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1 Preliminaries

Thank you for reading this document! It is our hope that after reading it you
will understand what tree automata are, why you would want to use them for
natural language processing applications, and how to use Tiburon, the tree
automata manipulation software to do so. Although this document attempts
to be self-contained, you might feel more comfortable if you have at least
a passing knowledge of context-free grammars and/or finite-state (string)
automata. For the latter, we recommend the tutorial by Kevin Knight and
Yaser Al-Onaizan, which can be freely downloaded from http://www.isi.

edu/licensed-sw/carmel/carmel-tutorial2.pdf. That document is also
a source of inspiration for this one and thus the same concepts are discussed
in both. However, the acceptors and transducers (collectively, the automata)
described in that document operate on strings, while the automata discussed
here operate on trees. Thus, this document serves as an extension of the
previously discussed concepts from the string domain to the tree domain.
This is meant to be an informal discussion and not rigorous theory – see the
references section at the end of this document for more formal treatments of
the theoretical concepts discussed.

2 Strings vs. Trees

Although the basic unit of data we will deal with is the tree, strings are also
used in tree automata discussions, as we will see later. A string, also known
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as a sentence, is an ordered sequence of 0 or more symbols (sometimes known
as words), drawn from a finite vocabulary. An example of a string is “the
boy ran away”. A tree is somewhat more complicated – it is a symbol drawn
from a finite vocabulary and an ordered sequence of 0 or more trees; these
trees are called the subtrees of the tree. A leaf is a tree with no subtrees.
The yield is a string formed from a tree as follows: If the tree is a leaf, the
yield is the leaf (taken as a string); otherwise the yield is the concatenation
of the yields of the subtrees.

Here is a tree:

A

B C

D

E F

G

H

D

I J

And here are the subtrees of that tree:

B C

D

E F

G

H

D

I J

The yield of that tree is the string “B E F H I J”.
Because we don’t customarily use schematic diagrams in computer text

files, we need a convention for representing trees in a text format. By con-
vention, the subtrees of a tree are listed inside a set of parentheses. If a
tree has no subtrees, the parentheses are omitted. Thus, the tree above is
represented as follows:

A(B C(D(E F) G(H)) D(I J))

Trees are often used in natural language contexts to represent grammat-
ical structure. Here is a typical syntax parse tree over a sentence:
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S

NP

DT

The

NN

boy

VP

VB

ran

NN

home

The yield of this tree is “The boy ran home”.

Exercises

• Write this tree in text format: Z

Y X

O

X

Y

X

Y

W

J J

• Write this tree in schematic format:
t(l i d(r(n j(g)) u z(i)) g(s) t j(p(i) z(g(c))) a(s))
What is its yield?

3 Regular Tree Grammars

The tree languages we will work with are the regular tree languages, the tree
analogue to regular (string) languages. We represent tree languages with
a regular tree grammar (RTG). A regular tree grammar is very similar in
appearance to the more familiar context-free grammars (CFGs), but has a
notion of states. Consider the following simple CFG for noun phrases:

NP

NP -> DT NN
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NP -> NN

DT -> the

NN -> boy

NN -> girl

CFGs are typically used as a way of representing a class of string languages
(known as context-free languages). If you’re familiar with CFGs, you should
skip this very quick tutorial and go on to the section headed “CFGs as Tree
Grammars”.

A Very Quick Tutorial on CFGs

We already mentioned the example above is called a CFG, and it represents
a language of strings. But what do those symbols mean, and how can you
figure out the strings represented by the grammar? Briefly put, the CFG
consists of a single symbol, called the start symbol, and several rewrite rules.
In the example above, the solo NP at the top is the start symbol, and the
other five lines with arrows are the rules. Each rule has one symbol to the
left of the arrow (called the left side) and one or more symbols to the right
(called the right side).

