

A Primer on Finite-State Software for Natural Language Processing

Kevin Knight and Yaser Al-Onaizan, August 1999

Summary

In many practical NLP systems, a lot of useful work is done with finite-state devices. This primer
covers basic finite-state techniques with examples and laboratory software called Carmel
(downloadable from http://www.isi.edu/licensed-sw/carmel).

Contents

1. Finite-State Acceptors
2. Finite-State Transducers
3. Probabilistic Acceptors and Transducers
4. Noisy Channel Decoding
5. Acquiring Probabilities from Data

==

1. Finite-State Acceptors

A finite-state acceptor (FSA) is a network of states and transitions. Each transition has a label.
For our purposes, we will assume that an acceptor has exactly one start state and exactly one final
state (which may be the same).

A string is an ordered sequence of symbols drawn from a finite vocabulary.

An FSA accepts a string w1, w2 ... wn if you can trace a path from the start state to the final state
along transitions labeled w1, w2, ... wn.

Here is an FSA that accepts three distinct strings:

The software we use has a special representation for writing down this FSA:

%%%%%% Filename: fsa1 %%%%%%
3
(0 (1 "he"))
(1 (2 "saw"))
(2 (3 "me"))
(1 (4 "ran"))
(4 (3 "home"))
(0 (5 "she"))
(5 (3 "talked"))

he saw me

ran home

she talked

The first line gives the name of the final state ("3"). Here we use a number, but we can also use
symbolic names if we want. The first state on the second line gives the name of the start state
("0"). Each line specifies a single transition. The format of each transition is:

(source-state (destination-state label))

Exercise. Write down an FSA that accepts (only) the following strings using 5 states or less: "the
tall man", "the short man", "a short man."

It is easy to write down a "degenerate" FSA that accepts only a single string. If the string is n
symbols long, then the FSA will have n transitions and n+1 states, e.g.:

%%%%%% Filename: fsa2 %%%%%%
F
(S (A "he"))
(A (B "ran"))
(B (F "home"))

Suppose we want to test mechanically whether a certain string is accepted by a certain FSA. We
can do this with a generic "carmel" operation.

% carmel fsa1 fsa2

Exercise. Type this command. If you get some output, that confirms that the string is accepted.

We can use the same operation to compute the intersection of strings accepted by two or more
FSA's. Consider the following FSA:

%%%%%% Filename: fsa3 %%%%%%
3
(0 (1 "he"))
(1 (2 "saw"))
(2 (3 "me"))
(0 (5 "she"))
(5 (2 "studied"))

Exercise. Type the following command:

% carmel fsa1 fsa3

Your results should be an FSA that accepts exactly the set of strings accepted by both fsa1 and
fsa3.

he ran home

he saw me

she studied

It is possible to build an FSA that accepts an infinite number of strings, or infinitely-long strings,
e.g.:

%%%%%% Filename: fsa4 %%%%%%
F
(S (A "the"))
(A (A "big"))
(A (F "dog"))

It is sometimes handy to make use of the empty transition label *e*. You may take such a
transition without consuming any input. Consider the following FSA:

%%%%%% Filename: fsa5 %%%%%%
F
(S (A "the"))
(S (A *e*))
(A (B "big"))
(B (C "big"))
(C (F "dog"))

This FSA accepts two strings: "the big big dog" and "big big dog".

Exercise. Call "carmel" on fsa4 and fsa5. What does the intersection look like? You can see that
the program worries about cycles and empty transitions so that you don't have to.

==

2. Finite-state transducers

An FSA can only accept or reject a string. A finite-state transducer (FST) can transform one
string into another. There are many applications of transductions in natural language. You can
easily imagine transforming strings of letters into strings of phonemes (sounds), or word strings
into part-of-speech strings (noun, verb, etc.).

