internal to the interpretes.uses the name of thEclObject as the key to enter, lookup, or delete the
TclObject in the hash table.

12

o tcl.enter (TclObject* o) will insert a pointer to the TclObjeetinto the hash table.
Itis used byTclClass::create_shadow () to insert an object into the table, when that object isterea

e tcllookup (char*s) will retrieve the TclObject with the name
It is used byTclObject::lookup 0.

e tcl.remove (TclObject*o) will delete references to the TclObjecfrom the hash table.

It is used byTclClass::delete_shadow () to remove an existing entry from the hash table, when thggab is
deleted.

These functions are used internally by the class TclObjedtcdass TclClass.

3.3.6 Other Operations on the Interpreter
If the above methods are not sufficient, then we must acqougrdandle to the interpreter, and write our own functions.

e tclinterp (void) returns the handle to the interpreter that is storglimthe class Tcl.

3.4 Class TclObject

class TclObject is the base class for most of the other classes in the integpamd compiled hierarchies. Every object
in the class TclObject is created by the user from within therpreter. An equivalent shadow object is created in thepiled
hierarchy. The two objects are closely associated with etleér. The class TclClass, described in the next sectionaots
the mechanisms that perform this shadowing.

In the rest of this document, we often refer to an object asl@@ject. By this, we refer to a particular object that is either
in the class TclObject, or in a class that is derived from tlassc TclObject. If it is necessary, we will explicitly quigli
whether that object is an object within the interpreter,object within the compiled code. In such cases, we will hge t
abbreviations “interpreted object”, and “compiled objaotdistinguish the two. and within the compiled code respety.

Differences fromnsvl Unlike nsv1l, the class TclObject subsumes the earlier functionseRN$ODbject class. It therefore
stores the interface variable bindings (Sectt®hthat tie OTcl instance variables in the interpreted objeatorresponding
C++ member variables in the compiled object. The bindingrizngier than imsv1 in that any changes to the OTcl variables
are trapped, and the current C++ and OTcl values are madestamsafter each access through the interpreter. The sonsi
tency is done through the class InstVar (Secf@h Also unlikensvl, objects in the class TclObject are no longer stored as
a global link list. Instead, they are stored in a hash tabtbérclass Tcl (Sectiof?).

Example configuration of a TclObject The following example illustrates the configuration of anMBRgent €lass
Agent/SRM/Adaptive).

set srm [new Agent/SRM/Adaptive]
$srm set packetSize_ 1024
$srm traffic-source $s0

1in the latest release aandnsitclcl this object has been renamedplitObjefct , which more accurately reflects its nature of existence. élew
for the moment, we will continue to use the term TclObjectafer to these objects and this class.

13

By convention inng the class Agent/SRM/Adaptive is a subclass of Agent/SRM subclass of Agent, is a subclass of
TclObject. The corresponding compiled class hierarchiiésASRMAgent, derived from SRMAgent, derived from Agent,
derived from TclObject respectively. The first line of theoab example shows how a TclObject is created (or destroyed)
(Section??); the next line configures a bound variable (Secf@)y and finally, the last line illustrates the interpretedeatb
invoking a C++ method as if they were an instance procedweeti@??).

3.4.1 Creating and Destroying TclObjects

When the user creates a new TclObject, using the procecew§ and delete {}; these procedures are defined in
~tclcl/tcl-object.tcl. They can be used to create and destroyctbja all classes, including TclObjects.In this section,
we describe the internal actions executed when a TclOljextated.

Creating TclObjects By usingnew{}, the user creates an interpreted TclObject. the integareill execute the constructor
for that object,init {}, passing it any arguments provided by the uses is responsible for automatically creating the
compiled object. The shadow object gets created by the Bass TclObject's constructor. Therefore, the construftior
the new TclObject must call the parent class constructdr fiesa{} returns a handle to the object, that can then be used for
further operations upon that object.

The following example illustrates the Agent/SRM/Adaptoanstructor:

Agent/SRM/Adaptive instproc init args {
eval $self next $args
$self array set closest_ "requestor O repairor 0"
$self set eps_ [$class set eps_]

The following sequence of actions are performed by the [méter as part of instantiating a new TclObject. For ease of
exposition, we describe the steps that are executed tceaaatgent/SRM/Adaptive object. The steps are:

1. Obtain an unique handle for the new object from the Tcl€thjame space. The handle is returned to the user. Most
handles inns have the form_o(NNN, where(NNN) is an integer. This handle is created ¢pgtid {}. It can be
retrieved from C++ with th@ame() {} method.

2. Execute the constructor for the new object. Any userifipdcarguments are passed as arguments to the constructor.
This constructor must invoke the constructor associatéiul itg parent class.
In our example above, the Agent/SRM/Adaptive calls its pactass in the very first line.

Note that each constructor, in turn invokes its parent tlamsstructorad nauseumThe last constructor insis the
TclObject constructor. This constructor is responsiblesketting up the shadow object, and performing other initial
izations and bindings, as we explain beldwis preferable to call the parent constructors first befperforming the
initializations required in this classThis allows the shadow objects to be set up, and the varidtdiriys established.

3. The TclObject constructor invokes the instance proceduwate-shadow {} for the class Agent/SRM/Adaptive.

4. When the shadow object is creatadcalls all of the constructors for the compiled object, eafolwlich may establish
variable bindings for objects in that class, and perforneottecessary initializations. Hence our earlier injunctlat
it is preferable to invoke the parent constructors prioréd@rming the class initializations.

5. After the shadow object is successfully creatrdate_shadow (void)

2As an example, the classes Simulator, Node, Link, or rtQpjee classes that anetderived from the class TclObject. Objects in these classesat,
therefore, TclObjects. However, a Simulator, Node, Link;aute Object is also instantiated using tiev procedure ims

14

(a) adds the new object to hash table of TclObjects descebdikr (Sectior??).

(b) makecmd{} an instance procedure of the newly created interpretgdaibThis instance procedure invokes the
command) method of the compiled object. In a later subsection (Br&?), we describe how theommand
method is defined, and invoked.

Note that all of the above shadowing mechanisms only worknwhe user creates a new TclObject through the interpreter.
It will not work if the programmer creates a compiled TclGdijenilaterally. Therefore, the programmer is enjoinedtoot
use the C++ new method to create compiled objects directly.

Deletion of TclObjects Thedelete operation destroys the interpreted object, and the cavreipg shadow object. For
exampleuse-scheduler {(schedulef} uses thedelete procedure to remove the default list scheduler, and inst@nt
an alternate scheduler in its place.

Simulator instproc use-scheduler type {
$self instvar scheduler_

delete scheduler_ # first delete the existing list scheduler
set scheduler_ [new Scheduler/$type]

As with the constructor, the object destructor must calldéstructor for the parent class explicitly as the very l&gesent
of the destructor. The TclObject destructor will invoke thstance procedurdelete-shadow , that in turn invokes the
equivalent compiled method to destroy the shadow object.iifterpreter itself will destroy the interpreted object.

3.4.2 Variable Bindings

In most cases, access to compiled member variables ixtedttdo compiled code, and access to interpreted membeblesi

is likewise confined to access via interpreted code; howévisrpossible to establish bi-directional bindings suchttboth

the interpreted member variable and the compiled membéblaraccess the same data, and changing the value of either
variable changes the value of the corresponding pairedbiarto same value.

The binding is established by the compiled constructor wthahobject is instantiated; it is automatically accessih} the
interpreted object as an instance variabesupports five different data types: reals, bandwidth valizethbles, time valued
variables, integers, and booleans. The syntax of how tredses can be specified in OTcl is different for each variaype t

e Real and Integer valued variables are specified in the “nBifioran. For example,

$object set realvar 1.2e3
$object set intvar 12

e Bandwidth is specified as a real value, optionally suffixead By or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean
mega-quantities. A final optional suffix of ‘B’ indicates ththe quantity expressed is in Bytes per second. The default
is bandwidth expressed in bits per second. For examplef tlkdollowing are equivalent:

$object set bwvar 1.5m

$object set bwvar 1.5mb
$object set bwvar 1500k

15

$object set bwvar 1500kb

$object set bwvar .1875MB
$object set bwvar 187.5kB
$object set bwvar 1.5e6

e Time is specified as a real value, optionally suffixed by a ‘smékpress time in milli-seconds, ‘n’ to express time in
nano-seconds, or ‘p’ to express time in pico-seconds. Tfauttés time expressed in seconds. For example, all of the
following are equivalent:

$object set timevar 1500m
$object set timevar 1.5
$object set timevar 1.5e9n
$object set timevar 1500e9p

Note that we can also safely add #o reflect the time unit of secondsswill ignore anything other than a valid real

number specification, or a trailing ‘m’, ‘n’, or ‘p’.

e Booleans can be expressed either as an integer, or as ‘T'for ttue. Subsequent characters after the first letter are
ignored. If the value is neither an integer, nor a true vatuen it is assumed to be false. For example,

$object set boolvar t # setto true
$object set boolvar true

$object set boolvar 1 ;# or any non-zero value
$object set boolvar false # setto false

$object set boolvar junk
$object set boolvar 0

The following example shows the constructor for the ASRMAGe

ASRMAgent::ASRMAgent() {

bind("pdistance_", &pdistance); / * real variablex /
bind("requestor_", &requestor_); / * integer variablex /
bind_time("lastSent_", &lastSessSent); / * time variablex /
bind_bw("ctrlLimit_", &ctrIBWLimit_); / * bandwidth variable: /
bind_bool("running_", &running_); / * boolean variable- /

Note that all of the functions above take two arguments, Hraaof an OTcl variable, and the address of the corresponding
compiled member variable that is linked. While it is ofter ttase that these bindings are established by the constaicto
the object, it need not always be done in this manner. We vgtiuss such alternate methods when we describe the class
InstVar (Sectior??) in detail later.

Each of the variables that is bound is automatically inged with default values when the object is created. Theultefa
values are specified as interpreted class variables. Tikiisation is done by the routinigit-instvar {}, invoked by
methods in the class Instvar, described later (Se@®ninit-instvar {} checks the class of the interpreted object, and
all of the parent class of that object, to find the first clasaliich the variable is defined. It uses the value of the vagiabl
that class to initialise the object. Most of the bind inisakion values are defined imstcl/lib/ns-default.tcl.

For example, if the following class variables are definedtierASRMAgent:

3Note that this constructor is embellished to illustratefeéwures of the variable binding mechanism.

16

Agent/SRM/Adaptive set pdistance_ 15.0
Agent/SRM set pdistance_ 10.0
Agent/SRM set lastSent_ 8.345m

Agent set ctrlLimit_ 1.44M
Agent/SRM/Adaptive set running_ f

Therefore, every new Agent/SRM/Adaptive object will hgdistance set to 15.0JastSent_ is set to 8.345m from
the setting of the class variable of the parent clagy;imit_ is set to 1.44M using the class variable of the parent class
twice removedrunning is set to false; the instance variapldistance_ is notinitialised, because no class variable exists
in any of the class hierarchy of the interpreted object. thdnstanceinit-instvar {} will invoke warn-instvar {},

to print out a warning about such a variable. The user carctheddy override this procedure in their simulation scsipto
elide this warning.

Note that the actual binding is done by instantiating olsj@ttthe class InstVar. Each object in the class InstVar bords
compiled member variable to one interpreted member variabITclObject stores a list of InstVar objects correspogdm
each of its member variable that is bound in this fashion. figweed of this list is stored in its member variabiistvar _ of

the TclObject.

One last point to consider is thaswill guarantee that the actual values of the variable, bothé interpreted object and the
compiled object, will be identical at all times. Howevertliere are methods and other variables of the compiled othjatt
track the value of this variable, they must be explicitlyaked or changed whenever the value of this variable is clthnge
This usually requires additional primitives that the ugerdd invoke. One way of providing such primitivesrisis through
thecommand) method described in the next section.

3.4.3 \Variable Tracing

In addition to variable bindings, TclObject also supporésing of both C++ and Tcl instance variables. A traced \mgia
can be created and configured either in C++ or Tcl. To estabisiable tracing at the Tcl level, the variable must beblési

in Tcl, which means that it must be a bounded C++/Tcl or a pulenktance variable. In addition, the object that owns
the traced variable is also required to establish tracimmgube Tcltrace method of TclObject. The first argument to the
trace method must be the name of the variable. The optional seagareent specifies the trace object that is responsible
for tracing that variable. If the trace object is not spedifide object that own the variable is responsible for trqudin

For a TclObject to trace variables, it must extend the @&ate method that is virtually defined in TclObject. The Trace
class implements a simpteace method, thereby, it can act as a generic tracer for variables

class Trace : public Connector {

virtual void trace(TracedVar *);

Below is a simple example for setting up variable tracingoh T
S$tcp tracing its own variable cwnd_
$tcp trace cwnd_
the variable ssthresh_ of $tcp is traced by a generic $trace r

set tracer [new Trace/Var]
$tcp trace ssthresh_ $tracer

17

For a C++ variable to be traceable, it must belong to a classdirives from TracedVar. The virtual base class TracedVar
keeps track of the variable’s name, owner, and tracer. €abst derives from TracedVar must implement the virtuahaoe
value , that takes a character buffer as an argument and writesathe of the variable into that buffer.

class TracedVar {

virtual char * value(char = buf) = 0;

protected:
TracedVar(const char * name);
const char * name_; /I name of the variable
TclObject * owner_; /I the object that owns this variable
TclObject * tracer_; /I callback when the variable is changed
3

The TcICL library exports two classes of TracedVdracedint and TracedDouble . These classes can be used in
place of the basic type int and double respectively. Botlcddint and TracedDouble overload all the operators that can
change the value of the variable such as assignment, inoteara decrement. These overloaded operators usesign
method to assign the new value to the variable and call tieertiithe new value is different from the old one. Tracedimd a
TracedDouble also implement themlue methods that output the value of the variable into stringe Width and precision

of the output can be pre-specified.

3.4.4 command Methods: Definition and Invocation

For every TclObject that is creatensestablishes the instance procederag({}, as a hook to executing methods through the
compiled shadow object. The procedarad{} invokes the methodcommand)) of the shadow object automatically, passing
the arguments tomd{} as an argument vector to tr@mmand)) method.

The user can invoke themd{} method in one of two ways: by explicitly invoking the prodere, specifying the desired
operation as the first argument, or implicitly, as if thereevan instance procedure of the same name as the desiretiapera
Most simulation scripts will use the latter form, hence, wilt eescribe that mode of invocation first.

Consider the that the distance computation in SRM is donbdgompiled object; however, it is often used by the intdgate
object. Itis usually invoked as:

$srmObject distance? (agentAddress)

If there is no instance procedure callgidtance? , the interpreter will invoke the instance procedun&nown {}, defined
in the base class TclObject. The unknown procedure therk@s/o

$srmObject cmd distance? (agentAddress)

to execute the operation through the compiled objexttemand)) procedure.

Ofcourse, the user could explicitly invoke the operatioredily. One reason for this might be to overload the opendtip
using an instance procedure of the same name. For example,

Agent/SRM/Adaptive instproc distance? addr {

18

$self instvar distanceCache_
if ![info exists distanceCache_($addr)] {

set distanceCache_($addr) | $sel f cnmd di stance? $addr]
}

set distanceCache_($addr)

We now illustrate how theommand) method usinlASRMAgent::command () as an example.

int ASRMAgent::command(int argc, const char xconst *argv) {
Tcl& tcl = Tcl::instance();
if (argc == 3) {

if (strcmp(argv[l], "distance?") == 0) {
int sender = atoi(argv[2]);
SRMinfo * sp = get_state(sender);
tcl.tesultf("%f", sp->distance);
return TCL_OK;

}
}

return (SRMAgent::command(argc, argv));

We can make the following observations from this piece ofecod

e The function is called with two arguments:
The first argumentafrgc) indicates the number of arguments specified in the comniaadd the interpreter.
The command line arguments vectardv) consists of
—argv[0] contains the name of the methodmid".
—argv[l] specifies the desired operation.
— If the user specified any arguments, then they are placahw{2...(argc - 1)]
The arguments are passed as strings; they must be conwetteddppropriate data type.

o If the operation is successfully matched, the match shaatlarm the result of the operation using methods described
earlier (Sectior??).

o command) itself must return eitheFCL_OKor TCL_ERRORo indicate success or failure as its return code.

o Ifthe operationis not matched in this method, it must inviekparent’s command method, and return the corresponding
result.