To identify a string in this language, take a piece of paper, and a pencil
with an eraser (the eraser is important), and write down the start symbol,
Your paper should look like:

NP

Now, look through the rules in the CFG. Find a rule that has the same
symbol to the left of the arrow that you have written on your paper. If there
is more than one rule that matches, (as there is in this case) just pick any
one, it doesn’t matter. Now, erase the symbol you have written down and
in its place, write whatever is on the right side of the rule you have chosen.
So, if you picked the rule NP -> DT NN, your paper would now look like:

DT NN

Now, we’re going to keep on erasing and rewriting until we can’t do it any
more. There’s only one rule that matches DT, so after you erase and write,
your paper would look like:

the NN
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There’s no rule that has the on its left side, so leave that alone. Find a rule
for NN. If you made the same decision as we did, your paper would now look
like:

the boy

Since there’s no more erasing we can do, we stop. The string we’ve written
down, “the boy” is a string in the language represented by the CFG. To get
the entire language, just repeat the whole process again, always starting from
the start symbol, but make different choices (i.e. you could have chosen NP

-> NN instead of NP -> DT NN or NN -> boy instead of NN -> girl). The
language of this CFG is {the boy, the girl, boy, girl}. You should try it
yourself to make sure you get the same set.

CFGs as Tree Gramamrs

Although we typically think of CFGs as representing string languages, we
can also think of them as representing tree languages, if for every string in
the language we also maintain the derivation tree used to form the string.
For those of you that read the CFG tutorial, this means instead of erasing a
symbol and writing the right side of the rule in its place, you write the right
side of the rule under the symbol, and draw connecting lines. (For those of
you who didn’t do the tutorial, bear with us for a second. Or you might
want to go back and read it.) Redoing the example we worked through for
derivation trees, we still start with:

NP

(It’s probably a good idea to leave a little drawing space on the left this
time). Now, instead of erasing, we write the right side of our chosen rule
under what we have already written (again, leaving some space)...

NP

DT NN

... and then fill in connecting lines.
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NP

/\

/ \

DT NN

We next handle the DT...

NP

/\

/ \

DT NN

|

|

the

... then the NN...

NP

/\

/ \

DT NN

| |

| |

the boy

... and since we can’t add anything else, we’re done! Following this approach,

you can see that the tree language of this CFG is














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




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


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
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NP

DT

the

NN

boy

, NP

DT

the

NN

girl

, NP

NN

boy

, NP

NN

girl


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
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





.

An analogous RTG in proper Tiburon format is:

%% Filename: rtg1 %%

q
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q -> NP(dt nn)

q -> NP(nn)

dt -> DT(dtword)

nn -> NN(nnword)

dtword -> the

nnword -> boy

nnword -> girl

An RTG is a lot like a CFG. It has start symbols, which we now call states,
and it has rules. The rules in an RTG have a single state on the left, and a
tree on the right. Like the “string” way of operating a CFG, we start with
the start state, then repeatedly erase states and in their place write down
the right sides of the rules we used (which now are trees), until there are no
states left to replace. Let’s try operating the RTG one more time. First, we
start by writing down the start state:

q

Now we find a rule with a left side that matches and erase q, replacing it
with the left side of that rule:

NP(dt nn)

(You’ll notice that this time we’re using the “text format” described above
to write trees, but everything should otherwise be fairly familiar). Now we
replace dt as before (it probably would have been a good idea to leave a little
more space)...

NP(DT(dtword) nn)

We next replace dtword.

NP(DT(the) nn)

Now we replace nn (there was no need to replace dtword before nn – it was
an arbitrary choice) and we’re almost done.

NP(DT(the) NN(nnword))

Finally we replace nnword and the tree is complete.

NP(DT(the) NN(boy))
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Pretty simple! In the rest of this document we’re going to (mostly)
stay away from CFGs and focus more of our attention on RTGs. However,
Tiburon supports CFGs and many of the operations you perform on RTGs
can also be performed on CFGs. The notion of “state” that is present in
RTGs allows us to have more control over the trees we produce than is pos-
sible in the “derivation mode” of CFGs. To see why, consider this example:

%% Filename: rtg2 %%

q

q -> NP(x1 x2)

q -> NP(x2 x1)

x1 -> NN(a)

x2 -> NN(b)

a -> killer

b -> clown

This RTG represents the language


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

, but no CFG can rec-

ognize these trees without also recognizing NP

NN

clown

NN

clown

or NP

NN

killer

NN

killer

. Try it for

yourself.
You may ask, “Why would I want to use this funny notation to represent

a set of trees when I could just write the trees down?” Usually, the trees can
be represented much more compactly by writing the RTG than by listing the
trees. For example, consider rtg3, below:

%% filename: rtg3 %%

q

q -> NP(jj nn nn)

jj -> silly

jj -> wild

jj -> green

nn -> monkey

nn -> police

nn -> car
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That RTG has 27 different trees in it but only took 8 lines to write. Even
better, RTGs can represent an infinite number of trees:

%% filename: rtg4

q

q -> S(np vp)

np -> NP(dt nn)

np -> NP(dt nn pp)

pp -> PP(prep np)

vp -> VP(vb do)

vb -> ran

do -> home

prep -> with

prep -> on

dt -> the

nn -> boy

nn -> monkey

nn -> clown

If you wanted to represent this language by listing all the trees in it, you
would have a big problem!

We’ve talked a lot about trees and grammars. Before we go any further,
let’s take a look at Tiburon, the software which will make it much easier to
work with trees and grammars, especially when they get very large. If you’re
reading this document you probably have also seen instructions for obtaining
and installing Tiburon. Follow those instructions and make sure the software
works for you. To test this, make sure you are in the directory where tiburon
is installed and type this at the command line:

% tiburon

(For the rest of this document commands you should type will be in type-
writer font and next to a “%” sign, indicating the prompt.) You should see
something like this:

This is Tiburon, version 0.5.0

Error: Parameter ’infiles’ is required.

Usage: tiburon

[-h|--help] (-e|--encoding) <encoding>

(-m|--semiring) <srtype> [--leftapply]
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[--rightapply] [-b|--batch] [(-a|--align) <align>]

[-l|--left] [-r|--right] [-n|--normalizeweight]

[--no-normalize] [--removeloops] [--normform]

[(-p|--prune) <prune>] [(-d|--determinize) <determ>]

[(-t|--train) <train>] [(-x|--xform) <xform>]

[--training-deriv-location <trainderivloc>]

[--conditional] [--no-deriv] [--randomize]

[--timedebug <time>] [-y|--print-yields]

[(-k|--kbest) <kbest>] [(-g|--generate) <krandom>]

[-c|--check] [(-o|--outputfile) <outfile>] infiles1

infiles2 ... infilesN

If you see something totally different, consult the README file that came
with Tiburon (it should be in the same directory as Tiburon) for help before
proceeding.

Now that Tiburon is installed properly, let’s try using it. At its most
basic, you can use Tiburon to make sure your RTG syntax is correct, because
Tiburon usually expects an RTG as its input. Create the text file rtg1,
exactly as above. Make sure to put a carriage return after the last line! Now
type the following at the command prompt (all commands assume the files
you write are in the same directory as your unpacked Tiburon files. If this
is not true, add appropriate paths when executing commands):

% tiburon rtg1

You should see something like this:

This is Tiburon, version 0.5.0

q4

q4 -> NP(q1) # 1.0000

q4 -> NP(q2 q1) # 1.0000

q1 -> NN(q0) # 1.0000

q0 -> boy # 1.0000

q0 -> girl # 1.0000

q3 -> the # 1.0000

q2 -> DT(q3) # 1.0000

If you see an error message (and you have verified that Tiburon is installed
properly, as above), your file format is probably incorrect. Make sure your
file is typed correctly. If you still have problems, email jonmay@isi.edu with
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a description of your problem including your file and the error message you
received and we’ll try and help you out.

Assuming everything worked correctly, take a look at the output. It
looks sort of like the file you typed, but there are some differences. For
one, the state names have changed – Tiburon automatically normalizes its
state names, but semantically there is no difference. The rules might be
in a different order, which also has no semantic difference from the input
file. And there are “#” symbols and numbers. We’ll explain those later on.
Finally, the first line is missing. Any line or part of a line starting with “%”
is regarded as a comment and ignored by Tiburon.

Exercises

• Write down 5 trees each in the languages represented by rtg3 and rtg4

• Write an RTG that represents the language
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


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
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but nothing else. Use as few rules as possible.

• Write an RTG that represents a language of infinite trees. For example,
you could represent NP

blue dogs

, NP

blue dogs PP

with NP

brown eyes

, NP

blue dogs PP

with NP

brown eyes PP

with NP

green flecks

,

etc. Don’t worry if some of the trees don’t make sense.