An FST is just like an FSA, except the transitions have both an input label and an output label.
An FST legally converts one string w1, w2, ... wn into another string x1, x2, ..., xm if there is a
path through the FST that allows you to trace the first string using input labels and
(simultaneously) the second string using output labels. For example, consider this FST:

%%%%%% Filename: fst1 %%%%%%
0
(0 (0 "big" "small"))

the dog

big

the big big dog

e

dog:dog

big:small

(0 (0 "dog" "dog"))

This transducer only has a single state, which is both start and final. Every time it sees the word
"big" on its input, it produces "small" on its output. Every time it sees the word "dog," it outputs
"dog." So it will convert an input like "big big dog big" into "small small dog small." Notice that
this FST has no notion of grammar built into it; it merely substitutes tokens.

Exercise. Build an FST that takes lower-case letters on its input and produces corresponding
upper-case letters on its output. The FST should have one state and 26 arcs. Call it "fst-
capitalize."

The generic "carmel" program will let you execute transductions automatically. Let's make an
FSA with a sample string:

%%%%%% Filename: fsa6 %%%%%%
F
(S (A "big"))
(A (B "big"))
(B (C "dog"))
(C (F "big"))

Now let's stick this FSA on the input side of the FST:

% carmel fsa6 fst1

Exercise. Try the preceding command. The result should be an FST, meaning it will have both
input and output symbols on the transitions. If you want sample outputs, read off the output
symbols and ignore the input symbols. (If a transition only displays one symbol, it is both input
and output).

An FST is a bidirectional specification of the legal connections between input strings output
strings. You can use it in either direction. You may have a sample input string and desire a
corresponding output string, or vice versa.

Exercise. Use your capitalization FST to capitalize some lower-case string. Note that it is
possible to use some extra switches to avoid having to build a degenerate transducer for your
input string:

% echo '"a" "c" "r" "e"' | carmel -sli fst-capitalize

The "-s" switch means "take one of the transducers to be given on the standard input." The "-l"
switch means to append this standard-input transducer to the left-hand side of the transduction
sequence ("-r" means the right-hand side). Finally, the "-i" means that the standard-input object is
in string-form rather than FST-form.

Exercise. Use the same FST to de-capitalize a string, e.g.:

% echo '"D" "A" "N" "E"' | carmel -sri fst-capitalize

Input and output strings need not be of the same length. It is useful to use the *e* symbol in this
regard. For example, suppose we want to convert the sound SH to the letters s and h, in that

big big dog big

order. Then:

%%%%%% Filename: fst2 %%%%%%
0
(0 (0 "K" "c"))
(0 (0 "AE" "a"))
(0 (1 "SH" "s"))
(1 (0 *e* "h"))

Note that state 1 is not the final state. Therefore, the transduction of "SH" to "s" is not legal
without the "h". The transduction of sound "K" to letter "c," on the other hand, leads us directly
back to start/final state 0.

Exercise. Try these commands:

% echo '"K" "AE" "SH"' | carmel -sli fst2
% echo '"s" "h" "a" "c"' | carmel -sri fst2

In an FST, a single input string may correspond to many possible output strings, as for example
when a word has several alternate pronunciations. Likewise, a single output may correspond to
many inputs -- e.g., two words can have the same pronunciation. As another example, consider
adding the transition (0 (0 "K" "k")) to the FST above. This would give us two ways to write
down the sound "K."

Exercise. Add the transition (0 (0 "K" "k")) to the FST above, and use the transducer to generate
possible letter strings for the sound sequence K AE SH. Notice that the "carmel" program will
return an FSA with many paths (or solutions), rather than a single long path.

FSTs can be chained together. It is often convenient to break down a complicated transformation
process into a series of simpler FSTs. For example, one FST might convert English words into
their parts of speech, while another might combine part-of-speech subsequences into phrases,
while another might translate the phrases into a foreign language -- whatever! Instead of building
one giant FST with English word input-labels and foreign language output-labels, we can chain
together smaller FSTs:

% carmel -lO fsa-input fst-a fst-b fst-c

Or we can create a giant transducer by combining the FSTs offline:

% carmel fst-a fst-b fst-c > fst-giant

==

3. Probabilistic acceptors and transducers

Much of linguistic theory revolves around dividing strings into two categories: grammatical and

K:c

AE:a
SH:s

e:h

ungrammatical. This distinction is useful in real applications, too. For example, if a translator
has two possible outputs, we should prefer a grammatical one over and ungrammatical one. A lot
of grammatical constraints can be encoded in FSAs and other devices such as context-free
grammars (CFGs).

