Metaplaning for Multiple Agents

Jonathan Gratch
Information Sciences Institute
University of Southern California

June 7, 1998
Overview

- **Motivation:**
 - support planning in dynamic multi-agent worlds

- **Approach:**
 - draw on classical and “intentional” planning
 - seamlessly combine:
 » planning about actions
 » reasoning about multiple plans

- **Application to large-scale military simulations**

- **Issues and Future work**
Motivation

- Multi-agent planning
 - plans need collaborative generation and execution
 - plans must incorporate adversarial reasoning

- Dynamic planning
 - agents exist for extended time periods
 - plans and goals may change frequently over time
 - the environment may change unexpectedly
 - actions have duration and may fail
Current Approaches

- Classical Approaches - *Noah, Ucpop, Strips,..*
 - Designed for static single-agent planning
 - Have been extended to more complex situations (Wilkins & Myers, Knoblock, Rickel, …)
 » interleave planning and execution
 » handle uncertainty, conditional effects, conditional plans
 » support multi-agent planning.

- Collaboration typically tacked on
 » e.g. Ensuring common knowledge, commitments
Current Approaches

- "Intentional Planning": shared plans, joint intentions, ERMA
- Richer view of planning process
 - Reason about intentional stances towards plans
 » intend to, intend that, joint commitments
 - Support multiple plans: mine, yours, ours, theirs
 - Explicit support for collaboration
 » contracting, coordinating actions, …
 - Have tended to be normative theories
 - Unclear connection to classical approaches
Combined approach

- Draw on ideas from both approaches
- Integrate planning and intentional reasoning into single planning algorithm

- Try to clarify the connections:
 - From classical perspective:
 » incorporate “intentional” reasoning
 - From intentional perspective:
 » ground semantics of intentions in the operations classical planning algorithm
Planner: based on IPEM / X11

Planner
Simple establishment
Step Addition
Decomposition
Conflict Resolution
initiation / termination / fail retraction

Plan Network
Actions
Constraints

Declarative World Description

Environment
defTask
 :pre ((p-op: order(?sender ?recipient ?order)))
 :add ((a-sup: suborder(?order ?recipient ?suborder))
 (a-ord: order(?recipient ?recipient ?suborder))
 (a-plfr: plan-for(?recipient ?suborder ?plan))
 (a-plan: plan(?plan))
 (a-stat: plan-status(?plan UNAPPROVED)))
 :bindings ((?recipient ≠ ?sender) (?order ≠ ?suborder))
 :commands (;# when-added | at-start | at-end | at-failure
 (:at-start ?plan = create-plan())
 (:at-start ?suborder = extract-order(?recipient ?order))
 (:at-start populate-plan(?plan ?suborder))
 (:at-start disable-modification(?plan)))
}
Decomposition / Specialization

defRefinement PassLinesOut {
 :conditions (:filter flot(?FLOT) :at-start step2)
 (:test crosses-flot(?RT) == YES)
 (:filter flot-status(?G BEFORE) :at-start step2))
 (step2: PASS_LINES_OUTBOUND(?G ?PP))
 :links (step1:a-at == step3:p-at)
 (step1:a-atcm == step3:p-atcm))
 :orderings ((step1 < step2) (step2 < step3))
 (:when-added ?HEAD = route-head(?RT ?PP))
 (:when-added ?TAIL = route-tail(?RT ?PP))
 (:when-added ?END1 = end-point(?PP)))
}
4 ideas: 1) Multiple Plans

- **Problem:**
 - Want to reason about multiple plans
 - Want to recognize inter-plan interactions
- **Redefine “plan”**
 - Distinguish between plan and “plan network”
 - A plan is some subset of the plan network
 - Compute “inter-plan” threats for free
- **Allow plan properties and plan relations**
 - Hypothetical, intended, executable, flawed, …
2) Modulating planning

- Problem:
 - Different plans must be treated differently
 » mine vs. yours
 » hypothetical vs. intended vs. executing

- Plan properties change the planner’s behavior w.r.t. elements of that plan
 - can’t initiate actions in an unexecutable plan
 - can’t repair an unmodifiable plan
 » unless we deliberately make it modifiable
3) Grounding Intentions

- **Problem:**
 - Connection between planning and “intentions”?

- **Intentions modulate planning behavior via plan properties / relations**
 - e.g. “Intends that” - Grosz and Kraus interpret as a statement about handling inter-plan threats
 - planner avoids introducing threats into other’s plans
 - planner introduces actions that resolve other’s threats

- For adversarial reasoning:
 - planner introduces threats into other’s plan
4) Metaplanning

- Problem:
 - Don’t want separate reasoner for intentions

- This reasoning can be represented as plans
 - planner already supports multiple plans
 - make one plan a “intentional” (meta) plan
 - executing meta-actions results in formation of intentions that modulate behavior of planner w.r.t. other plans
Tactical simulations for training

- Battalion-level deep-strike missions
 - 1 battalion planning agent
 - 2 company planning agents
 - 10 helicopter execution agents
 - several hundred other friendly and enemy units
 - Participated in 2-day simulated exercise: STOW97

- Collaborative planning and execution in hierarchical organizations
 - develop plan, contract out details to subordinates, monitor execution and replan as needed
Default

default-activity

init Receipt_of_Mission PERFORMMISSION goal

Mission_Analysis Develop_Plan Brief_Subordinates Analyze_Plan Execute_Plan

Execute_Subplan Execute_Subplan

multi_16bn Enemy_Mission

BN_Attack Enemy_Mission

planning-operator handle-unexpected-effect
PASS_LINES_OUTBOUND [?GROUP ?PASSAGE-POINT]

:pre [{p-bef: float-status[?GROUP BEFORE]}]
:add [{a-aft: float-status[?GROUP AFTER]}]
:del [{d-bef: float-status[?GROUP BEFORE]}]
:commands {
 {at-start coordinate-passage[?GROUP ?PASSAGE-POINT]}
}

State: executed
Task-id: S127
GROUP: 130 (16bco)
PASSAGE-POINT: P296 (pp-16bco-route152)
Issues

- Need more theoretical commitments
 Provides a platform for flexible reasoning but:
 – Use domain specific search control for:
 » balance planning and execution
 » respond to changes in the world
 – Use domain theory to specify:
 » intentional reasoning
 » how to maintain coordination
Issues

- Collaboration in hierarchical organizations
 - What is a primitive task?
 - Different levels have different domain theories
 » have to resolve ambiguities
 » have to resolve conflicting views
 - Plan execution involves plan recognition of subordinate activities
Issues

- Theoretical analysis
 - what is the relation to Shared Plans, etc.
 - clarify plan semantics (what belongs in a plan)

- Planning
 - iterative repair via validation structure
 - control of search
CO_Attack

Move

at-cm

Move

at-cm

Move

at-cm

Move

at-cm

Move

at-cm

Movement

ReturnHome

ENGAGE_TARGETS

Step "Move"

:actual-name PERFORM_TACTICAL_MOVEMENT

:pre [{p-atcm: at-cm(?GROUP ?S-CM)]}

:add [{a-atcm: at-cm(?GROUP ?E-CM)]}

:del [{d-atcm: at-cm(?GROUP ?S-CM)]}

:bindings [{?S-CM != ?E-CM}]

:commands [{:at-start resume(?GROUP ?E-CM)]}

Plan: cluster_multi_16bn_16bco

State: executed

Task-id: T416

GROUP: l125 (16bc0)

S-CM: S158 (start-16bc0)

E-CM: N377 (pp-16bco-route174)

ROUTE: N306

CMS: C346

OK

111: initiate-task: Move (S201)

Mode: continuous