• Verify the RTGs you wrote are sensible by sending them through Tiburon,
as described above.

• Write a CFG that represents the language anbn, that is, a sequence like
“a a a” that is some n letters long, followed by a sequence like “b b b”
that is the same n letters long. You will need to make use of a special
right-hand-side, *e*, which designates the empty string. For example,
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the following simple CFG, epscfg, recognizes the language {ab, b} by
making use of the *e* right hand side:

S

S -> A B

A -> a

A -> *e*

B -> b

It’s often useful to intersect two RTGs to acquire the language common
to both of them. For example, rtg5, below, could represent some possible
translations of a foreign sentence:

%% filename: rtg5 %%

q

q -> S(w w w)

w -> likes

w -> John

w -> candy

Some of the yields of the trees produced by rtg5 are not good English sen-
tences. rtg6, below, represents trees of several different English sentences:

%% filename: rtg6 %%

q

q -> S(subj verb obj)

subj -> John

subj -> Mary

subj -> Bill

verb -> likes

verb -> loathes

verb -> buys

obj -> trucks

obj -> candy

obj -> life

If you pass a sequence of several RTGs to Tiburon. Tiburon will form the
intersection RTG of these input RTGs and return it to you. The intersection
RTG is the RTG that produces exactly those trees produced by all of the
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input RTGs. If there are no trees in common, the intersection RTG will
just be empty (Tiburon’s way of representing an empty RTG is a start state
with no rules). In the case of the intersection of rtg5 and rtg6, however, the
intersection language consists of the single tree that represents a sentence that
is both a grammatical sentence (i.e. it is in rtg6) and a possible translation
(i.e. it is in rtg5):

% tiburon rtg5 rtg6

This is Tiburon, version 0.5.0

q0

q0 -> S(q2 q3 q1) # 1.0000

q1 -> candy # 1.0000

q3 -> likes # 1.0000

q2 -> John # 1.0000

It is easy to write a “degenerate” RTG that accepts only a single tree.
Since any tree can be on the right side of a production, the following grammar
suffices to represent the tree NP

DT

the

NN

boy

:

%% Filename: rtg7 %%

q

q -> NP(DT(the) NN(boy))

If you used this trick to do the exercises above, go back and do them again
the “right” way! If you’re having trouble try passing the tree into tiburon
like so:

% echo ‘‘NP(DT(the) NN(boy))’’ | tiburon -

We may want to test if a certain tree is accepted by a certain RTG. We
can use intersection for this as well:

% tiburon rtg1 rtg7

You should see a result that looks something like this:
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This is Tiburon, 0.5.0

q0

q0 -> NP(q4 q3) # 1.0000

q1 -> the # 1.0000

q4 -> DT(q1) # 1.0000

q3 -> NN(q2) # 1.0000

q2 -> boy # 1.0000

If tree is not accepted by the RTG, the intersection will not contain any
rules. For example, the derivative RTG rtg7a has no common trees with
rtg1:

%% Filename: rtg7a %%

q

q -> NP(DT(the) NN(toy))

Try testing it!
Although there is no such thing as an “empty tree” corresponding to the

“empty string” in string automata, there is use for an “empty transition”
that serves to change state without consuming any symbols:

%% Filename: rtg8 %%

q

q -> S(subj was prednom)

subj -> John

subj -> Bill

prednom -> pp

prednom -> jj

pp -> PP(for the birds)

pp -> PP(with Mary)

jj -> happy

jj -> scared

Obviously, there are other ways to represent this language, but the empty
transition can help reduce the size of a grammar and is handy for designers
of RTGs.

Exercises

• Consider the following RTGs:
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– %% filename: rtg9 %%

qe

qe -> A(qe qo)

qe -> A(qo qe)

qe -> B(qo)

qo -> A(qo qo)

qo -> A(qe qe)

qo -> B(qe)

qo -> C

– %% filename: rtg10 %%

qa

qa -> A(qb qc)

qa -> A(qc qc)

qa -> A(qc qb)

qb -> B(qc)

qc -> C

Write an RTG that represents the intersection of rtg9 and rtg10.
Then try using tiburon to calculate it. Is your answer the same? Are
your answers correct?

• Determine which of the following trees are in the language represented
by rtg9. Then write degenerate RTGs to check your answers.