However, because of uncertainty, most applications require a more fine-grained categorization.
For example, a speech recognizer may have to choose between transcriptions like "bear midriff"
and "bare midriff." Both may be equally grammatical, but in a given situation one may be a
much better guess than the other.

A weighted finite-state acceptor (WFSA) assigns a probability to each string that it accepts.
Usually these probabilities will add up to one, although it is not completely necessary. Any string
that is not accepted is said to have probability zero. The only formal change from an FSA is that
we will add a weight (or probability) to each transition, e.g.:

%%%%%% Filename: wfsa1 %%%%%%
3
(0 (1 "he" 0.4))
(1 (2 "saw" 0.8))
(2 (3 "me" 1.0))
(1 (4 "ran" 0.2))
(4 (3 "home" 1.0))
(0 (5 "she" 0.6))
(5 (3 "talked" 1.0))

To get the probability of a string, we trace that string from start to end, and multiply all of the
transition probabilities. For example, the probability of "he saw me" is 0.4 * 0.8 * 1.0 = 0.32.

Exercise. Verify that the probabilities of the three strings accepted by the WFSA above add up
one.

Strictly speaking, the probability of a given string is slightly more complicated. We really need
consider every accepting path through the WFSA for that string. For each path, we multiply the
transition probabilities. Then we sum up the path probabilities for all the paths.

One of the most useful things that a WFSA can do is implement a language model, i.e., assign a
probability to any English string of words. A typical language model is the bigram model. This
breaks down the probability of w1, w2, ..., wn into a product of probabilities P(w1) * P(w2 | w1)
* ... * P(wn | wn-1). Each individual P(y | x) gives the probability of the word y following the
word x. These can be collected easily from a corpus of English.

We can build a WFSA with one state for each item in the vocabulary. Between each pair state-
x/state-y, we have a single transition whose label is the word y, and whose probability is P(y | x).
We add a special final state, with transitions leading to it from every other state (label = *e*,
probability = 1.0). Finally, we add a start state, with transitions to every state-y (label = y;
probability = P(y)).

he/0.4 saw/0.8 me/1.0

ran/0.2 home/1.0

she/0.6 talked/1.0

Many P(y | x) values will be observed to be zero. If we want to assign a non-zero probability to
strings that contain novel word pairs, then we can do smoothing. For example, instead of the
observed P(y | x), we may use

lambda1 * P(y | x) + lambda0 * P(y)

We can also implement this in a WFSA.

Exercise. Can you see how to do it?

Another useful thing to do with a WFSA is list out its n most probable strings. The "carmel"
program can do this with the "-k" switch, e.g.:

% carmel -k 2 wfsa1

This will return the two top-scoring strings. If you want to suppress spurious output symbols,
quote marks, path probabilities, and empty tokens (*e*), there are additional switches:

% carmel -OQWEk 2 wfsa1

Exercise. Try these two commands.

You will not be surprised to hear that there is also a probabilistic version of the FST, called the
weighted finite-state transducer (WFST). Like an FST, it enables you to specify legal mappings
between sequence types, but it also enables you to assign a weight to every specific input/output
string pair. Often this weight corresponds to the conditional probability P(output-string | input-
string). Again, we simply annotate each transition with a real number. To get the
aforementioned conditional probability, we trace a path that contains symbols from both input
and output strings, and multiply the individual transition probabilities.

Suppose you want to map word strings onto part-of-speech tag sequences. This can be done with
a single-state WFST with V * T transitions, where V is the total number of words and T is the
total number of tags. Each transition has a certain word w for its input label, a certain tag t for its
output label, and the probability P(t | w). Because of the way individual transition probabilities
get multiplied, you can see that this WFST breaks down P(t1, t2 ... tn | w1, w2 ... wn) as the
product P(t1 | w1) * P(t2 | w2) * ... * P(tn | wn). This might not be a very good idea, since it
makes no use of context. But it is a first approximation, and it does allow us to assign many
possible tag sequences to a given word string. Some tag sequences are more likely than others.