This permits the user to concieve of operations as havingdhnge inheritance properties as instance procedures or
compiled methods.

In the event that thisommandmethod is defined for a class with multiple inheritance, ttegpammer has the liberty
to choose one of two implementations:

1) Either they can invoke one of the paremsmmandmethod, and return the result of that invocation, or

2) They can each of the parentemmandmethods in some sequence, and return the result of the fistation that
is successful. If none of them are successful, then theyldheturn an error.

In our document, we call operations executed througttdmemand) instproc-likes. This reflects the usage of these opera-
tions as if they were OTcl instance procedures of an objett;dn be very subtly different in their realisation and @sag

19

3.5 Class TclClass

This compiled classcfass TclClass) is a pure virtual class. Classes derived from this base glasvide two functions:
construct the interpreted class hierarchy to mirror the mited class hierarchy; and provide methods to instantiate n
TclObjects. Each such derived class is associated withtacplar compiled class in the compiled class hierarchy, cenl
instantiate new objects in the associated class.

As an example, consider a class such as the &aseTcpClass . Itis derived from clas§cIClass , and is associated
with the classRenoTcpAgent . It will instantiate new objects in the claBenoTcpAgent . The compiled class hierarchy
for RenoTcpAgent is that it derives fromTcpAgent , that in turn derives fromhgent , that in turn derives (roughly) from
TclObject . RenoTcpClass is defined as

static class RenoTcpClass: public TclClass {
public:
RenoTcpClass() : TclClass("Agent/TCP/Reno") {}
TclObject * create(int argc, const char xconst * argv) {
return (new RenoTcpAgent());

}

} class_reno;
We can make the following observations from this definition:

1. The class defines only the constructor, and one additioatiod, tacreate instances of the associated TclObject.

2. nswill execute theRenoTcpClass constructor for the static variabbdass_reno , when it is first started. This sets
up the appropriate methods and the interpreted class bigrar

3. The constructor specifies the interpreted class expliag Agent/TCP/Reno . This also specifies the interpreted
class hierarchy implicitly.
Recall that the convention insis to use the character slash (/) is a separator. For angngélassA/B/C/D , the
classA/B/C/D is a sub-class oA/B/C , that is itself a sub-class &{/B , that, in turn, is a sub-class éf Aitself is a
sub-class off clObject
In our case above, the TclClass constructor creates thmesedAgent/TCP/Reno sub-class oAgent/TCP sub-
class ofAgent sub-class offclObject

4. This class is associated with the cl&noTcpAgent ; it creats new objects in this associated class.
5. TheRenoTcpClass::create method returns TclObjects in the cld&®snoTcpAgent .

6. When the user specifieew Agent/TCP/Reno , the routineRenoTcpClass::create is invoked.
7

. The arguments vectoaigv) consists of
—argv[0] contains the name of the object.

— argv[1...3] contain$self , $class , and$proc .Sincecreate is called through the instance procedure
create-shadow ,argv[3] containscreate-shadow

—argv[4] contain any additional arguments (passed as a string)ged\y the user.
Theclass Trace illustrates argument handling by TclClass methods.

class TraceClass : public TclClass {
public:

20

TraceClass() : TclClass("Trace") {}
TclObject * create(int args, const char xconst * argv) {
if (args >= 5)
return (new Trace(*argv[4]));
else
return NULL;
}

} trace_class;

A new Trace object is created as

new Trace "X"

Finally, the nitty-gritty details of how the interpretedhsk hierarchy is constructed:

g A W N P

(o2}

. The object constructor is executed whnesfirst starts.

. This constructor calls the TclClass constructor withrtame of the interpreted class as its argument.

. The TclClass constructor stores the name of the clasdnaeds this object into a linked list of the TclClass obgect
. During initialization of the simulatoffcl_Applnit (void) invokesTclClass::bind (void)

. For each object in the list of TclClass objedig)d () invokesregister {}, specifying the name of the interpreted

class as its argument.

. register {} establishes the class hierarchy, creating the classgsafe required, and not yet created.

. Finally,bind () defines instance proceduragate-shadow anddelete-shadow for this new class.

3.5.1 How to Bind Static C++ Class Member Variables

In Section??, we have seen how to expose member variables of a C++ obfedDifcl space. This, however, does not apply
to static member variables of a C++ class. Of course, one me@yecan OTcl variable for the static member variable ofyever
C++ object; obviously this defeats the whole meaning ofstaembers.

We cannot solve this binding problem using a similar soluéig binding in TclObject, which is based on InstVar, because
InstVars in TclCL require the presence of a TclObject. Hogrewe can create a method of the corresponding TclClass and
access static members of a C++ class through the methodsamfriesponding TclClass. The procedure is as follows:

1.
2.
3.

Create your own derived TclClass as described above;
Declare methodsind () andmethod () in your derived class;

Create your binding methods in the implementation of ywod () with add_method("your_method") , then
implement the handler imethod () in a similar way as you would do ificlObject::command (). Notice that the
number of arguments passedicClass::method () are different from those passediolObject::command ().
The former has two more arguments in the front.

As an example, we show a simplified versiorRafcketHeaderClass in ~ngpacket.cc. Suppose we have the following
classPacket which has a static variabledrlen_ that we want to access from OTcl:

21

class Packet {

static int hdrlen_;

Then we do the following to construct an accessor for thisade:

class PacketHeaderClass : public TcIClass {

protected:
PacketHeaderClass(const char * classname, int hdrsize);
TclObject * create(int argc, const char *CONst * argv);
/ * These two implements OTcl class access methbds
virtual void bind();
virtual int method(int argc, const char *Const * argv);
h
void PacketHeaderClass::bind()
{
/ = Call to base class bind() must precede add_methot()
TclClass::bind();
add_method("hdrlen");
}
int PacketHeaderClass::method(int ac, const char *const * av)
{
Tcl& tcl = Tcl:instance();
/ * Notice this argument translation; we can then handle thenif iasTclObject::command(3 /
int argc = ac - 2;
const char =*const * argv = av + 2;
if (argc == 2) {
if (strcmp(argv[l], "hdrlen”) == 0) {
tcl.resultf("%d", Packet::hdrlen_);
return (TCL_OK);
}
} else if (argc == 3) {
if (strcmp(argv[l], "hdrlen”) == 0) {
Packet::hdrlen_ = atoi(argv[2]);
return (TCL_OK);
}
}
return TclClass::method(ac, av);
}

After this, we can then use the following OTcl command to as@nd change valuesBacket::hdrlen_

PacketHeader hdrlen 120
set i [PacketHeader hdrlen]

22

3.6 Class TclCommand

This class¢lass TclCommand) provides just the mechanism fasto export simple commands to the interpreter, that can
then be executed within a global context by the interprdteere are two functions defined imgmisc.cc:ns-random and
ns-version . These two functions are initialized by the functiait_misc (void), defined in agmisc.cc;init_misc

is invoked byTcl_Applnit (void) during startup.

e class VersionCommand defines the commanas-version . It takes no argument, and returns the curment
version string.

% ns-version ;# get the current version
2.0al12

e class RandomCommand defines the commanus-random . With no argumentns-random returns an integer,
uniformly distributed in the intervdD, 23! — 1].

When specified an argument, it takes that argument as the Hebis seed value is 0, the command uses a heuristic
seed value; otherwise, it sets the seed for the random nugeberator to the specified value.

% ns-random ;# return a random number

2078917053

% ns-random O ;# set the seed heuristically
858190129

% ns-random 23786 ;# set seed to specified value
23786

Note that, it is generally not advisable to construct topelecommands that are available to the uddte now describe how
to define a new command using the exangbdess say_hello . The example defines the commadnid to print the string
“hello world”, followed by any command line arguments siiieci by the user. For example,

% hi this is ns [ns-version]
hello world, this is ns 2.0al12

1. The command must be defined within a class derived fromléss TclCommand . The class definition is:
class say hello : public TclCommand {
public:

say_hello();
int command(int argc, const char *const * argv);

2. The constructor for the class must invoke the TclCommamdtructor with the command as argumer;

say_hello() : TclCommand("hi") {}

TheTclCommand constructor sets up "hi" as a global procedure that inv@lkéSommand::dispatch_cmd ().

3. The methodommand)) must perform the desired action.

The method is passed two arguments. The first arguraegt, , contains the number of actual arguments passed by
the user.

23

The actual arguments passed by the user are passed as aelargaator &rgv) and contains the following:

—argv[0] contains the name of the commaihd §.

—argv[l...(argc - 1)]
command) is invoked bydispatch_cmd ().

#include <streams.h>

int say_hello::command(int argc, const char
cout << "hello world:";
for (int i = 1; i < argc; i++)
cout << ' ' << argvli];
cout << ' \ n}
return TCL_OK;
}

4. Finally, we require an instance of this clagslCommand instances are created in the routing_misc

new say_hello;

Note that there used to be more functions suchsat
functions have been subsumed into existing classes. Iicplan ns-at
TclObject. These functions are defined imsftcl/lib/ns-lib.tcl.

% set ns [new Simulator]
_ol

% $ns now

0

% $ns at ...

3.7 Class EmbeddedTcl

contains additional arguments specified on the commandbiiribe user.

/ * because we are using stream KO

xconst * argv) {

(void).

andns-now that were accessible in this manner. Most of these

andns-now are accessible through the scheduler

get new instance of simulator
;# query simulator for current time

;# specify at operations for simulator

nspermits the development of functionality in either comgit®de, or through interpreter code, that is evaluated @ liza-
tion. For example, the scriptgelcl/tcl-object.tcl or the scripts inrgtcl/lib. Such loading and evaluation of scripts is done

through objects in thelass EmbeddedTcl

The easiest way to extemis to add OTcl code to eithertelcl/tcl-object.tcl or through scripts in theng'tcl/lib directory.
Note that, in the latter casessources ngdtcl/lib/ns-lib.tcl automatically, and hence the prograer must add a couple of lines
to this file so that their script will also get automaticalbusced bynsat startup. As an example, the filagtcl/mcast/srm.tcl
defines some of the instance procedures to run SRMnéfictlib/ns-lib.tcl, we have the lines:

source tcl/mcast/srm.tcl

to automatically get srm.tcl sourced hgat startup.

Three points to note with EmbeddedTcl code are that fir§ttlaei code has an error that is caught during the eval, tisevill
not run. Secondly, the user can explicitly override any eftbde in the scripts. In particular, they can re-source titiese

24

script after making their own changes. Finally, after addime scripts to rdtcl/lib/ns-lib.tcl, and every time thereafter that
they change their script, the user must recompsiéor their changes to take effect. Of course, in most caghs user can
source their script to override the embedded code.

The rest of this subsection illustrate how to integratevittlial scripts directly intas. The first step is convert the script into
an EmbeddedTcl object. The lines below expand ns-lib.tdl@eate the EmbeddedTcl object instance cadleds_lib

tclsh bin/tcl-expand.tcl tcl/lib/ns-lib.tcl | \
.[Tclltcl2c++ et_ns_lib > gen/ns_tcl.cc

The script, Agbin/tcl-expand.tcl expandss-lib.tcl by replacing alsource lines with the corresponding source files.
The program, telcl/tcl2cc.c, converts the OTcl code into an equivalent Embedddl objectet_ns_lib

During initialization, invoking the methoBEmbeddedTcl::load explicitly evaluates the array.

— ~tclcl/tcl-object.tcl is evaluated by the methadl::init (void); Tcl_Applnit () invokesTcl::Init (). The
exact command syntax for the load is:

et_tclobject.load();

— Similarly, ~ngitcl/lib/ns-lib.tcl is evaluated directly bycl_Applnit in ~ngns_tclsh.cc.

et_ns_lib.load();

3.8 Class InstVar

This section describes the internals of thess InstVar . This class defines the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified i@stance variable in the equivalent interpreted objéhe
binding is set up such that the value of the variable can bersatcessed either from within the interpreter, or from imith

the compiled code at all times.

There are five instance variable classd#dass InstVarReal ,class InstVarTime ,class InstvVarBandwidth ,
class InstVarint , andclass InstVarBool , corresponding to bindings for real, time, bandwidth, gete and
boolean valued variables respectively.

We now describe the mechanism by which instance variabdesaup. We use thetass InstVarReal to illustrate the
concept. However, this mechanism is applicable to all fipesyof instance variables.

When setting up an interpreted variable to access a membable the member functions of the class InstVar assunte tha
they are executing in the appropriate method executioreatirtherefore, they do not query the interpreter to deteenthe
context in which this variable must exist.

In order to guarantee the correct method execution cordexdriable must only be bound if its class is already estiabdls
within the interpreter, and the interpreter is currentlgiging on an object in that class. Note that the former reguhat
when a method in a given class is going to make its variablessatble via the interpreter, there must be an associated

4The few places where this might not work are when certairatsés might have to be defined or undefined, or otherwise tift sontains code other
than procedure and variable definitions and executes adtioectly that might not be reversible.

25

class TclClass (Sectidh?) defined that identifies the appropriate class hierarchiedrterpreter. The appropriate method
execution context can therefore be created in one of two ways

An implicit solution occurs whenever a new TclObject is ¢eghwithin the interpreter. This sets up the method exeoutio
context within the interpreter. When the compiled shadoyectof the interpreted TclObject is created, the constnufctr
that compiled object can bind its member variables of thailto interpreted instance variables in the context ofthsly
created interpreted object.

An explicit solution is to define &ind-variables operation within acommand function, that can then be invoked
via thecmd method. The correct method execution context is estaldigherder to execute themd method. Likewise,

the compiled code is now operating on the appropriate shadgect, and can therefore safely bind the required member
variables.

An instance variable is created by specifying the name ofrttegpreted variable, and the address of the member variabl
the compiled object. The constructor for the base clas¥anstreates an instance of the variable in the interpretertlaen
sets up a trap routine to catch all accesses to the variaiolegh the interpreter.

Whenever the variable is read through the interpreterréperoutine is invoked just prior to the occurrence of thelréhe
routine invokes the appropriaget function that returns the current value of the variable.sMalue is then used to set the
value of the interpreted variable that is then read by therpreter.

Likewise, whenever the variable is set through the intagpyéhe trap routine is invoked just after to the write is gdeted.

The routine gets the current value set by the interpreterjrarokes the appropriatet function that sets the value of the
compiled member to the current value set within the intagore

26

Part |l

Simulator Basics

27

Chapter 4

The Class Simulator

The overall simulator is described by a Tthss Simulator . It provides a set of interfaces for configuring a simulation
and for choosing the type of event scheduler used to drivsithelation. A simulation script generally begins by cregtan
instance of this class and calling various methods to creades, topologies, and configure other aspects of the dionla
A subclass of Simulator calle@ldSim is used to supporisvl backward compatibility.

The procedures and functions described in this chapter eafound in ndtcl/lib/ns-lib.tcl, ~ngscheduler.{cc,h}, and,
~ngheap.h.