(a) A

B

B

C

B

C

(b) C

(c) B

C
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(d) A

B

C

B

C

(e) A

A

B

B

C

C

A

C A

C B

C

In the linguistic domain we want to represent preference of some trees
over other trees. For example, perhaps “soft” is a more likely adjective
than “quizzical” or a noun phrase with a determiner is more likely than
one without. We can attach numerical weights to productions in an RTG to
indicate this preference. For example, the above examples could be indicated
in some RTG as:

...

jj -> soft # 0.8

jj -> quizzical # 0.2

np -> NP(dt jj nn) # 0.6

np -> NP(jj nn) # 0.4

...

A weighted RTG (WRTG) assigns a weight to each tree that it accepts.
We normally think of these weights as probabilities, but it is not, strictly
speaking, necessary for them to sum to 1. Trees not accepted by a language
have a weight of 0 and those rules with a weight of 0 are typically omitted
from an RTG representation. We associate a weight with each transition and
multiply the weights of the transitions used to recognize a tree to obtain the
weight of the tree. Here is rtg1 as a WRTG:

%% Filename: wrtg1 %%

q
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q -> NP(dt nn) # 0.6

q -> NP(nn) # 0.4

dt -> the # 1

nn -> boy # 0.8

nn -> girl # 0.2

The tree NP

boy

can be formed by using a rule with weight 0.4 and a rule

with weight 0.8, thus it has a weight of 0.32.
Exercise: What are the weights of the other trees in this WRTG?
If a weight is not added to a rule, Tiburon assumes the weight is 1.

This explains why Tiburon always adds # 1.0000 to the RTGs it outputs.
Tiburon treats all RTGs as WRTGs!

Tiburon can make the job of calculating the weight of trees recognized
by a WRTG easier for you. Use the -k switch to list the k trees of highest
weight, in order:

% tiburon -k 4 wrtg1

This is Tiburon, 0.5.0

NP(the boy): 0.4800

NP(boy): 0.3200

NP(the girl): 0.1200

NP(girl): 0.0800

Try it out with some of the examples we’ve already gone through. Since
the examples we’ve presented so far are mostly unweighted, there won’t be
any particular order (i.e. all the weights will be 1) but as you can see this is
a good way to ensure the RTG you’ve written has the trees you expect. Note
that if you ask for more trees than are recognized by the RTG, Tiburon will
print a warning. This shouldn’t be a problem for some, like rtg4. In fact,
you can determine just how many trees are in an RTG with the -c switch,
like so:

tiburon -c wrtg1

This is Tiburon, 0.5.0

Check info:

3 states

5 rules
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3 unique terminal symbols

4 derivations

Another fun way to see the trees in an RTG is to use the -g switch to list
k random trees. This is a good way to see some less likely trees and possibly
discover some errors in your RTG creation:

% tiburon -g 3 rtg4

This is Tiburon, 0.5.0

S(NP(the boy) VP(ran home)): 1.0000

S(NP(the clown PP(on NP(the clown PP(with NP(the monkey PP(with NP(the monkey PP(with NP(the monkey))))))))) VP(ran home)): 1.0000

S(NP(the clown PP(with NP(the boy PP(with NP(the clown))))) VP(ran home)): 1.0000

Sometimes it’s useful to print the yield only. It tends to be easy on the eyes
when the trees are large. For that we can use the -y option:

% tiburon -yg 3 rtg4

This is Tiburon, 0.5.0

the boy ran home: 1.0000

the monkey on the monkey with the clown ran home: 1.0000

the clown with the monkey on the clown ran home: 1.0000

We’ve been cheating when we talk about the printing of the trees and
their corresponding weights in a WRTG. We’re actually printing the trees
associated with the WRTG derivations and their weights.