We can get a list of the top n most likely tag sequences by first combining a word-string FSA
with the tagging WFST. This yields a WFSA that contains many tag sequences. We can then
extract the n most likely paths from this resulting WFSA, using the "carmel" switches already
described.

%%%%%% Filename: fsa7 %%%%%%
3
(0 (1 "they"))
(1 (2 "can"))
(2 (3 "fish"))

%%%%%% Filename: wfst1 %%%%%%
S
(S (S "they" "PRO" 1.0))
(S (S "can" "AUX" 0.99))

they can fish

can:VERB/0.01

can:AUX/0.99

they:PRO/1.0
fish:VERB/0.3

fish:NOUN/0.7

(S (S "can" "VERB" 0.01))
(S (S "fish" "NOUN" 0.7))
(S (S "fish" "VERB" 0.3))

Exercise. Try this command: % carmel -Ok 4 fsa7 wfst1

Notice that in this case, the best scoring path is not a very good one. This is because we failed to
take context into account in assigning tags, as mentioned above.

==

4. Noisy channel decoding

In computer applications, it is often convenient to divide up a big job among smaller modules. In
natural language processing, a common division-of-labor strategy employs the noisy channel
framework. Suppose that we want to map word strings onto tag sequences with probability P(t1,
t2 ... tn | w1, w2 ... wn). Using Bayes rule, we can rewrite this as follows:

P(t1, t2 ... tn | w1, w2 ... wn) = P(t1, t2 ... tn) * P(w1, w2 ... wn | t1, t2 ... tn) / P(w1, w2 ... wn)

If we only care about generating the best tag sequences, then we can drop the denominator. The
two remaining terms can be encoded in finite-state devices, which can then be combined with the
"carmel" program.

In the noisy channel framework, we pretend that an original "clean" signal consists of a sequence
of tags. Clean signals are generated according to the probability distribution P(t1, t2 ... tn).
Somehow, this signal gets corrupted, and what we observe is a string of words. We need to
remove the "noise" and restore the original signal. This is often called decoding.

P(t1, t2 ... tn) can be implemented with a WFSA, as described in the language model example
above. It is easy to build a bigram tag model, and only slightly more complicated to build a
trigram tag model (in the latter case, we need a state for every pair of tags). Here is a bigram
example:

%%%%%% Filename: wfsa2 %%%%%%
FINAL
(START (PRO "PRO" 0.6))
(START (NOUN "NOUN" 0.3))
(START (AUX "AUX" 0.05))
(START (VERB "VERB" 0.05))
(PRO (AUX "AUX" 0.4))
(PRO (VERB "VERB" 0.6))
(NOUN (NOUN "NOUN" 0.7))
(NOUN (VERB "VERB" 0.3))
(AUX (VERB "VERB" 1.0))
(VERB (NOUN "NOUN" 1.0))
(VERB (FINAL *e* 1.0))
(AUX (FINAL *e* 1.0))
(NOUN (FINAL *e* 1.0))
(PRO (FINAL *e* 1.0))

P(w1, w2 ... wn | t1, t2 ... tn) can be implemented with a WFST, also as described above. Notice
that in this formulation, our input symbols are tags, and our output symbols are words. That is
the opposite of what we did above. The transition probabilities must now encode P(w | t) values,

which will be different from P(t | w) values. Here is an example:

%%%%%% Filename: wfst2 %%%%%%
S
(S (S "PRO" "they" 0.07))
(S (S "AUX" "can" 0.21))
(S (S "VERB" "can" 0.00001))
(S (S "NOUN" "fish" 0.0001))
(S (S "VERB" "fish" 0.0001))

Now we have a complete Bayesian part-of-speech tagger! To run it on the sentence "they can
fish," type:

% echo '"they" "can" "fish"' | carmel -Isrik 4 wfsa2 wfst2

Notice that this time, we use the switch "-r" because we want the sentence "they can fish" to be
appended to the right-hand side of the transducer sequence.