4.1 Simulator Initialization

When a new simulation object is created in tcl, the inititian procedure performs the following operations:

o initialize the packet format (callsreate_packetformat)
e create a scheduler (defaults to a calendar scheduler)

e create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets witpackets used by the entire simulation. It is described irerdetail

in the following chapter on packets (Chap®). The scheduler runs the simulation in an event-driven raaand may be
replaced by alternative schedulers which provide somediffarent semantics (see the following section for moreaet
The null agent is created with the following call:

set nullAgent_ [new Agent/Null]

This agent is generally useful as a sink for dropped packeds a destination for packets that are not counted or redorde

4.2 Schedulers and Events

The simulator is an event-driven simulator. There are priséour schedulers available in the simulator, each ofclhs
implemented using a different data structure: a simpleeiihlist, heap, calendar queue (default), and a specialdgibed

28

“real-time”. Each of these are described below. The scleduins by selecting the next earliest event, executing it to
completion, and returning to execute the next event.Unitroé used by scheduler is seconds. Presently, the simutator
single-threaded, and only one event in execution at anyndivee. If more than one event are scheduled to execute at the
same time, their execution is performed on the first schedulérst dispatched manner. Simultaneous events are not re-
ordered anymore by schedulers (as it was in earlier versams all schedulers should yeild the same order of dispagchi
given the same input.

No partial execution of events or pre-emption is supported.

An evenigenerally comprises a “firing time” and a handler functioheBctual definition of an event is found ing'scheduler.h:

class Event {

public:
Event * next_; [* event listx/
Handler * handler_; [/ * handler to call when event ready
double time_; / = time at which event is ready/
int uid_; / * unique ID*/
Event() : time_(0), uid_(0) {}

¥

| *

* The base class for all event handlers. When an event’s stdabdu
* time arrives, it is passed to handle which must consume it.
* |.e., if it needs to be freed it, it must be freed by the handler.

* |
class Handler {
public:
virtual void handle(Event * event);
2

Two types of objects are derived from the batess Event : packets and “at-events”. Packets are described in detail
in the next chapter (Chapt@f). An at-event is a tcl procedure execution scheduled torata particular time. This is
frequently used in simulation scripts. A simple example @#tit is used is as follows:

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 "$self complete_sim"

This tcl code fragment first creates a simulation object) ttieanges the default scheduler implementation to be hasgdb
(see below), and finally schedules the funct&self complete_sim to be executed at time 300.5 (seconds)(Note that
this particular code fragment expects to be encapsulatad object instance procedure, where the appropriate refeite
$self is correctly defined.). At-events are implemented as ewshese the handler is effectively an execution of the tcl
interpreter.

4.2.1 The List Scheduler

The list schedulerdlass Scheduler/List) implements the scheduler using a simple linked-list $tnec The list is
kept in time-order (earliest to latest), so event insertod deletion require scanning the list to find the appropmsmtry.
Choosing the next event for execution requires trimminditiseentry off the head of the list. This implementation grees
event execution in a FIFO manner for simultaneous events.

29

4.2.2 the heap scheduler

The heap scheduleclass Scheduler/Heap) implements the scheduler using a heap structure. Thistatauis su-
perior to the list structure for a large number of events nasiition and deletion times are @(log n) for n events. This
implementation imsv2 is borrowed from the MaRS-2.0 simulat@t;[it is believed that MaRS itself borrowed the code from
NetSim [?], although this lineage has not been completely verified.

4.2.3 The Calendar Queue Scheduler

The calendar queue schedulelags Scheduler/Calendar) uses a data structure analogous to a one-year desk cal-
endar, in which events on the same month/day of multiplesyean be recorded in one day. It is formally described]n [
and informally described in Jain (p. 410)]] The implementation of Calendar queuessv2 was contributed by David
Wetherall (presently at MIT/LCS).

The calendar queue scheduler sins@2.33 is improved by the following three algorithms:

¢ A heuristic improvement that changes the linear searcltiiine in enqueue operations. The original implementation
searches the events in a bucketimonological orderto find the in-order spot for the event that is being inserfdte
new implementation searches the buckeeirerse chronological orddsecause the event being inserted is usually later
than most of the events that are already in the bucket.

¢ A new bucket width estimation that uses the average intef@tqueued evengs the estimation of bucket width. Itis
stated in P] that the optimal bucket width should be thgerage inverval of all events in the futur@he original
implementation uses the average intervalfuttire events currently in the most crowded bucketthe estimation.
This estimation is unstable because it is very likely thahynture events will be inserted into the bucket after this
estimation, significantly changing the averaged eventvatén the bucket. The new implementation uses the observed
event interval in the past, which will not change, to estertae event interval in future.

e SNOOPy Calendar Queue: a Calendar queue variant that dgaéyrtunes the bucket width according to the cost
trade-off between enqueue operation and dequeue operatim SNOOPyY queue improvement is described?in [
In this implementation, there is one tcl parametdjust_new_width_interval specifying the interval with
which the SNOOPy queue should re-calculate the bucket wi8ttting this parameter to 0 turns off the SNOOPy
queue algorithm and degrades the scheduler back to thealri@alendar Queue. In general, normal simulation users
are not expected to change this parameter.

The details of these improvements are described]in [

The implementation of these three improvements was canétibby Xiaoliang (David) Wei at Caltech/NetLab.

4.2.4 The Real-Time Scheduler

The real-time scheduleclass Scheduler/RealTime) attempts to synchronize the execution of events with tiead-

It is currently implemented as a subclass of the list schadurhe real-time capability in ns is still under developityen
but is used to introduce ams simulated network into a real-world topology to experimetith easily-configured network
topologies, cross-traffic, etc. This only works for relatiwvslow network traffic data rates, as the simulator musttde &
keep pace with the real-world packet arrival rate, and yrigkronization is not presently enforced.

30

4.2.5 Precision of the scheduler clock used in ns

Precision of the scheduler clock can be defined as the sitiltesscale of the simulator that can be correctly represkn
The clock variable for ns is represented by a double. As pelERE std for floating numbers, a double, consisting of 6g bit
must allocate the following bits between its sign, exporent mantissa fields.

sign exponent mantissa
1 bit 11 bits 52 bits

Any floating number can be represented in the fo@"™) where X is the mantissa and n is the exponent. Thus the pacis
of timeclock in ns can be defined as/2(52)). As simulation runs for longer times the number of remairbits to represent
the time educes thus reducing the accuracy. Given 52 bitawsafely say time upto aroun2f¢0)) can be represented with
considerable accuracy. Anything greater than that mighbawery accurate as you have remaining 12 bits to represent t
time change. HoweveR(40)) is a very large number and we donot anticipate any problearding precision of time in ns.

4.3 Other Methods

TheSimulator class provides a number of methods used to set up the sionuldtiney generally fall into three categories:
methods to create and manage the topology (which in turnistsraf managing the nodes (Chap®) and managing the
links (Chapter??)), methods to perform tracing (Chap?), and helper functions to deal with the scheduler. The Valhg

is a list of the non-topology related simulator methods:

Simulator instproc now ;# return scheduler’s notion of current time
Simulator instproc at args #H schedule execution of code at specified time
Simulator instproc cancel args ;# cancel event
Simulator instproc run args ;# start scheduler
Simulator instproc halt ;# stop (pause) the scheduler
Simulator instproc flush-trace ;# flush all trace object write buffers
Simulator instproc create-trace type files src dst H create trace object
Simulator instproc create_packetformat # set up the simulator’s packet format

31

4.4 Commands at a glance

Synopsis:

ns <otclfile> <arg> <arg>..

Description:

Basic command to run a simulation script in ns.

The simulator (ns) is invoked via the ns interpreter, an exte
vanilla otclsh command shell. A simulation is defined by a OT

(file). Several examples of OTcl scripts can be found under
directory.

The following is a list of simulator commands commonly used i
scripts:
set ns_ [new Simulator]

This command creates an instance of the simulator object.

set now [$ns_ now]

The scheduler keeps track of time in a simulation. This retur
notion of current time.

$ns_ halt

This stops or pauses the scheduler.

$ns_ run

This starts the scheduler.

$ns_ at <time> <event>

This schedules an <event> (which is normally a piece of code)
at the specified <time>.

e.g $ns_ at $opt(stop) "puts NS EXITING..” ; $ns_ halt"
or, $ns_ at 10.0 "$ftp start"

32

nsion of the
cl script
ns/tcl/ex

n simulation

ns scheduler’s

to be executed

$ns_ cancel <event>

Cancels the event. In effect, event is removed from schedule
ready to run events.

$ns_ create-trace <type> <file> <src> <dst> <optional arg:
This creates a trace-object of type <type> between <src> and
and attaches trace-object to <file> for writing trace-outp

as "nam", this creates nam tracefiles; otherwise if op is not
tracefiles are created on default.

$ns_ flush-trace

Flushes all trace object write buffers.

$ns_ gen-map

This dumps information like nodes, node components, links e
given simulation. This may be broken for some scenarios (lik
$ns_ at-now <args>

This is in effect like command "$ns_ at $now $args". Note that
may not work because of tcl's string number resolution.

These are additional simulator (internal) helper function

for developing/changing the ns core code) :

$ns_ use-scheduler <type>

Used to specify the type of scheduler to be used for simulatio
types of scheduler available are List, Calendar, Heap and Re
Calendar is used as default.

$ns_ after <delay> <event>

Scheduling an <event> to be executed after the lapse of time <

$ns_ clearMemTrace

Used for memory debugging purposes.

$ns_ is-started

This returns true if simulator has started to run and false if

33

r's list of

op>

<dst> objects
uts. If op is defined
defined, ns

tc created for a
e wireless).

this function

s (normally used

n. The different

alTime. Currently

delay>.

not.

$ns_ dumpq

Command for dumping events queued in scheduler while schedu ler is halted.

$ns_ create_packetformat

This sets up simulator's packet format.

34

Chapter 5

Nodes and Packet Forwarding

This chapter describes one aspect of creating a topologg ire., creating the nodes. In the next chapter (Chap®yrwe
will describe second aspect of creating the topolagy,connecting the nodes to form links.

Recall that each simulation requires a single instance etldss Simulator to control and operate that simulation.
The class provides instance procedures to create and mtreatgmpology, and internally stores references to eacheaiém
of the topology. We begin by describing the procedures inctaes Simulator (Sectio®?). We then describe the instance
procedures in the class Node (Sectk#) to access and operate on individual nodes. We concludedsttiled descriptions
of the Classifier (Sectio®?) from which the more complex node objects are formed.

The procedures and functions described in this chapteredound in -ngtcl/lib/ns-lib.tcl, -ngtcl/lib/ns-node.tcl,
~ngtcl/lib/ns-rtmodule.tcl, Agrtmodule.{cc,h}, ngclassifier.{cc, h}, ndclassifier-addr.cc,rgclassifier-mcast.cc,ngclassifier-
mpath.cc, and, rgreplicator.cc.

5.1 Node Basics

The basic primitive for creating a node is

set ns [new Simulator]
$ns node

The instance procedursode constructs a node out of more simple classifier objects (@e@?). The Node itself is a
standalone class in OTcl. However, most of the componeriteaiode are themselves TclObjects. The typical structime o
(unicast) node is as shown in Figut®2 This simple structure consists of two TclObjects: an asslcdassiferglassifer_)
and a port classifierdfnux_). The function of these classifiers is to distribute incognpackets to the correct agent or
outgoing link.

All nodes contain at least the following components:
e an address dd_ , monotonically increasing by 1 (from initial value 0) acsdbe simulation namespace as nodes are
created,

¢ alist of neighborsifeighbor_),

35

I '' —
- NODE Port @ I
' Classifier |
| |
| j
| |
= dmux > |
t
i Addr agents_ !
. Classifier, |
| |
Node entry O |
entry |
|
classifier_ I
!
!
!
|

Figure 5.1: Structure of a Unicast Node. Notice that entg/simply a label variable instead of a real object, e.g., the
classifier_.

e alist of agentsggent_),
e anode type identifiempdetype_), and

e arouting module (described in Sectid@below)

By default, nodes imsare constructed for unicast simulations. In order to enahiiticast simulation, the simulation should
be created with an option “-multicast on”, e.qg.:

set ns [new Simulator -multicast on]

The internal structure of a typical multicast node is showRigure??.
When a simulation uses multicast routing, the highest bitefaddress indicates whether the particular address idtizast

address or an unicast address. If the bit is 0, the addresssesyis a unicast address, else the address representicashul
address.

36

IMULTICAST dmux @
% " /Q\.g
classifier
agents_.
<S1,G1>

Replicators

I
I
I
!
!
I
Node entry
—p —
o

1 switch

Multicast
Classifier

<S2,G2>

multiclassifier

Figure 5.2: Internal Structure of a Multicast Node.

5.2 Node Methods: Configuring the Node

Procedures to configure an individual node can be classifted i

— Control functions

— Address and Port number management, unicast routingifunsct
— Agent management

— Adding neighbors

We describe each of the functions in the following paragsaph

Control functions

1. $node entry returns the entry point for a node. This is the first elemeritlwhvill handle packets arriving at that
node.

37

The Node instance variablentry_ , stores the reference this element. For unicast nodesstiie address classifier
that looks at the higher bits of the destination address. iff$tance variable;lassifier_ contains the reference
to this classifier. However, for multicast nodes, the entiinpis theswitch_ which looks at the first bit to decide
whether it should forward the packet to the unicast classiethe multicast classifier as appropriate.

2. $node reset will reset all agents at the node.

Address and Port number management The procedur&node id returns the node number of the node. This number
is automatically incremented and assigned to each nodesati@n by the class Simulator methd&hs node .The class
Simulator also stores an instance variable dirbipde , indexed by the node id, and contains a reference to the nide w
that id.

The procedur&node agent (port) returns the handle of the agent at the specified port. If natagehe specified port
number is available, the procedure returns the null string.

The procedurelloc-port returns the next available port number. It uses an instaagable,np_, to track the next
unallocated port number.

The proceduresadd-route andadd-routes , are used by unicast routing (Chap®) to add routes to populate the
classifier_ The usage syntax i$node add-route (destination id) (TclObject). TclObject is the
entry ofdmux_, the port demultiplexer at the node, if the destination ithessame as this node’s id, it is often the head of a
link to send packets for that destination to, but could alsthe the entry for other classifiers or types of classifiers.

$node add-routes (destination id) (TclObjects) is used to add multiple routes to the same destination that
must be used simultaneously in round robin manner to spreatdandwidth used to reach that destination across all links
equally. Itis used only if the instance varialheiltiPath_ is setto 1, and detailed dynamic routing strategies ardacef
and requires the use of a multiPath classifier. We describartplementation of the multiPath classifier later in thiauter
(Section??); however, we defer the discussion of multipath routinggtier??) to the chapter on unicast routing.

The dual ofadd-routes {} is delete-routes {}. It takes the id, a list ofTclObjects , and a reference to the simula-
tor'snullagent . It removes the TclObjects in the list from the installedtesin the multipath classifier. If the route entry
in the classifier does not point to a multipath classifierrtheéine simply clears the entry frootassifier_ , and installs
thenullagent inits place.

Detailed dynamic routing also uses two additional methdhs:instance proceduigit-routing {} sets the instance
variablemultiPath_ to be equal to the class variable of the same name. It alsoadeference to the route controller
object at that node in the instance variabt@bject . The proceduretObject? {} returns the handle for the route
object at the node.

Finally, the procedurentf-changed {} is invoked by the network dynamics code if a link incident the node changes
state. Additional details on how this procedure is used maudsed later in the chapter on network dynamics (Ch&®er

Agent management Given an(agen}, the procedurattach {} will add the agent to its list ofagents_ , assign a port
number the agent and set its source address, set the tatbetagfent to be itd.e., the node’'sentry {}, and add a pointer
to the port demultiplexer at the noddnfux_) to the agent at the corresponding slot in thmeux__ classifier.