%% Filename wrtg2 %%

q

q -> S(subj vb obj) # 0.8

q -> S(subj likes obj) # 0.2

subj -> John # 0.7

subj -> Stacy # 0.4

obj -> candy

vb -> likes # 0.4

vb -> hates # 0.6

Consider the WRTG above. If you use -k 6 you will see that there are 6
derivations, but only 4 unique trees:

% tiburon -k 6 wrtg2

This is Tiburon, 0.5.0

S(John hates candy): 0.3360

S(John likes candy): 0.2240

S(Stacy hates candy): 0.1920
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S(John likes candy): 0.1400

S(Stacy likes candy): 0.1280

S(Stacy likes candy): 0.0800

Look at the sentence with yield “John likes candy”. One derivation of this
sentence has a probability of 0.2240 and the other has a probability of 0.1400.
Both of them are lower than the derivation of the sentence with yield “John
hates candy”, currently at the top of the list, but the weight of the tree should
be the sum of both derivations. We can use the -d option to determinize the
WRTG, such that there is exactly one derivation for each unique tree:

% tiburon -d 5 -k 6 wrtg2

This is Tiburon, 0.5.0

Warning: returning fewer trees than requested

S(John likes candy): 0.3640

S(John hates candy): 0.3360

S(Stacy likes candy): 0.2080

S(Stacy hates candy): 0.1920

Notice, now there are only 4 derivations – one for each unique tree. Further-
more, we can see that S(John likes candy) is the most likely tree in this
WRTG. Note that with the -d option you must specify the maximum time,
in minutes, that Tiburon should work. This is because determinization can
take a long time for very large RTGs and this gives you a way to quit if you
only want to work for a little while.

Exercises

• Consider wrtg3, below:

– %% filename wrtg3 %%

q

q -> S(subj fought obj) # 0.8

q -> S(obj fought subj) # 0.2

subj -> Joe # 0.6

subj -> Steve # 0.4

obj -> NP(the volcano) # 0.7

obj -> subj # 0.3
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Write down the 5 most likely trees in this WRTG. Use Tiburon to
calculate the 10 most likely trees.

• Use tiburon to determinize wrtg3. Write down the determinized gram-
mar and the top 10 trees in it. What changed?

4 Finite-State Tree Transducers

While an RTG lets you specify a set of trees, a transducer is a mechanism
for changing trees into other things. Specifically, a transducer can change a
tree into another tree, or it can change a tree into a string. There are lots
of ways we might want to change trees. We might be interested in removing
extra information from sentences:

S

NP

My best friend John

VP

likes dogs PP

with puffy tails

S

NP

John

VP

likes dogs

→

We also might want to translate between languages:
S

I VP

don’t have NP

any black cats

S

VP

No tengo

NP

ningún gato negro

→

We may only have trees for one language. Hence, it becomes useful to change
an English tree into, for example, a Japanese string:

S

I abominate snakes

→

Finite tree-to-tree transducers (FTTT) look and work roughly the same way
as RTGs. Consider the following very simple FTTT:

%% file: fttt1 %%

q

q.NP(blue dog) -> NP(green cat)

q.NP(blue frog) -> NP(green bat)
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Like for RTGs, a transducer has a start state and a set of rules. However,
while an RTG had a state on the left and a tree on the right, an FTTT has
a state and a tree on the left and a tree on the right. The left side specifies
what the transducer should expect (i.e. which state it should be in and which
tree it should see) and the right side specifies what to do. So the first rule
could be interpreted “When in state q, reading the tree NP(blue dog), write
the tree NP(green cat). Like we said, fttt1 is pretty simple. All it can do
is change NP

blue dog

into NP

green cat

and tree NP

blue frog

into NP

green bat

. If

you presented any other tree to the transducer it wouldn’t be able to change
it. And if we wanted to change the transducer to be able to handle more
trees we’d have to add a new rule for each input tree we wanted to handle.
Fortunately, we can use variables to make the transducer more general. Let’s
rewrite the simple transducer as fttt1a, below.

%% file: fttt1a %%

q

q.NP(x0: x1:) -> NP(q.x0 q.x1)

q.blue -> green

q.dog -> cat

q.frog -> bat

The first rule might look a little weird. In particular, you may be wondering
what x0: and x1: mean. They are variables. The left hand side of the
rule, q.NP(x0: x1:), means “When in state q and reading a tree headed
with NP, with two children about which I know nothing...”. We delay the
transformation of these children for another rule, and in the right side of the
rule specify in what position they should be placed, and how they should be
handled. The right side of the rule means “...write an NP. For its left child
transduce the subtree represented by variable x0 in state q. For its right
child transduce the subtree represented by variable x1 in state q.” So this
transducer reads in tree headed with NP in state q, writes NP, and process
each of its children in state q. It then allows other rules to transform blue to
green, dog to cat, and frog to bat. As you can see, the same transductions
are possible in fttt1a as in fttt1 but now, if we want to also transform

NP

yellow dog

into NP

red cat

and NP

yellow frog

into NP

red bat

all we have to do
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is add:

q.yellow -> red

and the transducer can handle two more input trees! The variables are
indicated as variables by the colon (“:”) after them – by convention we use
names like x0 and x1 but they can be any acceptable symbol name.