Exercise. Try the command. What do think of the results?

Noisy channel models implemented with WFSTs are powerful and versatile. As another
example, consider the translation of English names and technical terms into Japanese. The
Japanese use a phonetic script for such translations. The script (called katakana) has a symbol for
every Japanese syllable -- one for "ka", one for "ko", etc. So "computer" becomes "ko n pyu u ta
a." When we observe a new katakana sequence, we have to decode it, i.e., guess what the
original English name or technical term was. This is a hard task even for people! Do you know
what "ma su ta a zu to o na me n to" is?

To generate the "clean" signal, we can easily build a language-model WFSA for English. The
"noisy corruption" of the sequence can proceed through several stages, each implemented as a
separate WFST. The first stage converts an English word sequence into an English phoneme
sequence:

Angela Knight -> AH N J EH L UH N AY T

The next stage converts an English phoneme sequence into a Japanese phoneme sequence,
adapting the sounds as necessary:

AH N J EH L UH N AY T -> A N J I R A N A I T O,
among other possible outputs

Notice that the L got converted to an R, the vowels all changed, etc. The final stage converts a
Japanese phoneme sequence into the syllabic katakana writing system:

A N J I R A N A I T O -> symA symN symJI symRA symNA symI symTO,
among other possible outputs

Given a katakana sequence, we can decode it with a command like:

% carmel -Irk 5 wfsa-english wfst-epron wfst-jpron
 wfst-write-katakana fsa-observed

[Note: these large automata files are not in the sample/ directory -- this example is just for
demonstration]. In this case, you may get top n decodings like:

1. ANGELA KNIGHT 6.79261e-12
2. ANGELA NITE 1.06263e-13
3. ANDY LAW KNIGHT 1.46027e-14
4. ANDY LA KNIGHT 9.28955e-15
5. ANGELA NATE 3.34392e-15
 + millions more

The numbers are small because they represent P(english) * P(japanese | english). They would
add to one if we completed Bayes rule and divided each by P(japanese).

==

5. Acquiring probabilities from data

Until now, we have assumed that WFSTs are built from scratch. That is, you collect the
probabilities yourself, from some data resource, and type them into the individual transitions.
Sometimes ideal probabilities are not directly observable, however. In such cases, it is
convenient to set up a skeleton WFST and ask the machine to compute probabilities that
maximize the likelihood of data which is observable.

One example is in smoothing a language model. Recall the formula from above:

lambda1 * P(y | x) + lambda0 * P(y)

While the P values are observable from a corpus, the lambda values are not.

Another example is cryptanalysis. Suppose we are handed a letter-substitution cipher, i.e., an
English string that has been encrypted, letter for letter, according to an unknown substitution
table. For example, the encryption table might dictate that every time you see the English
(plaintext) letter A, you should substitute the (ciphertext) letter P. We can set up decryption as a
typical noisy-channel application. We build a WFSA to generate plaintext statistically, according
to observable English letter-pair frequencies. We then build a single-state WFST to transform
plaintext into ciphertext, with a transition for each of the 26 * 26 possible plaintext/ciphertext
letter pairs. The catch is that we don't know what conditional probabilities P(c | p) to assign these
transitions. Ideally, we would like probabilities that maximize the likelihood of the observed
ciphertext, which can actually be computed in terms of the WFSA/WFST combination just
outlined:

P(c1 ... cn) = sum over all p1 ... pn of P(p1 ... pn) * P(c1 ... cn | p1 ... pn)

The machine can learn such probabilities using the forward-backward algorithm. When
combining the WFSA and WFST, it is necessary to carefully specify which transitions are fixed
(those from the WFSA) and which are learnable (those from the WFST). After the individual P(c
| p) probabilities are learned, we can decode the ciphertext using the normal methods outlined in
previous sections of this primer.

(No exercises).