Converselydetach {}will remove the agent fromagents_ , and point the agent’s target, and the entry in the rlbdax_
to nullagent

1j.e., an instance variable of a class that is also an array variabl

38

Tracking Neighbors Each node keeps a list of its adjacent neighbors in its icstaariableneighbor_ . The procedure
add-neighbor {} adds a neighbor to the list. The procedureighbors {} returns this list.

5.3 Node Configuration Interface

NOTE: This API, especially its internal implementation whichnigssy at this point, is still a moving target. It may undergo
significant changes in the near future. However, we will dolmst to maintain the same interface as described in thigeha
In addition, this API currently does not cover all existingdes in the old format, namely, nodes built using inheriéaiand
parts of mobile IP. It is principally oriented towards wiges and satellite simulation. [Sep 15, 2000; updated Judie] 20

Simulator::node-config {} accommodates flexible and modular construction of diéigrnode definitions within the
same base Node class. For instance, to create a mobile npdbleaf wireless communication, one no longer needs a
specialized node creation command, edsgv-create-mobile-node {}; instead, one changes default configuration

parameters, such as

$ns node-config -adhocRouting dsdv

before actually creating the node with the commatias node . Together with routing modules, this allows one to com-
bine “arbitrary” routing functionalities within a singleode without resorting to multiple inheritance and othercfaabject
gimmicks. We will describe this in more detail in Secti®® The functions and procedures relevant to the new node APIs
may be found in adtcl/lib/ns-node.tcl.

The node configuration interface consists of two parts. Tise fiart deals with node configuration, while the second part
actually creates nodes of the specified type. We have alsaatythe latter in Sectid®?®, in this section we will describe the
configuration part.

Node configuration essentially consists of defining theedéfit node characteristics before creating them. They miasist

of the type of addressing structure used in the simulatiefinthg the network components for mobilenodes, turningon o
off the trace options at Agent/Router/MAC levels, selagtine type of adhoc routing protocol for wireless nodes omilegi
their energy model.

As an example, node-configuration for a wireless, mobilesrtbdt runs AODV as its adhoc routing protocol in a hierarahic
topology would be as shown below. We decide to turn tracingtdhe agent and router level only. Also we assume a topology
has been instantiated with "set topo [new Topography]". fidwe-config command would look like the following:

$ns_ node-config -addressType hierarchical \
-adhocRouting AODV \
-llType LL \
-macType Mac/802_11 \
-ifgType Queue/DropTail/PriQueue \
-ifgLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topologylnstance $topo \
-channel Channel/WirelessChannel \

-agentTrace ON \
-routerTrace ON \
-macTrace OFF \

-movementTrace OFF

39

The default values for all the above options are NULL excagtressingType whose default value is flat. The option
-reset can be used to reset all node-config parameters to theirltdefdue.

Note that the config command can be broken down into sepanatelike

$ns_ node-config -addressingType hier
$ns_ node-config -macTrace ON

The options that need to be changed may only be called. Fon@raafter configuring for AODV mobilenodes as shown
above (and after creating AODV mobilenodes), we may condidmr AODV base-station nodes in the following way:

$ns_ node-config -wiredRouting ON

While all other features for base-station nodes and mobilea are same, the base-station nodes are capable of witedjro
while mobilenodes are not. In this way we can change nodégroation only when it is required.

All node instances created after a given node-configurattommand will have the same property unless a part or all of the

node-config command is executed with different parametielega And all parameter values remain unchanged unless they
are expicitly changed. So after creation of the AODV basdiest and mobilenodes, if we want to create simple nodes, we

will use the following node-configuration command:

$ns_ node-config -reset

This will set all parameter values to their default settirfgjieh basically defines configuration of a simple node.

Currently, this type of node configuration is oriented todgawireless and satellite nodes. Table 5.1 lists the aveilayb-
tions for these kinds of nodes. The example scripigtel/ex/simple-wireless.tcl andngtcl/ex/sat-mixed.tcl provide usage
examples.

5.4 The Classifier

The function of a node when it receives a packet is to exantiagacket’s fields, usually its destination address, and on
occasion, its source address. It should then map the vatuas butgoing interface object that is the next downstream
recipient of this packet.

In ns this task is performed by a simpttassifierobject. Multiple classifier objects, each looking at a sfiegiortion of the
packet forward the packet through the node. A nodesinses many different types of classifiers for different psgso This
section describes some of the more common, or simpler,jfiassbjects inns

We begin with a description of the base class in this seclitie.next subsections describe the address classifier {§826)i
the multicast classifier (Sectid??), the multipath classifier (Sectid??), the hash classifier (Secti®?), and finally, the
replicator (Sectior??).

A classifier provides a way to match a packet against somedbgriteria and retrieve a reference to another simulation
object based on the match results. Each classifier contaaideaof simulation objects indexed lot number The job of

a classifier is to determine the slot number associated witeeived packet and forward that packet to the object reéec

by that particular slot. The C+elass Classifier (defined in adclassifier.h) provides a base class from which other
classifiers are derived.

40

option available values default
general

addressType flat, hierarchical flat

MPLS ON, OFF OFF
both satellite- and wireless-oriented

wiredRouting ON, OFF OFF

IType LL, LL/Sat

macType Mac/802_11, Mac/Csma/Ca, Mac/Sat,

Mac/Sat/UnslottedAloha, Mac/Tdma
ifgType Queue/DropTail, Queue/DropTail/PriQueue
phyType Phy/WirelessPhy, Phy/Sat

wireless-oriented
adhocRouting DIFFUSION/RATE, DIFFUSION/PROB, DSDV,

DSR, FLOODING, OMNIMCAST, AODV, TORA, M-DART

PUMA
propType Propagation/TwoRayGround, Propagation/Shadowing
proplnstance Propagation/TwoRayGround, Propagation/Shadowing
antType Antenna/OmniAntenna
channel Channel/WirelessChannel, Channel/Sat
topolnstance <topology file>
mobilelP ON, OFF OFF
energyModel EnergyModel
initialEnergy <value in Joules>
rxPower <value in W>
txPower <value in W>
idlePower <value in W>
agentTrace ON, OFF OFF
routerTrace ON, OFF OFF
macTrace ON, OFF OFF
movementTrace | ON, OFF OFF
errProc UniformErrorProc
FECProc ? ?
toraDebug ON, OFF OFF

satellite-oriented
satNodeType polar, geo, terminal, geo-repeater
downlinkBW <bandwidth value, e.g. "2Mb">

class Classifier :

Table 5.1: Available options for node configuration (se&ib¢hs-lib.tcl).

protected:

public NsObject {

~Classifier();
void recv(Packet *, Handler = h = 0);
Classifier();
void install(int slot, NsObject *);

void clear(int slot);

virtual int command(int argc, const char
virtual int classify(Packet
void alloc(int);

NsObject **
int nslot_;
int maxslot_;

xconst) = O;

slot_; /

41

*const * argv);

* table that maps slot number to a NsObje¢t

Theclassify () method is pure virtual, indicating the claS&ssifier is to be used only as a base class. @hec ()
method dynamically allocates enough space in the tableltbthe specified number of slots. Thestall () andclear ()
methods add or remove objects from the table. dw () method and the OTcl interface are implemented as follows i
~ngclassifier.cc:

| *
* objects only ever see "packet" events, which come either
* from an incoming link or a local agent (i.e., packet source).

* |
void Classifier::recv(Packet * p, Handler =)
{
NsObject * node;
int cl = classify(p);
if (cl < 0 || cl >= nslot_ || (node = slot_[cl]) == 0) {
Tcl::instance().evalf("%s no-slot %d", name(), cl);
Packet::free(p);
return;
node->recv(p);
}
int Classifier::command(int argc, const char *Cconst * argv)
{
Tcl& tcl = Tcl::instance();
if (argc == 3) {
| *
* S$classifier clear $slot
*/

if (strcmp(argv[l], "clear") == 0) {
int slot = atoi(argv[2]);
clear(slot);
return (TCL_OK);

}

| *

* $classifier installNext $node

*/

if (strcmp(argv[l], "installNext") == 0) {
int slot = maxslot_ + 1,
NsObject * node = (NsObject =*)TclObject::lookup(argv[2]);
install(slot, node);
tcl.resultf("%u”, slot);
return TCL_OK;

}
if (strcmp(argv[l], "slot") == 0) {
int slot = atoi(argv[2]);
if ((slot >= 0) || (slot < nslot)) {
tcl.resultf("%s", slot_[slot]->name());
return TCL_OK;
}
tcl.resultf("Classifier: no object at slot %d", slot);
return (TCL_ERROR);

42

}
} else if (argc == 4) {
| *
* S$classifier install $slot $node
*/
if (strcmp(argv[l], "install’) == 0) {
int slot = atoi(argv[2]);
NsObject * node = (NsObject =*)TclObject::lookup(argv[3]);
install(slot, node);
return (TCL_OK);
}
}

return (NsObject::command(argc, argv));

When a classifierecv ()'s a packet, it hands it to thelassify () method. This is defined differently in each type of
classifier derived from the base class. The usual formatithfeclassify () method to determine and return a slot index
into the table of slots. If the index is valid, and points toadid TclObject, the classifier will hand the packet to thajeab
using that object'secv () method. If the index is not valid, the classifier will inkhe instance procedune-slot {} to
attempt to populate the table correctly. However, in theelidassClassifier::no-slot {} prints and error message
and terminates execution.

Thecommand) method provides the following instproc-likes to the imeter:

e clear {(slot}clears the entry in a particular slot.
e installNext { (objech} installs the object in the next available slot, and retuhesslot number.

Note that this instproc-like is overloaded by an instanceedure of the same name that stores a reference to the object
stored. This then helps quick query of the objects instafidte classifier from OTcl.

e slot {(index} returns the object stored in the specified slot.
e install {(index), (objech} installs the specifiedobjec} at the slot(index).

Note that this instproc-like too is overloaded by an inseapcedure of the same name that stores a reference to the
object stored. This is also to quickly query of the objectiaiied in the classifier from OTcl.

5.4.1 Address Classifiers

An address classifier is used in supporting unicast packetafoling. It applies a bitwise shift and mask operation to a
packet’s destination address to produce a slot number. Bh@smber is returned from thelassify () method. The
class AddressClassifier (defined in -ndclassifier-addr.cc) ide defined as follows:

class AddressClassifier : public Classifier {

public:

AddressClassifier() : mask_(~0), shift_(0) {
bind("mask_", (int *)&mask);
bind("shift_", &shift_);

}

protected:
int classify(Packet +xconst p) {

IPHeader +h = IPHeader::access(p->bits());
return ((h->dst() >> shift) & mask);

43

}

nsaddr_t mask_;
int shift_;

The class imposes no direct semantic meaning on a packstisalion address field. Rather, it returns some numbensf bi
from the packet'sist _ field as the slot number used in t@aassifier::recv () method. Themask_ andshift_
values are set through OTcl.

5.4.2 Multicast Classifiers

The multicast classifier classifies packets according th botirce and destination (group) addresses. It maintaictsaangd
hash) table mapping source/group pairs to slot numbers.nVdh@acket arrives containing a source/group unknown to the
classifier, it invokes an Otcl procedux®de::new-group {}to add an entry to its table. This OTcl procedure may use the
methodset-hash to add new (source, group, slot) 3-tuples to the classiftabte. The multicast classifier is defined in
~ngclassifier-mcast.cc as follows:

static class MCastClassifierClass : public TclClass {
public:
MCastClassifierClass() : TclClass("Classifier/Multica st) {}
TclObject * create(int argc, const char xconst * argv) {
return (new MCastClassifier());

} class_mcast_classifier;

class MCastClassifier : public Classifier {

public:
MCastClassifier();
~MCastClassifier();
protected:
int command(int argc, const char *Cconst * argv);
int classify(Packet *const p);
int findslot();
void set_hash(nsaddr_t src, nsaddr_t dst, int slot);
int hash(nsaddr_t src, nsaddr_t dst) const {
u_int32 t s = src " dst;
s "= s >> 16;
s M= s >> §;
return (s & Oxff);
}
struct hashnode {
int slot;
nsaddr_t src;
nsaddr_t dst;
hashnode * next;
2
hashnode * ht_[256];
const hashnode =* lookup(nsaddr_t src, nsaddr_t dst) const;
2
int MCastClassifier::classify(Packet *const pkt)

44

IPHeader =*h = IPHeader::access(pkt->bits());
nsaddr_t src = h->src() >> 8; / * XXX /
nsaddr_t dst = h->dst();
const hashnode =* p = lookup(src, dst);
if (p == 0/) {
+* Didn't find an entry.
* Call tcl exactly once to install one.
+ |f tcl doesn't come through then fail.

*/
Tcl:iinstance().evalf("%s new-group %u %u", name(), src, dst);
p = lookup(src, dst);
if (p == 0)
return (-1);
}
return (p->slot);
}
The class MCastClassifier mplements a chained hash table and applies a hash functibotbrthe packet source

and destination addresses. The hash function returnsahewghber to index thelot_ table in the underlying object. A
hash miss implies packet delivery to a previously-unknovaup; OTcl is called to handle the situation. The OTcl code is
expected to insert an appropriate entry into the hash table.

5.4.3 MultiPath Classifier

This object is devised to support equal cost multipath fodivey, where the node has multiple equal cost routes to time sa
destination, and would like to use all of them simultanepudihis object does not look at any field in the packet. With
every succeeding packet, it simply returns the next filled isl round robin fashion. The definitions for this classifkee in
~ng'classifier-mpath.cc, and are shown below:

class MultiPathForwarder : public Classifier {

public:
MultiPathForwarder() : ns_(0), Classifier() {}
virtual int classify(Packet * const) {
int cl;
int fail = ns_;
do {
cl = ns_++;
ns_ %= (maxslot_ + 1);
} while (slot_[cl] == 0 && ns_ != fail);
return cl;
. }
private:
int ns_; / * next slot to be used. Probably a misnomer?
h

45

5.4.4 Hash Classifier

This object is used to classify a packet as a member of a pkatitow. As their name indicates, hash classifiers use a
hash table internally to assign packets to flows. These tshge used where flow-level information is required (e.g. in
flow-specific queuing disciplines and statistics collegfioSeveral “flow granularities” are available. In partaylpack-

ets may be assigned to flows based on flow ID, destination asidseurce/destination addresses, or the combination of
source/destination addresses plus flow ID. The fields aeddssthe hash classifier are limited to fpe header:src(),

dst(), flowid() (seeip.h).

The hash classifier is created with an integer argumentfgpegithe initial size of its hash table. The current hasHeab
size may be subsequently altered with teeize method (see below). When created, the instance variahlés and
mask__ are initialized with the simulator’s curreNbdeShift andNodeMask values, respectively. These values are retrieved
from theAddrParams object when the hash classifier is instantiated. The haskifilr will fail to operate properly if the
AddrParams structure is not initialized. The following constructors aised for the various hash classifiers:

Classifier/Hash/SrcDest
Classifier/Hash/Dest
Classifier/Hash/Fid
Classifier/Hash/SrcDestFid

The hash classifier receives packets, classifies them aogdadtheir flow criteria, and retrieves the classifiéstindicating

the next node that should receive the packet. In severalroistances with hash classifiers, most packets should beiassb
with a single slot, while only a few flows should be directeskegthere. The hash classifier includededault_ instance
variable indicating which slot is to be used for packets tftahot match any of the per-flow criteria. THefault_ may be

set optionally.