We can describe the variables a little more fully by putting a symbol on
the other side of the colon. We can also use the transducer to make more
dramatic changes to the input tree. The next example illustrates this:

%% file: fttt2 %%

q

q.NP(x1:JJ x2:) -> NP(q.x2 q.x1)

q.JJ(x1:) -> PP(with NN(adj.x1))

q.NN(x1:) -> NN(n.x1)

n.dogs -> dogs

n.cats -> cats

adj.blue -> blueness

adj.yellow -> yellowness

Let’s look at the first rule in fttt2. At first glance it looks like some rules
we’ve seen before, except for the x1:JJ. This simply indicates that the subtree
represented by x1 must have a root label of JJ. Also, notice that the variables
on the left of the rule are in reverse order than they are on the right of the
rule. This means the transformations we make to the left input subtree will
appear on the right in the output tree, and vice versa. The first rule thus
says, “when in state q, reading an NP with two children, the first of which is
rooted with JJ, (and the second of which can be anything), write an NP, then
for its leftmost child process the second child in state q, and for its rightmost
child process the first child in state q.” So if we apply this transducer to the
tree NP

JJ

blue

NN

dogs

, first the subtrees are reversed (because NP is read, but NP

is also written). Then, in two transitions, NN

dogs

is processed but unchanged.
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JJ

...

becomes PP

with NN

...

and then blue becomes blueness, getting us the output

tree NP

NN

dogs

PP

with NN

blueness

.

Exercise: What are two other transductions that fttt2 can perform?
Of course, rather than calculate this ourselves, Tiburon can do the job

for us:

% echo "NP(JJ(blue) NN(dogs))" | tiburon - fttt2

The - is an argument that represents standard input. The tree is passed in
through echo and pipe, and interpreted as the left most item in the transducer
chain.. Tiburon should output an RTG. This is an example of the application
operation. In general, a tree left-applied to a FTTT produces an RTG. Since
the result is an RTG, we can do all the operations we did before, like -k, -g,
-d, etc. in one step.

Exercises

• What would you expect the following command to produce? Try it!

% echo "NP(JJ(yellow) NN(dogs))" | tiburon -k 1 - fttt2

• (More exercises...)

A finite tree-to-string transducer (FTST) looks just like a FTTT except
the right side is a string, not a tree. This FTST is the tree-to-string version
of fttt2:

%% file: ftst1 %%

q
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q.NP(x1:JJ x2:) -> q.x2 q.x1

q.JJ(x1:) -> with adj.x1

q.NN(x1:) -> n.x1

n.dogs -> dogs

n.cats -> cats

adj.blue -> blueness

adj.yellow -> yellowness

Since the right side of FTST transitions is a string, we can make use of
*e*, the special “empty string” symbol:

%% file: ftst2 %%

q

q.S(x1: x2:VP) -> t.x1 q.x2

t.We -> *e*

q.VP(x1:VP x2:) -> q.x1 t.x2

q.VP(x1: x2:) -> t.x1 t.x2

t.medicine -> medicina

t.sell -> vendemos

t.don’t -> no

Just like for FTTT, you can apply trees onto the left side of FTST.
However, where the application of a tree onto an FTTT produces an RTG,
the application of a tree onto an FTST produces a CFG!

