X-Bone + 10
A Decade of International Collaboration

Joe Touch
Postel Center Director,
USC/ISI
Research Assoc. Prof.,
USC CS & EE/Systems
X-Bone Overlay System

Web GUI

X-Bone system

Multiple views

Automated monitoring

Base IPv4 Network

Star Overlay

Ring Overlay

Overlay Manager

Resource Daemon

router

link

inst

IP Base

A

B

C

D

ring-ovl

star-ovl
Timeline

- 1997 – first whitepaper
- 1998-2001 – X-Bone (DARPA)
 - IP overlays with revisitation, recursion (LISP)
 - 2000 – running code (FreeBSD, Linux)
 - 2000 – application deployment
 - 2001 – TetherNet “NAT-buster” to support demos
- 2001-2004 – DynaBone (DARPA)
 - 800-way spread-spectrum parallel overlays
 - 15-level deep overlays
- 2001-2003 – NetFS (NSF)
 - File system configuration of network properties
- 2002-2005 – X-Tend (NSF)
 - X-Bone for testbed uses
- 2003-2005 – DataRouter (int.)
 - Support for overlay P2P forwarding
- 2005-2006 – Agile Tunnels (NSA)
 - Partial overlays for DDOS safety
- 2006-2009 – RNA (NSF)
 - Extending X-Bone Choices model to general protocol stack architecture
Creating a Ring

Request

Internet

Ring Ovl.

sin

eql

div

sec

isipc2

bbn

cos

udel
VI – definition

- Virtual Internet is network composed of:
 - Virt. hosts, virt. routers, virt. links (tunnels), i.e., an end-to-end system
 - provides at least the same services as IA
 - in a virtual context
- First-principles extension
 - More than a patch
 - More than interim
VIA Principles

- **TENET 1. Internet-like**
 - VIs = VRs + VHs + tunnels
 - Tunnels are links; separate net addresses
 - Emulating the Internet

- **TENET 2. All-Virtual**
 - decoupled from their base network

- **TENET 3. Recursion-as-router**
 - some of VRs are VI networks
Extra constraints

- Internet-based
 - Routing (link up) vs. provisioning (link add)
 - …one header to bind them all…
 (use IP, provide IP recursion)
- Complete E2E system
 - All VNs are E2E
- VN “Turing Test”
 - A net can’t tell it’s virtual
- Use existing protocols, OSs, apps.
Recursion-as-Router

- Sub-overlays look like routers
 - L3 version of rbridges (IETF TRILL WG)
 - Similar to LISP/NERD/etc.
Software Features

- Running code since 2000
 - FreeBSD port, Linux RPM, Cisco via buddy host
- Secure
 - TLS control plane, IPsec data plane
 - “Red teamed” software
- IPv4, IPv6 (both with IPsec)
 - Integrated with DNS updates, dynamic routing
- Per socket association to overlays
 - Allows process to bind to multiple overlays
- Application deployment
 - slice configuration, control distributed services
- Supports recursion, revisitation
Potential Uses

- Test new protocols
 - Test denial-of-service solutions
- Deploy new services incrementally
 - Dynamic routing, proxylets, security
- Increase lab & testbed utility
 - Overlapping nets, add delay & loss
- Scale to very many nodes
 - Simplify view of topology
- Support fault tolerance
 - Added level of recovery
What We Don’t Do...

- **Optimize the overlay topology**
 - we use a plug-in module (AI folk can provide)
 - it requires network status (not quite mature)
 - fault tolerance only via ground truth (future work)
 - X-Bone is capability more than performance (now)

- **Non-IP overlays**
 - Single, common interoperation layer
 - IP recurses / stacks nicely
 - “The lowest level at which experimentation is permitted is also the highest level at which experimentation occurs.” – J. Touch, 1996
VI Features

- Recursion
 - Control (like BGP AS’s)
 - Network (like LISP/NERD)
 - BARP (label distrib)
- Revisitation
- Integration of resolution, choices
 - Shims and glue layers as fundamental
- Service for deploying & managing VI's
 - Language for describing VI's
More VI Features...