The methods for a hash classifier are as follows:

$hashcl set-hash buck src dst fid slot
$hashcl lookup buck src dst fid
$hashcl del-hash src dst fid

$hashcl resize nbuck

Theset-hash () method inserts a new entry into the hash table within thehtdassifier. Théuck argument specifies
the hash table bucket number to use for the insertion of thtiz.e When the bucket number is not knowbyck may be
specified aguto . Thesrc, dst andfid arguments specify the IP source, destination, and flow |Dsetmatched for
flow classification. Fields not used by a particular classféieg. specifyingrc for a flow-id classifier) is ignored. Ttsdot
argument indicates the index into the underlying slot tablhe baseClassifier object from which the hash classifier is
derived. Thdookup function returns the name of the object associated with iendpuck/src/dst/fid tuple. The
buck argument may bauto , as forset-hash . Thedel-hash function removes the specified entry from the hash table.
Currently, this is done by simply marking the entry as inagtso it is possible to populate the hash table with unusetken
Theresize function resizes the hash table to include the number ofdtsdpecified by the argumenttuck .

Provided no default is defined, a hash classifier will perfarcall into OTcl when it receives a packet which matches no flow
criteria. The call takes the following form:

$obj unknown-flow src dst flowid buck

Thus, when a packet matching no flow criteria is received nlethodunknown-flow of the instantiated hash classifier
object is invoked with the source, destination, and flow iliEérom the packet. In addition, theick field indicates the hash

46

bucket which should contain this flow if it were inserted gs$et-hash . This arrangement avoids another hash lookup
when performing insertions into the classifier when the kttkalready known.

5.4.5 Replicator

The replicator is different from the other classifiers weédescribed earlier, in that it does not use the classifytionc
Rather, it simply uses the classifier as a table sfots; it overloads theecv () method to produce copies of a packet, that
are delivered to alh objects referenced in the table.

To support multicast packet forwarding, a classifier reiogia multicast packet from sour@edestined for grougs computes

a hash functio (.S, G) giving a “slot number” in the classifier's object table. In lizast delivery, the packet must be copied
once for each link leading to nodes subscribe@tminus one. Production of additional copies of the packeerfgmed by
aReplicator class, defined ineplicator.cc

A replicator is not really a packet classifier but

we simply find convenience in leveraging its slot table.
(this object used to implement fan-out on a multicast
* router as well as broadcast LANS)

* * X

* |
class Replicator : public Classifier {
public:
Replicator();
void recv(Packet *, Handler * h = 0);
virtual int classify(Packet * const) {};
protected:
int ignore_;
2
void Replicator::recv(Packet * p, Handler =)
{
IPHeader +iph = IPHeader::access(p->bits());
if (maxslot_ < 0) {
if (lignore_)
Tcl:iinstance().evalf("%s drop %u %u", name(),
iph->src(), iph->dst());
Packet::free(p);
return;
}
for (int i = 0; i < maxslot_; ++i) {
NsObject * o = slot_]i];
if (0 != 0)
o->recv(p->copy());
}
/= we know that maxslot is non-nu/
slot_[maxslot_]->recv(p);
}

As we can see from the code, this class does not really oJgsatkets. Rather, it replicates a packet, one for each entry
its table, and delivers the copies to each of the nodes listdtk table. The last entry in the table gets the “originaltket.
Since theclassify () method is pure virtual in the base class, the replicatéinds an emptglassify () method.

47

5.5 Routing Module and Classifier Organization

As we have seen, asnode is essentially a collection of classifiers. The sintptesle (unicast) contains only one address
classifier and one port classifier, as shown in FigzeWhen one extends the functionality of the node, more diassiare
added into the base node, for instance, the multicast nanfersim Figure??. As more function blocks is added, and each of
these blocks requires its own classifier(s), it becomes itapbfor the node to provide @niforminterface to organize these
classifiers and to bridge these classifiers to the route ctatipn blocks.

The classical method to handle this case is through classitahce. For instance, if one wants a node that supponarbla-

cal routing, one simply derive a Node/Hier from the base rautkoverride the classifier setup methods to insert hieiakch
classifiers. This method works well when the new functiorckdoare independent and cannot be “arbitrarily” mixed. For
instance, both hierarchical routing and ad hoc routing s bwn set of classifiers. Inheritance would require thatave
Node/Hier that supports the former, and Node/Mobile for#ter. This becomes slightly problematic when one wantadn
hoc routing node that supports hierarchical routing. 1a #iiinple case one may use multiple inheritance to solve thtdgm,

but this quickly becomes infeasible as the number of sucttiom blocks increases.

The only method to solve this problem is object compositibime base node needs to define a set of interfaces for classifier
access and organization. These interfaces should

¢ allow individual routing modules that implement their owlagsifiers to insert their classifiers into the node;
¢ allow route computation blocks to populate routes to cfassiin all routing modules that need this information,

e provide a single point of management for existing routinglories.

In addition, we should also define a uniform interface fortimyimodules to connect to the node interfaces, so as togeovi
a systematic approach to extending node functionalityhihgection we will describe the design of routing modulewal
as that of the corresponding node interfaces.

5.5.1 Routing Module
In general, every routing implementationne consists of three function blocks:

e Routing agenéxchanges routing packet with neighbors,

e Route logiases the information gathered by routing agents (or theagtopology database in the case of static routing)
to perform the actual route computation,

o Classifierssit inside a Node. They use the computed routing table toparpacket forwarding.

Notice that when implementing a new routing protocol, onesdoot necessarily implement all of these three blocks. For
instance, when one implements a link state routing proteed simply implement a routing agent that exchanges irditiomn

in the link state manner, and a route logic that does Dijkstrdhe resulting topology database. It can then use the same
classifiers as other unicast routing protocols.

When a new routing protocol implementation includes moemntbne function blocks, especially when it contains its own
classifier, it is desirable to have another object, which alearouting modulethat manages all these function blocks and to
interface with node to organize its classifiers. Fig@Pshows functional relation among these objects. Noticertating
modules may have direct relationship with route computaiocks, i.e., route logic and/or routing agents. Howexaite
computation MAY not install their routes directly throughr@uting module, because there may exists other modules that

48

Routing

Modules
RtModule/Base <«~———| PBase :J Node J
routing add-route ¢ routing add-route < Route
J i . 3 N Computation
delete-route Hier ” delete-route P
transport o transport . - User
attac Mcast »l—> attac < Simulation
detach detach
Management Classifier
. MPLS > .
register insert-entry
unregister install-entry
. \ install-demux

Figure 5.3: Interaction among node, routing module, antimguThe dashed line shows the details of one routing module

are interested in learning about the new routes. This is metjairement, however, because it is possible that some rout
computation is specific to one particular routing modulejifistance, label installation in the MPLS module.

A routing module contains three major functionalities:

1. A routing module initializes its connection to a node tigb register {}, and tears the connection down via
unregister {}. Usually, in register {} a routing module (1) tells the node whether it interestkimowing route
updates and transport agent attachments, and (2) creatdagsifiers and install them in the node (details described
in the next subsection). lanregister {} a routing module does the exact opposite: it deletes itssifiers and
removes its hooks on routing update in the node.

2. If arouting module is interested in knowing routing upegathe node will inform the module via
RtModule::add-route {dst, target} andRtModule::delete-route {dst, nullagent}.

3. If a routing module is interested in learning about tramspgent attachment and detachment in a node, the node wiill
inform the module via
RtModule::attach {agent, port} andRtModule::detach ~ {agent, nullagent}.

There are two steps to write your own routing module:

1. You need to declare the C++ part of your routing module (se#rtmodule.{cc,h}). For many modules this only
means to declare a virtual methadme() which returns a string descriptor of the module. However sce free
to implement as much functionality as you like in C++; if nsgary you may later move functionality from OTcl into
C++ for better performance.

2. You need to look at the above interfaces implemented it#se routing module (seagtcl/lib/ns-rtmodule.tcl) and
decide which one you'll inherit, which one you'll overridend put them in OTcl interfaces of your own module.

There are several derived routing module examplesnigitel/lib/ns-rtmodule.tcl, which may serve as templates yfour
modules.

Currently, there are six routing modules implementedsn

49

Module Name | Functionality

RtModule/Base | Interface to unicast routing protocols. Provide basic fiomality to add/delete route and
attach/detach agents.

RtModule/Mcast | Interface to multicast routing protocols. Its only purp@sestablishes multicast classifiel
All other multicast functionalities are implemented astjimecs of Node. This should bge
converted in the future.

RtModule/Hier | Hierarchical routing. It's a wrapper for managing hieracehclassifiers and route instaj
lation. Can be combined with other routing protocols, ead.hoc routing.

RtModule/Manual| Manual routing.
RtModule/VC Uses virtual classifier instead of vanilla classifier.

RtModule/MPLS | Implements MPLS functionality. This is the only existing dude that is completely self}
contained and does not pollute the Node namespace.

]

Table 5.2: Available routing modules

5.5.2 Node Interface
To connect to the above interfaces of routing module, a nooldges a similar set of interfaces:

¢ In order to know which module to register during creatior Mode class keeps a list of modules as a class variable.
The default value of this list contains only the base routiraplule. The Node class provides the following tprocs
to manipulate this module list:

Node::enable-module {name} If module RtModule/[name] exists, this proc puts [name] into the module
list.

Node::disable-module {name} If [name]is in the module list, remove it from the list

When a node is created, it goes through the module list of thaeMlass, creates all modules included in the list, and
register these modules at the node.

After a node is created, one may use the following instprodist modules registered at the node, or to get a handle of
a module with a particular name:

Node::list-modules {} Return alist of the handles (shadow objects) of all registd modules.

Node::.get-module {name} Return a handle of the registered module whose nantehms the given one. Notice
that any routing module can only have a single instancetergid at any node.

e To allow routing modules register their interests of rogtirpdates, a node object provide the following instprocs:

Node::route-notify {module} Add module into route update notification list.
Node::unreg-route-notify {module} Removemodule from route update notification list.
Similarly, the following instprocs provide hooks on theaattment of transport agents:
Node::port-notify {module} Add module into agent attachment notification list.
Node::unreg-port-notify {module} Removemodule from agent attachment notification list.

Notice that in all of these instprocs, parameatedule should be a module handle instead of a module name.
e Node provides the following instprocs to manipulate itsradd and port classifiers:

— Node::insert-entry {module, clsfr, hook} inserts classifi@sfr into the entry point of the node. It also
associates the new classifier wittodule so that if this classifier is removed laterpdule will be unregistered.
If hook is specified as a number, the existing classifier will be teskinto slothook of the new classifier. In
this way, one may establish a “chain” of classifiers; see f&@@ for an example NOTE: clsfr needs NOT

50

to be a classifier. In some cases one may want to put an agerty atass derived from Connector, at the entry
point of a node. In such cases, one simply supptieget to parametehook .

— Node::install-entry {module, clsfr, hook} differs fromNode::insert-entry in that it deletes the
existing classifier at the node entry point, unregistersaspciated routing module, and installs the new classifier
at that point. Ifhook is given, and the old classifier is connected into a classifiain, it will connect the chain
into slothook of the new classifier. As above,liibok equals taarget , clsfr will be treated as an object
derived from Connector instead of a classifier.

— Node::install-demux {demux, port} places the given classifidemux as the default demultiplexer. If
port is given, it plugs the existing demultiplexer into spairt of the new one. Notice that in either case it does
not delete the existing demultiplexer.

5.6 Commands at a glance

Following is a list of common node commands used in simutesicripts:

$ns_ node [<hier_addr>]

Command to create and return a node instance. If <hier_asldiiwen, assign the node address to be <hier_addr>. Nate tha
the latter MUST only be used when hierarchical addressiegéabled via eitheset-address-format

hierarchical {} or node-config -addressType hierarchical {3

$ns_ node-config -<config-parameter> <optional-val>

This command is used to configure nodes. The different cqpaigmeters are addressingType, different type of the mktwo
stack components, whether tracing will be turned on or nobitalP flag is truned or not, energy model is being used or not
etc. An option -reset maybe used to set the node configurtatibem default state. The default setting of node-configf in®
values are specified, creates a simple node (base class Witll&at addressing/routing. For the syntax details see
Section??.

$node id
Returns the id number of the node.

$node node-addr
Returns the address of the node. In case of flat addressengotte address is same as its node-id. In case of hierarchical
addressing, the node address in the form of a string (vid.31).is returned.

$node reset
Resets all agent attached to this node.

$node agent <port_num>
Returns the handle of the agent at the specified port. If notagéound at the given port, a null string is returned.

$node entry
Returns the entry point for the node. This is first object tratdles packet receiving at this node.

$node attach <agent> <optional:port_num>
Attaches the <agent> to this node. Incase no specific porbeuia passed, the node allocates a port number and binds the
agent to this port. Thus once the agent is attached, it resgigckets destined for this host (node) and port.

$node detach <agent> <null_agent>

This is the dual of "attach" described above. It detacheadaat from this node and installs a null-agent to the post thi
agent was attached. This is done to handle transit packatetdy be destined to the detached agent. These on-the-fly
packets are then sinked at the null-agent.

51

$node neighbors
This returns the list of neighbors for the node.

$node add-neighbor <neighbor_node>
This is a command to adcheighbor_node> to the list of neighbors maintained by the node.

Following is a list of internal node methods:

$node add-route <destination_id> <target>

This is used in unicast routing to populate the classifiee fHnget is a Tcl object, which may be the entrydafux_ (port
demultiplexer in the node) incase tkdestination_id> is same as this node-id. Otherwise it is usually the headeof th
link for that destination. It could also be the entry for atbkassifiers.

$node alloc-port <null_agent>
This returns the next available port number.

$node incr-rtgtable-size
The instance variablgsize is used to keep track of size of routing-table in each nodés ddmmand is used to
increase the routing-table size every time an routingyastadded to the classifiers.

There are other node commands that supports hierarchigagodetailed dynamic routing, equal cost multipath iogit

manual routing, and energy model for mobile nodes. Thesetra methods described earlier can be found in
~ndtcl/lib/ns-node.tcl and rdtcl/lib/ns-mobilenode.tcl.

52

Chapter 6

Links: Simple Links

This is the second aspect of defining the topology. In theipusvchapter (Chapté&?), we had described how to create the
nodes in the topology ins We now describe how to create the links to connect the naas@mplete the topology. In this
chapter, we restrict ourselves to describing the simplatgoipoint links.nssupports a variety of other media, including an
emulation of a multi-access LAN using a mesh of simple lirdesd other true simulation of wireless and broadcast media.
They will be described in a separate chapter. The CBQlIinleissdd from simple links and is a considerably more complex
form of link that is also not described in this chapter.

We begin by describing the commands to create a link in tltisae As with the node being composed of classifiers, a g#mpl
link is built up from a sequence of connectors. We also bridéigcribe some of the connectors in a simple link. We then
describe the instance procedures that operate on the sagouponents of defined by some of these connectors (S&ion
We conclude the chapter with a description the connect@abk$ectior??), including brief descriptions of the common link
connectors.