% echo "S(We VP(VP(don’t sell) medicine))" | tiburon -k 1 - ftst2

Notice that the empty string token, *e*, is removed from the yield.
As you might expect, FTST and FTTT have weighted variants. The

weights appear just as they do for WRTG. A single input tree may correspond
to many possible output trees/strings. The multiplication of the weights
of each rule used in performing a transduction gives the total weight of a
transduction. Imagine we want to build a transducer that translates the
following tree/string pairs:

S

NP

the three bears

VP

are strong

→ los tres osos son fuertes

24



S

NP

the blue dogs

VP

are happy

→ los perros azules están felices

A sensible transducer might look something like this:

%% file: wftst1 %%

q

q.S(x0:NP x1:VP) -> q.x0 q.x1 # 1

q.NP(x0: x1: x2:) -> t.x0 t.x1 t.x2 # 0.5

q.NP(x0: x1: x2:) -> t.x0 t.x2 t.x1 # 0.5

q.VP(x0: x1:) -> t.x0 t.x1 # 1

t.the -> los # 1

t.blue -> azules # 1

t.bears -> osos # 1

t.dogs -> perros # 1

t.are -> son # 0.5

t.are -> estn # 0.5

t.strong -> fuertes # 1

t.happy -> felices # 1

As you can see, there are multiple ways to translate “are” and multiple ways
to reorder the NP. This is reflected in the weights of 0.5 for each possibility.
Notice that many possible translations of the words and reorderings of the
tree are not reflected in the transducer above. Unfortunately, in this case the
incorrect translations have the same weight as the correct ones. In general
there are many possible ways to transduce even simple sentences and a more
useful translation transducer would have many more rules and be able to
translate more sentences. Of course, as the complexity of the transducer
grows it becomes harder for humans to set proper weights by hand. One of
the more useful things Tiburon can do is automatically add weights to a set
of unweighted rules to maximize the probability of a set of translations.

As an example, let’s work with simple trees on the English side and
construct a very basic, one-state transducer. The start state is thus entered
into a new file:

%% file: wftst2 %%

q
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In this example, we use trees that only have one internal symbol, X, and
are strictly binary. A tree might be something like: X(X(his associates)

X(X(are not) strong)). The translation sentence is “sus clientes están
enfadados”. Since the only nonterminal structure is binary, there are only
two possible reorderings of the nonterminal structure:

q.X(x0: x1:) -> q.x0 q.x1

q.X(x0: x1:) -> q.x1 q.x0

Every English word in the sentence could translate to every Spanish word in
the corresponding sentence, or could translate as the empty string:

q.his -> sus

q.his -> clientes

q.his -> estn

q.his -> enfadados

q.his -> *e*

Similar rules for all the other English words can be written. Using just one
sentence pair is a bad idea, though, because there are lots of incorrect ways
to translate this sentence pair correctly. We’ll add the following sentence
pairs:

X(Garcia X(and associates))

Garcia y asociados

X(X(Carlos Garcia) X(has X(three associates)))

Carlos Garcia tiene tres asociados

X(X(his associates) X(X(are not) strong))

sus asociados no son fuertes

X(Garcia X(X(has X(a company)) also))

Garcia tambin tiene una empresa

X(X(its clients) X(are angry))

sus clientes estn enfadados

X(X(the associates) X(X(are also) angry))

los asociados tambin estn enfadados

X(X(X(the clients) X(and X(the associates))) X(are enemies))

los clientes y los asociados son enemigos

X(X(the company) X(has X(three groups)))

la empresa tiene tres grupos

X(X(its groups) X(are X(in Europe)))
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sus grupos estn en Europa

X(X(the X(modern groups)) X(sell X(strong pharmaceuticals)))

los grupos modernos venden medicinas fuertes

X(X(the groups) X(X(do not) X(sell zanzanine)))

los grupos no venden zanzanina

X(X(the X(small groups)) X(X(are not) modern))

los grupos pequeos no son modernos

Add all the possible word translation rules and we have a fully connected,
but untrained, transducer. If the above sentence pairs are put in a file train
then we use the -t flag to invoke Tiburon’s training option:

% tiburon -t 20 -o wftst2.trained train wftst2

The -t 20 option instructs Tiburon to run 20 iterations of the EM algorithm
to set weights that maximize the probability of the sentence pairs in train.
The -o wftst2.trained instructs Tiburon to write its output (in this case,
the trained transducer) to the specified output file.

Training works on RTGs and CFGs as well as on FTTTs and FTSTs.
Simply provide a file of trees or a file of strings instead of a file of tree-tree
or tree-string pairs and the -t option will return an RTG or CFG weighted
to maximize the probability of that corpus.
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