- **Compose:**
 - DTN, Plutarch

- **Alternate:**
 - Control Plane, FEC, Boosters,
 - Dynabone
TetherNet

- Rents a block of addresses
 - Auto-configures secure tunnel
- Undoes effect of NAT/NAPT
 - Also effect of net non-neutrality
DynaBone
Spread Spectrum

Base network

800 Innerlays

TCP S/F – 3DES

Others – MD5

UDP – SHA1
Agile Tunnel Protocol (ATP)

- **Client**
 - → tunnel head \(_{\text{client}}\)
 - → roaming tunnel tail
 - → server (hidden)

- Works like an inverse tunnel:
DataRouter for P2P

- P2P re-implements network arch.
- Need app.-layer forwarding at net layer
- Add string-based forwarding
Recursive Net Arch

- Layering as more than software engr.
 - Layers defined by scope, context
- Create a one layer ‘stem cell’ protocol
 - Integrate resolution, “choices” from X-Bone
 - Template of basic functions, ala J. Day
VI Observations

- Virtualization *changes* the architecture
 - Hosts are really processes, everything else is really a router or system
 - Devices aren’t localized
 - Subnet as a router
 - NAT as a host front-end
 - Link and net layers are tightly coupled
- Core concepts from previous glue/shims
 - A single model yields layering, forwarding, routing, and dynamic composition
Current Efforts

- IRTF NetVirt BOF / NVRG mailing list
 - Met in Phila. March 2008
 - A- 'next gen' testbeds / GENI, 4WARD, AKARI, …
 - B- 'next generation' research / FIND, FIRE, …
 - C- virt extensions / PPVPN, L*VPN, X-Bone, LISP/NERD, PWE

- Future Internet meetings
 - ICCCN 2008 “FIAPP” (future Internet arch and protocols)
 - CoNext 2008 “ReArch” (re-architecting the Internet)
 - ICCCN 2009 “NAP” (net arch & protocols)
US-EU Collaboration

- UPC / O. Ardaiz Villanueva (Spain)
 - Visiting researcher, overlay service deployment

- UCL MICE / Peter Kirstein (UK)
 - X-Bone collab. within DARPA Active Nets
 - Deploy a MICE teleconferencing overlay

- EU 4-WARD / Martina Zitterbart (Germany)
 - RNA collaboration with Univ. Karlsruhe, NC State NetSilo / Rouskas
 - Unifying approaches to protocol layering
US-Japan Collaboration

- WIDE / Jun-ichiro (Itojun) Hagano
 - X-Bone, FreeBSD virtualization support
- WIDE / Hideaki Imaizumi
 - Dynabone, Visiting researcher, IPv6 transition mech.
- WIDE / Shigeya Suzuki
 - X-Tend, Visiting researcher, RF tags
- NEC / Norihito Fujita
 - X-Tend, Visiting researcher, P2P network overlays
Project Issues

- Coordinating projects
 - Separate preconditions
 - Separate goals (esp. funded independently)
 - Separate funding trajectories
 - *very* hard to coordinate a-priori

- Support for travel
 - Meetings are more international anyway
 - Direct support for guest presentations
People Issues

- In-person visits
 - Visiting researchers
 - Guest presentations
- Regular meetings
 - “T-Troup” participation, group talks & paper reviews
 - External review collaboration
- Social support
 - Lunches, coffees, Friday bagels
 - Off-time - “WoW”s, holidays, sharing local favorites
Things that help...

- Support / piggyback on other meetings
 - Sigcomm 2007, Kyoto (Jun Murai/Keio Univ., chair)
 - CoNext Research 2008, Madrid
- Skype + Powerpoint
 - Cheaper than telephone
 - Easier than teleconferencing
- Be conscious of language issues
 - Alternate descriptions
 - Simpler description/words…

 without simplifying the ideas