Theclass Link isa standalone class in OTcl, that provides a few simpleipivies. Theclass SimpleLink provides
the ability to connect two nodes with a point to point limls provides the instance procedwwienplex-link {}to form a
unidirectional link from one node to another. The link isletclass SimpleLink. The following describes the syntaxhef t
simplex link:

set ns [new Simulator]
$ns simplex-link (node0) (nodel) (bandwidth) (delay) (queue_type)

The command creates a link frofnode0) to (nodel), with specified(bandwidth) and(delay) characteristics. The
link uses a queue of typgueue_type). The procedure also adds a TTL checker to the link. Five itstaariables define
the link:
head_ Entry point to the link, it points to the first object in thelin
queue_ Reference to the main queue element of the link. Simple lirdusally
have one queue per link. Other more complex types of links hzax
multiple queue elements in the link.

link_ A reference to the element that actually models the linkeims of the
delay and bandwidth characteristics of the link.
ttl_ Reference to the element that manipulates the ttl in everigia
drophead_ Reference to an object thatis the head of a queue of elenhetti{zrbcess
link drops.
In addition, if the simulator instance variabtraceAllFile_ , is defined, the procedure will add trace elements that

53

head _
—¢—enqT_[—|queue_—> deqT_[—{link_ > ttl >
i N
i drophead * drpT
i

|
|
|
|
I
rcvl _ —>|
|
|
|
|
|
|

Figure 6.1: Composite Construction of a Unidirectionalk.in

track when a packet is enqueued and dequeueddrgne_ . Furthermore, tracing interposes a drop trace elementthfte
drophead_ . The following instance variables track the trace elements

engT_ Reference to the element that traces packets entqtiage_ .

deqT_ Reference to the element that traces packets leapiege_ .

drpT_ Reference to the element that traces packets droppedjuenne_ .
rcvT_ Reference to the element that traces packets received mgiti@ode.

Note however, that if the user enable tracing multiple timeshe link, these instance variables will only store a i&fee to
the last elements inserted.

Other configuration mechanisms that add components to desiing are network interfaces (used in multicast routing),
link dynamics models, and tracing and monitors. We give aflmverview of the related objects at the end of this chapter
(Section??), and discuss their functionality/implementation in atbleapters.

The instance procedudriplex-link {} constructs a bi-directional link from two simplex links.

6.1 Instance Procedures for Links and SimpleLinks

Link procedures The class Link is implemented entirely in Otcl. The OT&impleLink class uses the C++
LinkDelay class to simulate packet delivery delays. The instancegpiares in the class Link are:

54

head {}
queue {}
link {}
up{}

down{}

up?{}
all-connectors {

returns the handle fohead_ .
returns the handle foqueue_ .
returns the handle for the delay elemelik_

set link status to “up” in thedynamics_ element. Also, writes out a trace line to each file
specified through the procedurace-dynamics {}.

As with up{}, set link status to “down” in thedynamics_ element. Also, writes out a trace
line to each file specified through the procedwaee-dynamics {}.

returns status of the link. Statusis “up” or “down”; statis “up” if link dynamics is not enabled.

Apply specified operation to all connectors on the link.m &xample of such usage ligk
all-connectors reset

cost {} setlink costto value specified.
cost? {} returnsthe cost of the link. Default cost of link is 1, if st has been specified earlier.
SimpleLink Procedures The Otclclass SimpleLink implements a simple point-to-point link with an associated

queue and deldy It is derived from the base Otcl class Link as follows:

Class SimpleLink -superclass Link

SimpleLink instproc init { src dst bw delay g { lltype "DelayL ink" } } {
$self next $src $dst
$self instvar link_ queue_ head_ toNode_ ttl_

set queue_ $q

set link_ [new Delay/Link]
$link_ set bandwidth_ $bw
$link_ set delay_ $delay

$queue_ target $link
$link_ target [$toNode_ entry]

SR

XXX

put the ttl checker after the delay

so we don't have to worry about accounting
for ttl-drops within the trace and/or monitor
fabric

set ttl_ [new TTLChecker]
$ttl_ target [$link_ target]
$link_ target $ttl_

Notice that when &impleLink object is created, ne®elay/Link andTTLChecker objects are also created. Note
also that, th&ueue object must have already been created.

There are two additional methods implemented (in OTcl) asgfdhe SimpleLink class:trace andinit-monitor
These functions are described in further detail in the seain tracing (Chapte??).

1The current version also includes an object to examine ttveanke layer “ttl” field and discard packets if the field reastzero.

55

6.2 Connectors

Connectors, unlink classifiers, only generate data for enipient; either the packet is delivered to theget neighbor,
or it is sent to halrop-target_

A connector will receive a packet, perform some functiord deliver the packet to its neighbor, or drop the packet. &her
are a number of different types of connectoragnEach connector performs a different function.

networkinterface labels packets with incoming interfatenitifier—it is used by some multicast routing protocolse Th
class variable “Simulator Numberinterfaces_ 1" telfsto add these interfaces, and then, it is added
to either end of the simplex link. Multicast routing proté&@re discussed in a separate chapter
(Chapter??).

DynaLink Object that gates traffic depending on whetherittleis up or down. It expects to be at the head of the
link, and is inserted on the link just prior to simulationrstdt’s status_ variable control whether
the link is up or down. The description of how the DynaLinkedijis used is in a separate chapter
(Chapter??).

DelayLink Object that models the link’s delay and bandwidhlaracteristics. If the link is not dynamic, then this
object simply schedules receive events for the downstrdgjecbfor each packet it receives at the
appropriate time for that packet. However, if the link is dymic, then it queues the packets internally,
and schedules one receives event for itself for the nextgiablat must be delivered. Thus, if the
link goes down at some point, this objeat&sset () method is invoked, and the object will drop all
packets in transit at the instant of link failure. We disctissspecifics of this class in another chapter
(Chapter??).

Queues model the output buffers attached to a link in a “nealter in a network. Ims they are attached to,
and are considered as part of the link. We discuss the defaijseues and different types of queues
in ndn another chapter (Chapte®).

TTLChecker will decrement the ttl in each packet that it reeg If that ttl then has a positive value, the packet is
forwarded to the next element on the link. In the simple liNKELCheckers are automatically added,
and are placed as the last element on the link, between thg diment, and the entry for the next
node.

6.3 Object hierarchy

The base class used to represent links is called Link. Methmtthis class are listed in the next section. Other linleoty
derived from the base class are given as follows:

e SimpleLink Object A SimpleLink object is used to represestraple unidirectional link. There are no state variables
or configuration parameters associated with this objecthbtis for this class ar&simplelink enable-mcast
<src> <dst>
This turns on multicast for the link by creating an incomirggwiork interface for the destination and adds an outgoing
interface for the source.

$simplelink trace <ns> <file> <optional:op>
Build trace objects for this link and update object linkalj@p is specified as "nam" create nam trace files.

$simplelink nam-trace <ns> <file>
Sets up nam tracing in the link.

$simplelink trace-dynamics <ns> <file> <optional:op>
This sets up tracing specially for dynamic links. <op> abosetting up of nam tracing as well.

56

$simplelink init-monitor <ns> <qtrace> <samplelnterval>
Insert objects that allow us to monitor the queue size oflthis Return the name of the object that can be queried to
determine the average queue size.

$simplelink attach-monitors <insnoop> <outsnoop> <drops noop> <gmon>
This is similar to init-monitor, but allows for specificati@f more of the items.

$simplelink dynamic
Sets up the dynamic flag for this link.

$simplelink errormodule <args>
Inserts an error module before the queue.

$simpleilnk insert-linkloss <args>
Inserts the error module after the queue.

//Other link objects derived from class SimpleLink are FQR,iCBQLIink and IntServLink.
Configuration parameters for FQLink are:

gqueueManagement_The type of queue management used in the link. Default vallzopTail.
No configuration parameters are specified for CBQLink anf8éniLink objects.

e DelayLink Object The DelayLink Objects determine the antafrtime required for a packet to traverse a link. This is
defined to be size/bw + delay where size is the packet sizes biweilink bandwidth and delay is the link propagation
delay. There are no methods or state variables associatiethis object.

Configuration Parameters are:

bandwidth_ Link bandwidth in bits per second.
delay_ Link propagation delay in seconds.

6.4 Commands at a glance

Following is a list of common link commands used in simulatieripts:

$ns_ simplex-link <nodel> <node2> <bw> <delay> <qtype> <ar gs>

This command creates an unidirectional link between noddinade?2 with specified bandwidth (BW) and delay
characteristics. The link uses a queue type of <qtype> apdrdng on the queue type different arguments are passed
through <args>.

$ns_ duplex-link <nodel> <node2> <bw> <delay> <qtype> <arg s>

This creates a bi-directional link between nodel and no@k. procedure essentially creates a duplex-link from two
simplex links, one from nodel to node2 and the other from Bdd@odel. The syntax for duplex-link is same as that of
simplex-link described above.

$ns_ duplex-intserv-link <nl1> <n2> <bw> <dly> <sched> <sig nal> <adc> <args>

This creates a duplex-link between n1 and n2 with queue tipeserv, with specified BW and delay. This type of queue
implements a scheduler with two level services prioritye Type of intserv queue is given by <sched>, with admission
control unit type of <adc> and signal module of type <signal>

$ns_ simplex-link-op <nl1> <n2> <op> <args>
This is used to set attributes for a simplex link. The attiélsumay be the orientation, color, label, or queue-position

$ns_ duplex-link-op <nl> <n2> <op> <args>
This command is used to set link attributes (like orientabbthe links, color, label, or queue-position) for duplakk.

57

$ns_ link-lossmodel <lossobj> <from> <to>
This function generates losses (using the loss model dtgsdaserted in the link between <from> node and <to> node) in
the link that can be visualized by nam.

$ns_ lossmodel <lossobj> <from> <to>
This is used to insert a loss module in regular links.

Following is a list of internal link-related procedures:

$ns_ register-nam-linkconfig <link>
This is an internal procedure used't$fink orient" to register/update the order in which links should be cibate
nam.

$ns_ remove-nam-linkconfig <id1> <id2>
This procedure is used to remove any duplicate links (dafditinks may be created by GT-ITM topology generator).

$link head
Returns the instance variatilead_ for the link. Thehead_ is the entry pont to the link and it points to the first object in
the link.

$link add-to-head <connector>
This allows the <connector> object to be now pointed byttbad_ element in the link, i.e, <connector> now becomes the
first object in the link.

$link link
Returns the instance variabliek_ . Thelink_ is the element in the link that actually models the link imterof delay
and bandwidth characteristics of the link.

$link queue
Returns the instance varialijeeue_ . queue_ is queue elementin the link. There may be one or more queneeks in
a particular link.

$link cost <c>
This sets a link cost of <c>.

$link cost?
Returns the cost value for the link. Default cost of link isteel.

$link if-label?
Returns the network interfaces associated with the linkr{falticast routing).

$link up
This sets the link status to "up". This command is a part ofvogt dynamics support ins

$link down
Similar to up, this command marks the link status as "down".

$link up?
Returns the link status. The status is always "up" as deféliitk dynamics is not enabled.

$link all-connectors op

This command applies the specified operation <op> to all ectams in the link. Like$link all-connectors
reset or$link all-connectors isDynamic

58

$link install-error <errmodel>
This installs an error module after thiek_ element.

In addition to the Link and link-related commands listedadydhere are other procedures to support the specific
requirements of different types of links derived from thedalass "Link" like simple-link (SimpleLink), integrateérvice
(IntServLink), class-based queue (CBQLInK), fair queudl(ihk) and procedures to support multicast routing, sessio,
nam etc. These and the above procedures may be fourgtdfilib(ns-lib.tcl, ns-link.tcl, ns-intserv.tcl, nsamsupp.tcl,
ns-queue.tchngtcl/mcast/(McastMonitor.tcl, ns-mcast.tatlgtcl/session/session.tcl.

59

Chapter 7

Queue Management and Packet Scheduling

Queues represent locations where packets may be held (@patth Packet scheduling refers to the decision procesk use
to choose which packets should be serviced or dropped. Boffmagement refers to any particular discipline used to
regulate the occupancy of a particular queue. At preseppatiis included for drop-tail (FIFO) queueing, RED buffer
management, CBQ (including a priority and round-robin sicier), and variants of Fair Queueing including, Fair Quege
(FQ), Stochastic Fair Queueing (SFQ), and Deficit RoundiR@DRR). In the common case wheredalay element is
downstream from a queue, the queue maplbekeduntil it is re-enabled by its downstream neighbor. This &srfechanism

by which transmission delay is simulated. In addition, qggeemay be forcibly blocked or unblocked at arbitrary times by
their neighbors (which is used to implement multi-queueraggte queues with inter-queue flow control). Packet drops a
implemented in such a way that queues contain a “drop désiniathat is, an object that receives all packets dropped b
queue. This can be useful to (for example) keep statistictropped packets.

7.1 The C++ Queue Class

The Queue class is derived from &onnector base class. It provides a base class used by particular ¢fgdsrived)
gueue classes, as well as a call-back function to implemecking (see next section). The following definitions arepded
in queue.h :

class Queue : public Connector {
public:
virtual void enque(Packet *) = 0;
virtual Packet * deque() = O;
void recv(Packet *, Handler =);
void resume();
int blocked();
void unblock();
void block();
protected:
Queue();
int command(int argc, const char *const * argv);
int glim_; / * maximum allowed pkts in queué
int blocked_;
int unblock_on_resume_; / * unblock g on idle?/
QueueHandler gh_;

60

Theenque anddeque functions are pure virtual, indicating tii@ueue class is to be used as a base class; particular queues
are derived fromQueue and implement these two functions as necessary. Partigutares do not, in general, override the
recv function because it invokes the the particidague anddeque .

The Queue class does not contain much internal state. Often thesgaogas monitoring objects (Chapte®?). Theqlim_
member is constructed to dictate a bound on the maximum qoezgancy, but this is not enforced by Qeeue class
itself; it must be used by the particular queue subclasst®if need this value. Thielocked_ member is a boolean
indicating whether the queue is able to send a packet imredyia its downstream neighbor. When a queue is blockes, it i
able to enqueue packets but not send them.

7.1.1 Queue blocking

A queue may be either blocked or unblocked at any given timene@lly, a queue is blocked when a packet is in transit
between it and its downstream neighbor (most of the timeaifigheue is occupied). A blocked queue will remain blocked as
long as it downstream link is busy and the queue has at leagpacket to send. A queue becomes unblocked only when its
resume function is invoked (by means of a downstream neighbor sdireglit via a callback), usually when no packets are
queued. The callback is implemented by using the followlagsand methods:

class QueueHandler : public Handler {

public:
inline QueueHandler(Queue& q) : queue_(q) {}
void handle(Event x); | = calls queue_.resume() */
private:
Queue& queue_;
%
void QueueHandler::handle(Event *)
{
queue_.resume();
}
Queue::Queue() : drop_(0), blocked (0), gh_(* this)
{
Tcl& tcl = Tcl::instance();
bind("limit_", &glim_);
}
void Queue::recv(Packet * p, Handler)
{
enque(p);
if ('blocked_) {
| *
* We're not block. Get a packet and send it on.
* We perform an extra check because the queue
* might drop the packet even if it was
* previously empty! (e.g., RED can do this.)
*/
p = deque();
if (p!=0){

blocked = 1;
target_->recv(p, &gh_);

61

}
}
void Queue::resume()
{
Packet * p = deque();
if (p!=0)
target_->recv(p, &gh_);
else {
if (unblock_on_resume)
blocked_ = 0;
else
blocked = 1,
}
}

The handler management here is somewhat subtle. When ®noewe object is created, it includes@ueueHandler
object @h_) which is initialized to contain a reference to the n@weue object Queue& QueueHandler::queue_).

This is performed by th@ueue constructor using the expressigh_(*this) . When a Queue receives a packet it calls
the subclass (i.e. queueing discipline-specific) versiath@enque function with the packet. If the queue is not blocked,
it is allowed to send a packet and calls the spedafque function which determines which packet to send, blocks the
queue (because a packet is now in transit), and sends thetgadke queue’s downstream neighbor. Note that any future
packets received from upstream neighbors will arrive toczh#d queue. When a downstream neighbor wishes to cause
the queue to become unblocked it schedules the QueueHartdladle function by passinggh_ to the simulator sched-
uler. Thehandle function invokesresume , which will send the next-scheduled packet downstream [@ank the queue
blocked), or unblock the queue when no packet is ready to e Fhis process is made more clear by also referring to the
LinkDelay::recv () method (Sectiof??).

7.1.2 PacketQueue Class

The Queue class may implement buffer management and scheduling babtdenplement the low-level operations on a
particular queue. ThBacketQueue class is used for this purpose, and is defined as followsqseae.h):

class PacketQueue {
public:
PacketQueue();
int length(); / * queue length in packets */
void enque(Packet * p);
Packet * deque();
Packet * lookup(int n);
/= remove a specific packet, which must be in the queue */
void remove(Packet *);
protected:
Packet * head_;
Packet =+ tail_;
int len_; /I packet count

This class maintains a linked-list of packets, and is comgnased by particular scheduling and buffer management dis-
ciplines to hold an ordered set of packets. Particular sdivegior buffer management schemes may make use of several

62

PacketQueue objects. ThePacketQueue class maintains current counts of the number of packetsihdtlie queue
which is returned by théength () method. Theenque function places the specified packet at the end of the quedie an
updates théen_ member variable. Thdeque function returns the packet at the head of the queue and resribfrom

the queue (and updates the counters), or returns NULL if tleeig is empty. Thiwokup function returns thexith packet
from the head of the queue, or NULL otherwise. Teenove function deletes the packet stored in the given address from
the queue (and updates the counters). It causes an abnoogedm termination if the packet does not exist.

7.2 Example: Drop Tail

The following example illustrates the implementation af @ueue/DropTail object, which implements FIFO scheduling
and drop-on-overflow buffer management typical of mostgmeslay Internet routers. The following definitions deeltre
class and its OTcl linkage:

| *

* A bounded, drop-tail queue

*/

class DropTail : public Queue {

protected:
void enque(Packet *);
Packet * deque();
PacketQueue q_;

The base clas®ueue, from whichDropTail is derived, provides most of the needed functionality. Thapetail queue
maintains exactly one FIFO queue, implemented by includimgbject of thePacketQueue class. Drop-tail implements
its own versions oénque anddeque as follows:

| *
* drop-tail
* |
void DropTail::enque(Packet * p)
{
g_.enque(p);
if (g_.length() >= glim_) {
g_.remove(p);
drop(p);
}
}
Packet * DropTail::deque()
{
return (q_.deque());
}

Here, theenque function first stores the packet in the internal packet gednéch has no size restrictions), and then checks
the size of the packet queue versgllisn_ . Drop-on-overflow is implemented by dropping the packettmesently added

to the packet queue if the limit is reached or exceeddate: in the implementation oénque above, settingllim_ ton
actually means a queue sizemsil . Simple FIFO scheduling is implemented in theque function by always returning the
first packet in the packet queue.

63

7.3 Different types of Queue objects

A queue object is a general class of object capable of holdimypossibly marking or discarding packets as they travel
through the simulated topology. Configuration Parametsesl fior queue objects are:

limit_ The queue size in packets.
blocked_ Set to false by default, this is true if the queue is blockethfile to send a packet to its downstream neighbor).

unblock_on_resume_Set to true by default, indicates a queue should unblocK as¢he time the last packet packet sent
has been transmitted (but not necessarily received).

Other queue objects derived from the base class Queue grdalloFQ, SFQ, DRR, RED, CBQ, CoDel, and SFQ-CoDel
queue objects. Each are described as follows:

e Drop-tail objects: Drop-tail objects are a subclass of Queljects that implement simple FIFO queue. There are no
methods, configuration parameter, or state variables teazecific to drop-tail objects.

e FQ objects: FQ objects are a subclass of Queue objects tp&rmant Fair queuing. There are no methods that are
specific to FQ objects. Configuration Parameters are:

secsPerByte
There are no state variables associated with this object.

e SFQ objects: SFQ objects are a subclass of Queue objectarpletment Stochastic Fair queuing. There are no
methods that are specific to SFQ objects. Configuration Reteamare:
maxqueue_
buckets

There are no state variables associated with this object.

¢ DRR objects: DRR objects are a subclass of Queue objectsntiptement deficit round robin scheduling. These
objects implement deficit round robin scheduling among&dint flows (A particular flow is one which has packets
with the same node and port id OR packets which have the sadeeitialone). Also unlike other multi-queue objects,
this queue object implements a single shared buffer spadts fdifferent flows. Configuration Parameters are:
buckets_ Indicates the total number of buckets to be used for hastzinly ef the flows.
blimit_ Indicates the shared buffer size in bytes.
quantum__ Indicates (in bytes) how much each flow can send during its tur
mask _mask_, when set to 1, means that a particular flow consistaakgts having the same node id (and possibly

different port ids), otherwise a flow consists of packetsmgthe same node and port ids.

o RED objects: RED objects are a subclass of Queue objectsntipdgdment random early-detection gateways. The
object can be configured to either drop or “mark” packets. rélse no methods that are specific to RED objects.
Configuration Parameters are:

bytes Set to "true" to enable “byte-mode” RED, where the size ofvarg packets affect the likelihood of marking
(dropping) packets.

gueue-in-bytes_ Set to "true" to measure the average queue size in bytes threpackets. Enabling this option also
causes thresh_ and maxthresh_ to be automatically scale@ay_pktsize_(see below).

thresh_ The minimum threshold for the average queue size in packets.

64

maxthresh_ The maximum threshold for the average queue size in packets.

mean_pktsize_ A rough estimate of the average packet size in bytes. Useddating the calculated average queue
size after an idle period.

g_weight_ The queue weight, used in the exponential-weighted mowiagpge for calculating the average queue size.
wait_ Set to true to maintain an interval between dropped packets.

linterm_ As the average queue size varies between "thresh_" andlineskt ", the packet dropping probability varies
between 0 and "1/linterm".

setbit_ Setto "true" to mark packets by setting the congestion ataia bit in packet headers rather than drop packets.

drop-tail_ Set to true to use drop-tail rather than randomdrop when tieeig overflows or the average queue size
exceeds "maxthresh_". For a further explanation of thegahlas, see [2].

None of the state variables of the RED implementation aressible.

CBQ objects: CBQ objects are a subclass of Queue objectsriplgment class-based queueing.

$cbg insert <class>
Insert traffic class class into the link-sharing structissogiated with link object cbq.

$cbg bind <cbgclass> <id1> [$id2]
Cause packets containing flow id id1 (or those in the rangeadd?2 inclusive) to be associated with the traffic class
cbqclass.

$cbg algorithm <alg>
Select the CBQ internal algorithm. <alg> may be set to onéasfcestor-only", "top-level”, or "formal".

CBQ/WRR objects: CBQ/WRR obijects are a subclass of CBQ tbfkat implement weighted round-robin scheduling
among classes of the same priority level. In contrast, CB@atdimplement packet-by-packet round-robin scheduling
among classes of the same priority level. ConfigurationrRaters are:

maxpkt_ The maximum size of a packet in bytes. This is used only by @BRR objects in computing maximum
bandwidth allocations for the weighted round-robin schexdu

CoDel objects: CoDel objects are a subclass of Queue oljemtsmplement the Controlled Delay (CoDel) active
gqueue manager. Configuration Parameters are:

interval_ The CoDel measurement interval. This is typically set tolae#hat is on the order of the worst-case RTT
of connections utilizing the queue.
target_ The CoDel latency target. This is an upper bound on accepsbhding queue delay.

SFQ-CoDel objects: SFQ-CoDel objects are a subclass of Qoigjects that implement the Stochastic Flow Queuing
- Controlled Delay queue manager. Configuration Paramaters

interval_ The CoDel measurement interval. This is typically set tolae#hat is on the order of the worst-case RTT
of connections utilizing the queue.

target_ The CoDel latency target. This is an upper bound on accepsdhding queue delay.

maxbins_ The number of SFQ "bins" implemented by the SFQ-CoDel queue.

quantum_ The deficit-round-robin quantum used for dequeuing padkets the SFQ structure.

CBQcLASS OBJECTS
CBQClass objects implement the traffic classes associatbddBQ objects.

$cbgclass setparams <parent> <okborrow> <allot> <maxidle > <prio> <level>
Sets several of the configuration parameters for the CB@cticdéss (see below).

$cbgclass parent <cbqcl|none>
specify the parent of this class in the link-sharing treee plrent may be specified as “none” to indicate this classasta r

65

$cbgclass newallot <a>
Change the link allocation of this class to the specified amh¢n range 0.0 to 1.0). Note that only the specified class is
affected.

$cbgclass install-queue <g>
Install a Queue object into the compound CBQ or CBQ/WRR littkcgure. When a CBQ obiject is initially created, it
includes no internal queue (only a packet classifier anddzdbeg).

Configuration Parameters are:

okborrow_ is a boolean indicating the class is permitted to borrow kadith from its parent.
allot_ is the maximum fraction of link bandwidth allocated to thasd expressed as a real number between 0.0 and 1.0.

maxidle_ is the maximum amount of time a class may be required to haymitkets queued before they are permitted to be
forwarded

priority _ is the class’ priority level with respect to other classdsisvalue may range from 0 to 10, and more than one class
may exist at the same priority. Priority O is the highest ptyo

level_is the level of this class in the link-sharing tree. Leaf roitethe tree are considered to be at level 1; their parents are
at level 2, etc.

extradelay_ increase the delay experienced by a delayed class by thiisgéicne

QUEUE-MONITOR OBJECTS
QueueMonitor Objects are used to monitor a set of packet gteddsrival, departure and drop counters. It also includes
support for aggregate statistics such as average queyetize

$queuemonitor
reset all the cumulative counters described below (agjw@é¢partures, and drops) to zero. Also, reset the integratal
delay sampler, if defined.

$gueuemonitor set-delay-samples <delaySamp_>
Set up the Samples object delaySamp_ to record statistirg gbeue delays. delaySamp_is a handle to a Samples object
i.e the Samples object should have already been created.

$gueuemonitor get-bytes-integrator
Returns an Integrator object that can be used to find theraitefithe queue size in bytes.

$queuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find theraitefthe queue size in packets.

$gueuemonitor get-delay-samples

Returns a Samples object delaySamp_ to record statisticg gheue delays.
There are no configuration parameters specific to this abject

State Variables are:

size_Instantaneous queue size in bytes.
pkts_ Instantaneous queue size in packets.
parrivals_ Running total of packets that have arrived.

barrivals_ Running total of bytes contained in packets that have atrive

66

pdepartures_ Running total of packets that have departed (not dropped).
bdepartures_ Running total of bytes contained in packets that have deg4not dropped).
pdrops_ Total number of packets dropped.

bdrops_ Total number of bytes dropped.

bytesint_ Integrator object that computes the integral of the queze isi bytes. The sum_ variable of this object has the
running sum (integral) of the queue size in bytes.

pktsint_ Integrator object that computes the integral of the quezeeisi packets. The sum_ variable of this object has the
running sum (integral) of the queue size in packets.

QUEUEMONITOR/ED BJECTS

This derived object is capable of differentiating regulacket drops from early drops. Some queues distinguishaedubps
(e.g. drops due to buffer exhaustion) from other drops (gugdom drops in RED queues). Under some circumstances, it is
useful to distinguish these two types of drops.

State Variables are:

epdrops_ The number of packets that have been dropped “early”.

ebdrops_ The number of bytes comprising packets that have been dddepely”.

Note: because this class is a subclass of QueueMonitortshyé this type also have fields such as pdrops_ and bdrops_.
These fields describe the total number of dropped packetbyrd, including both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON OBJECTS
These objects may be used in the place of a conventional Meni®r object when wishing to collect per-flow counts and
statistics in addition to the aggregate counts and stiptiovided by the basic QueueMonitor.

$fmon classifier <cl>
This inserts (read) the specified classifier into (from) the/finonitor object. This is used to map incoming packets tactvhi
flows they are associated with.

$fmon dump
Dump the current per-flow counters and statistics to the H&noel specified in a previous attach operation.

$fmon flows
Return a character string containing the names of all flovea@bjknown by this flow monitor. Each of these objects are of
type QueueMonitor/ED/Flow.

$fmon attach <chan>
Attach a tcl I/0O channel to the flow monitor. Flow statistice avritten to the channel when the dump operation is executed

Configuration Parameters are:

enable_in_ Set to true by default, indicates that per-flow arrival stdteuld be kept by the flow monitor. If set to false, only
the aggregate arrival information is kept.

enable_out_ Set to true by default, indicates that per-flow departureesthould be kept by the flow monitor. If set to false,
only the aggregate departure information is kept.

enable_drop_ Set to true by default, indicates that per-flow drop stateihbe kept by the flow monitor. If set to false,
only the aggregate drop information is kept.

67

enable_edrop_Set to true by default, indicates that per-flow early dropessiould be kept by the flow monitor. If set to
false, only the aggregate early drop information is kept.

QUEUEMONITOR/ED/FLOW OBJECTS

These objects contain per-flow counts and statistics mahlaga QueueMonitor/ED/Flowmon object. They are generally
created in an OTcl callback procedure when a flow monitoniemga packet it cannot map on to a known flow. Note that the
flow monitor’s classifier is responsible for mapping packetows in some arbitrary way. Thus, depending on the type of
classifier used, not all of the state variables may be retgeag. one may classify packets based only on flow id, in which
case the source and destination addresses may not be sigt)ifiState Variables are:

src_ The source address of packets belonging to this flow.
dst_ The destination address of packets belonging to this flow.

flowid_ The flow id of packets belonging to this flow.

7.4 Commands at a glance

Following is a list of queue commands used in simulationpgsri

$ns_ queue-limit <nl> <n2> <limit>
This sets a limit on the maximum buffer size of the queue iflitilebetween nodes <n1>and <n2>.

$ns_ trace-queue <nl> <n2> <optional:file>
This sets up trace objects to log events in the queue. Iffffacenot passed, it usesaceAllFile_ to write the events.

$ns_ namtrace-queue <nl> <n2> <optional:file>
Similar to trace-queue above, this sets up nam-tracingamjtreue.

$ns_ monitor-queue <nl> <n2> <optional:gtrace> <optional :sampleinterval>

This command inserts objects that allows us to monitor theugusize. This returns a handle to the object that may be
gueried to determine the average queue size. The defauét f@ sampleinterval is 0.1.

7.5 Queue/JoBS

JoBS is developed and contributed by Nicolas Christin <kis@cs.virginia.edu>

This chapter describes the implementation of the Jointd8ufanagement and Scheduling (JoBS) algorithmsn This
chapter is in three parts. The first part summarizes the tgscof the JoBS algorithm. The second part explains how to
configure a JoBS queue s The third part focuses on the tracing mechanisms implesdefior JoBS.

The procedures and functions described in this chapter edaund inngjobs.{cc, h}, ngmarker.{cc, h},ngdemarker.{cc,
h}. Example scripts can be found ing'tcl/ex/jobs-{lossdel, cn2002}.tcl.

Additional information can be found at http://qosbox.agwia.edu.

68

7.5.1 The JoBS algorithm

This section gives an overview of the objectives the JoBSralym aims at achieving, and of the mechanisms employed to
reach these objectives. The original JoBS algorithm, asritesl in [?], was using the solution to a non-linear optimization
problem. Thisns-2implementation uses the feedback-control based heudsticribed in).

Important Note:This ns-2implementation results from the merge between old codade?.1b5and code derived from the
BSD kernel-level implementation of the JOBS algorithiris still considered experimental. Due to the absence of binding
facilities for arrays between Tcl and C++ticlcl at the momenthe number of traffic classes is statically set to 4 and cannot
be changed without modifying the C++ code.

Objective

The objective of the JoBS algorithm is to provide absoluté eelative (proportional) loss and delay differentiatiowle-
pendently at each node fotassesof traffic. JoBS therefore provides service guarantees paréhopbasis. The set of
performance requirements are specified to the algorithmsas af per-class Qualtiy of Service (QoS) constraints. As an
example, for three classes, the QoS constraints could e dbtm:

e Class-1 Delayx 2 - Class-2 Delay,
e Class-2 Loss Rate: 10~ ! - Class-3 Loss Rate, or

e Class-3 Dela 5 ms.

Here, the first two constraints are relative constraintsthadast one is an absolute constraint. The set of constreamt be
any mix of relative and absolute constraints. More spedific3oBS supports the five following types of constraints:

¢ Relative delay constraints (RDC)specify a proportional delay differentiation between sé&s As an example, for
two classed and2, the RDC enforces a relationship

Delay of Class 2 constant
Delay of Class 1

e Absolute delay constraints (ADC) An ADC on class requires that the delays of classatisfy a worst-case bound
d;.

o Relative loss constraints (RLC)specify a proportional loss differentiation between agss

e Absolute loss constraints (ALC) An ALC on classi requires that the loss rate of clasbe bounded by an upper
boundL;.

e Absolute rate constraints (ARC)Y An ARC on classi means that the throughput of class bounded by a lower
boundy;.

JoBS does not rely on admission control or traffic policingy, does it make any assumption on traffic arrivals. Therefore
system of constraints may become infeasible, and someragrtstmay need to be relaxed. QoS constraints are prieditiz
the following order.

ALC > ADC, ARC > Relative Constraints

That is, if JOBS is unable to satisfy both absolute and raatonstraints, it will give preference to the absolute t@sts.

69

Mechanisms

JoBS performs scheduling and buffer management in a siragls. pJoBS dynamically allocates service rates to classes in
order to satisfy the delay constraints. The service ratederfor enforcing absolute delay constraints are alldagben each
packet arrival, while service rates derived from relatiedagt constraints are computed only evé¥ypacket arrivals. If no
feasible service rate allocation existsr if the packet buffer overflows, packets are dropped atingrto the loss constraints.

The service rates are translated into packet schedulingides by an algorithm resembling Deficit Round Robin. Tisat i
the scheduler tries to achieve the desired service ratesdyyitkg track of the difference between the actual transomsate
for each class and the desired service rate for each clased@&ling in JoBS is work-conserving.

7.5.2 Configuration

Running a JoBS simulation requires to create and configwddBS “link(s)”, to create and configure the Markers and
Demarkers in charge of marking/demarking the traffic, tacttan application-level data source (traffic generatord, ta
start the traffic generator.

Initial Setup

set ns [new Simulator] ;# preamble initialization
Queue/ JoBS set drop _front_ fal se ;# use drop-tail
Queue/ JoBS set trace_hop_ true ;# enable statistic traces
Queue/ JoBS set adc_resolution_type O ;# see ‘commands at a glance”
Queue/ JoBS set shared buffer_ 1 ;# all classes share a common buffer
Queue/ JoBS set nean_pkt _size_ 4000 # we expect to receive 500-Byte pkts
Queue/ Demar ker set demarker_arrvsl O # reset arrivals everywhere

Queue/ Demar ker set demarker_arrvs2_ 0
Queue/ Dermar ker set demarker_arrvs3_ 0
Queue/ Dermar ker set demarker_arrvs4_ 0
Queue/ Marker set marker _arrvsl O
Queue/ Marker set nmarker_arrvs2_ 0
Queue/ Marker set marker_arrvs3_ 0
Queue/ Marker set marker _arrvs4_ 0

set router(l) [$ns node] # set first router
set router(2) [$ns node] ;# setsecond router
set source [$ns node] # setsource
set sink [$ns node] # set traffic sink
set bw 10000000 # 10 Mbps
set delay 0.001 # 1ms
set buff 500 # 500 packets

Creating the JoBS links

$ns dupl ex-link $router(1l) $router(2) $bw $del ay JoBS ;# Creates the JoBS link

1For instance, if the sum of the service rates needed is gribate the output link capacity.

70

$ns_ queue-limit $router(1) $router(2) $buff
set | [$ns_ get-link $router(1) $router(2)]
set q [$l queue]

$q init-rdes -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional delay diffeadinth with a factor of 2
$q init-rlecs -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional loss differeiatiewith a factor of 2

$q init-alcs 0.01 -1 -1 -1 # Class 1 is provided with a loss rate bound of 1%
$q init-adcs 0.005 -1 -1 -1 # Class 1 is provided with a delay bound of 5 ms
$q init-arcs -1 -1 -1 500000 ;# Class 4 is provided with a minimumthroughput of 500 Kbps
$q link [$l 1ink] # The link is attached to the queue (required)
$q trace-file jobstrace ;# Trace per-hop, per-class metrics to the file jobstrace
$q sanpling-period 1 ;# Reevaluate rate allocation upon each arrival
$g id 1 ;# Assigns an ID of 1 to the JoBS queue
$q initialize ;# Proceed with the initialization

Marking the traffic

Marking the traffic is handled by Marker objects. MarkerskifeO queues that set the class index of each packet. To ensure
accuracy of the simulations, it is best to configure thesaigsi€o have a very large buffer, so that no packets are drapped
the Marker. Demarkers are used to gather end-to-end delagtists.

$ns_ sinplex-1ink $source $router(1l) $bw $del ay Marker # set-up marker
$ns_ queue-limit $source $router(l) [expr $buff *10] # Select huge buffers for markers
$ns_ queue-limit $router(1l) $source [expr Sbuff *10] # to avoid traffic drops
set g [$ns_ get-queue $source S$router(l)] ;# in the marker
$q marker_type 2 ;# Statistical marker
$q marker_frc 0.1 0.2 0.3 0.4 # 10% Class 1, 20% Class 2, 30% Class 3, 40% Class 4.
$ns_ sinplex-link $router(2) $sink $bw $del ay Denar ker # set-up demarker
$ns_ queue-limit $router(2) $sink [expr $buff *10]

$q trace-file e2e # trace end-to-end delays to file e2e

The remaining steps (attaching agents and traffic gensratapplications to the nodes) are explained in Cha@eend
??, and are handled as usual. We refer to these chapters anxatingle scripts provided with younsdistribution.

7.5.3 Tracing

Tracing in JoBS is handled internally, by the scheduler.nEBBS queue can generate a trace file containing the folgpwin
information. Each line of the tracefile consists of 17 colgmmfhe first column is the simulation time, columns 2 to 5 repng

the loss rates over the current busy period for classes 1aoldimns 6 to 9 represent the delays for each class (average ov
a 0.5 seconds sliding window), columns 10 to 13 represerdbeage service rates allocated to each class over the$ast 0
seconds, and columns 14 to 17 represent the instantaneeus ngth in packets. Additionally, Demarkers can be used t
trace end-to-end delays.

7.5.4 Variables

This section summarizes the variables that are used by MBi&er and Demarker objects.

71

JoBS objects

trace_hop_ Can be true or false. If set to true, per-hop, per-class osatvill be traced. (Trace files have then to be specified,
using<JoBS object> trace-file <filename> .) Defaults to false.

drop_front_ Can be true or false. If set to true, traffic will be droppednirthe front of the queue. Defaults to false
(drop-tail).

adc_resolution_type_Can be 0 or 1. If set to 0, traffic will be dropped from classes ttave an ADC if the ADC cannot
be met by adjusting the service rates. If set to 1, traffic belldropped from all classes. A resolution mode setto 1 is
therefore fairer, in the sense that the pain is shared byeaaes, but can lead to more deadline violations. Defaullts t
0.

shared_buffer_ Can be O or 1. If setto O, all classes use a separate per-ciffiss(which is required if only rate guarantees
are to provided). All per-class buffers have the same sfzztlto 1, all classes share the same buffer (which is redjuire
if loss differentiation is to be provided). Defaults to 1.

mean_pkt_size_Used to set the expected mean packet size of packets araiingpBS link. Setting this variable is required
to ensure proper delay differentiation.

Marker objects

marker_arrvsl _ Number of Class-1 packets to have entered a Marker link.
marker_arrvs2_ Number of Class-2 packets to have entered a Marker link.
marker_arrvs3_ Number of Class-3 packets to have entered a Marker link.

marker_arrvs4 _ Number of Class-4 packets to have entered a Marker link.

Demarker objects

demarker_arrvsl_ Number of Class-1 packets to have entered a Demarker link.
demarker_arrvs2_ Number of Class-2 packets to have entered a Demarker link.
demarker_arrvs3_ Number of Class-3 packets to have entered a Demarker link.

demarker_arrvs4_ Number of Class-4 packets to have entered a Demarker link.

7.5.5 Commands at a glance

The following is a list of commands used to configure the JdB&ker and Demarker objects.

JoBS objects

set q [new Queue/JoBS]
This creates an instance of the JoBS queue.

$q init-rdcs <k1> <k2> <k3> <k4>

This assigns the RDCs for the four JOBS classes. For instasi® a value of 4 for k2 means that Class-3 delays will be
roughly equal to four times Class-2 delays. A value of -1datks that the class is not concerned by RDCs.

72

Important Note:Since RDCs bound two classes, one would expect only thresmgers to be passed (k1, k2, and k3, since
k4 theoretically binds Classes 4 and 5, and Class 5 does istf étowever, in this prototype implementation, it is
imperative to specify a value different from 0 and -1 to k4 &€ 4 is to be concerned by RDCs.

Examples$q init-rdcs -1 2 1 -1 specifies that classes 2 and 3 are bound by a delay diffetientfactor of 2,$q
init-rdcs 4 4 4 4 specifies that all classes are bound by a delay differenmiddictor of 4 and is equivalent &g
init-rdcs 4 4 4 1 , since the last coefficient is only used to specify that Claissto be bound by proportional

differentiation.

$q init-rlcs <k’1> <k'2> <k'3> <k'4>

This assigns the RLCs for the four JoBS classes. For instasagg a value of 3 for k1 means that Class-2 loss rates will be
roughly equal to four times Class-2 loss rates. A value ohdidates that the class is not concerned by RLCs. As with
RDCs, each RLC binds two classes, thus, one would expectlordg parameters to be passed (k'1, k'2, and k'3, since k'4
theoretically bounds Classes 4 and 5, and Class 5 does 13tt &g explained above, it is imperative to specify a value
different from 0 and -1 to k’4 if Class 4 is to be concerned byd3L

$q init-alcs <L1> <L2> <L3> <L4>

This assigns the absolute loss guarantees (ALCs) to alidlagses. L1 to L4 are given in fraction of 1. For instanceirsgt

L1 to 0.05 means that Class-1 loss rate will be guarantees lesls than 5%. A value of -1 indicates that the corresponding
class is not subject to an ALC.

$q init-adcs <D1> <D2> <D3> <D4>
This assigns the absolute loss guarantees (ADCSs) to alcfasses. D1 to D4 are given in milliseconds. A value of -1
indicates that the corresponding class is not subject tol2@.A

$q trace-file <filename>
This specifies the trace file for all per-hop metrics. JoBS aseinternal module to trace loss and delays, service atels,
per-class queue lengths in packets. If filename is setllg no trace will be provided.

$qg link [<link-object> link]
This command is required to bind a link to a JoBS queue. NaeJbBS needs to know the capacity of the link. Thus, this
commanchas tobe issued before the simulation is started.

$g sampling-period <sampling-interval>

This command specifies the sampling interval (in packetahath the service rate adjustments for proportional
differentiation will be performed. The default is a samplinterval of 1 packet, meaning that the rate allocation is
reevaluated upon each packet arrival. Larger samplingvialiespeed up the simulations, but typically result in goor
proportional differentiation.

$q id <num_id>
This command affects a numerical ID to the JoBS queue.

$q initialize
This command is required, and should be run after all cordigpm operations have been performed. This command will
perform the final checks and configuration of the JoBS queue.

$qg copyright-info
Displays authors and copyright information.

A simple example script (with nam output), fully annotated @ommented can be foundrng/tcl/ex/jobs-lossdel.tcl. A
more realistic example of a simulation with JoBS queues edafobnd inngtcl/ex/jobs-cn2002.tcl. This script is very
similar to what was used in a simulation presente®]nAssociated tracefiles arghuplotscripts for visualization (in case
you favorgnuplotoverxgraphcan be found imgtcl/ex/jobs-lossdel, ands'tcl/ex/jobs-cn2002.

73

Marker objects

$gq marker_type <1|2>
Selects the type of marker. 1 is DETERMINISTIC, 2 is STATISAL.

$g marker_class <1|2|3|4>
For a deterministic marker, selects which class packetsldhie marked with.

$g marker_frc <fl> <f2> <f3> <f4>
For a statistical marker, gives the fraction of packets #iatuld be marked from each class. For instance, using 0fl for
means that 10 percent of the traffic coming to the Marker liilkive marked as Class 1.

Demarker objects

$q trace-file <filename>

This command specifies the trace file used for the demarkecobfilename.1 will contain the end-to-end delays of each
Class-1 packet to have reached the Demarker link, filenamid.2ontain the end-to-end delays of each Class-2 packet to
have reached the Demarker link, and so forth. (There willoafrse be 4 trace files, one for each class.)

74

Chapter 8

DOCSIS links

ns-2 contains models for sending Internet traffic over catldems using the Data Over Cable Service Interface Spdiifica
(DOCSIS) specification: http://www.cablemodem.com. Ehemdels directly simulate DOCSIS 1.1 and DOCSIS 2.0 links
and can be used to simulate DOCSIS 3.0 links and DOCSIS 3.Q&K-links. Channel bonding for DOCSIS 3.x links is
simulated by setting the link rate equal to the aggregakertite for the bonding group.

DelayTb Link/DelayTbh) models a DOCSIS downstream link (from CMTS to the cable modeMore specifically, it
models a single downstream service flow providing servicegmgle cable modem. It takes the following parameters:

rate_ "Maximum Sustained Traffic Rate": i.e. Token bucket ratés(b)
bucket_ "Maximum Traffic Burst": i.e. Token bucket maximum size (&g}
peakrate_ "Peak Traffic Rate": i.e. Peak rate token generation rate/@)i
peakbucket Peak rate token bucket maximum rate (bytes): leave at 1522otiel
DOCSIS

As per the DOCSIS 3.0/3.1 specifications, DelayTh uses tikertduckets for rate shaping that will accumulate tokens
according to their parameters. A departing packet gets #a& pr normal transmission rate depending on the available
tokens. To model DOCSIS 1.1/2.0, getakrate_ equal to the line rate.

DocsisLink Link/DocsisLink) models a DOCSIS upstream link (from cable modem to the CMW®)e specifically,
it models a single upstream service flow with best effort daliag service. It takes the following parameters:
mapint_ The MAP interval (seconds); typically 2ms

maxgrant_ The maximum grant size (bytes) per MAP interval
mgvar_ The variability of maximum grant size (0..100: percentage)
rate_ Token generation rate (bits/s)
bucket ~ Token bucket maximum size (bytes)
peakrate Peak rate token generation rate (bits/s)
peakbucket Peak rate token bucket maximum rate (bytes)

DOCSIS’s upstream transmission is scheduled at a reguéaral called "MAP interval”. Before the beginning of eaciAM
interval, the cable modem receives a grant for how many hiytem send. This byte count varies as a result of congestion
from other users on the shared upstream Imlaxgrant . andmgvar_ are for emulating this congestion. The parameter
maxgrant_ is used to cap the average available capacity of the upstisepandmgvar_ provides a way to simulate the
variability of congestion.

The remaining DocsisLink parameters implement the DOC&k8n bucket rate shaping, just like DelayTb.

75

