Parallel Computing Patterns for Grid Workflows

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland
{pautasso, alonso}@inf.ethz.ch – www.jopera.org
Grid Workflows for Large Scale eScience

How well can we do Parallel Computing with Workflows?

Service Oriented Grid

Large Scale eScience

Grid Workflows
Why Parallel Computing Patterns?

- Language primitives for modeling parallelism
 - Common classification
 - Unify different syntax/notations
 - Test of expressive power
- Efficient implementation for Grid workflows
 - Do all systems support all patterns?
 - What is the semantics of parallelism?
 - Impact on scheduling, data management, lineage tracking features
Overview

• Parallel Execution
 • Simple Parallelism
 • Data Parallelism
• Pipelined Execution
 • Best Effort
 • Blocking
 • Buffered
 • Superscalar
 • Streaming
Parallel Execution: Simple Parallelism

- Parallel split (Classical Control Flow Pattern)
- Independent tasks...
 - ...run in parallel (*strong semantics*)
 - ...may run in parallel if enough resources are available (*realistic implementation*)
 - ...are serialized non deterministically (*weak semantics*)
- Modeling:
 - Explicit or Implicit
 - Control flow or Data flow
 - Graph based or Block based (or both)
Modeling Simple Parallelism

- Data Flow, Graph Based, Implicit

Examples:
- SCIRun
- Kepler
- Triana
Modeling Simple Parallelism

- Control Flow, Graph Based

Example:
- YAWL
- JOpera
- GEL

Example:
- UML
Modeling Simple Parallelism

- Control Flow, Block Based, Explicit

Example:
- BPMN
- BPEL4WS
Parallel Execution: Data Parallelism

• SPMD: Run a copy of the same task over multiple data elements (in parallel)

• How to control the amount of parallelism?
 • Static (Design-time) vs. Dynamic (Run-time)
 • Manual vs. Adaptive
 • Homogeneous vs. Heterogeneous partitions

• Modeling
 • Data Flow or Control Flow
 • Graph Rewriting, Block based
 • First-Order Functions (Map)
Modeling Data Parallelism

- Data Flow, Graph Rewriting

Examples:
- Triana
- Taverna
- JOpera

- Static or Dynamic
Modeling Data Parallelism

- Data Flow, First-Order Functions

Example: Kepler
Modeling Data Parallelism

- Control Flow, Graph Based

$\ll ParallelLoop \gg$

T^*

$Next$

T

Examples:
- Teuta
- UML
Modeling Data Parallelism

- Control Flow, Block Based

Examples:
- WS-BPEL
- AGWL
- Karajan
- GEL
Overview

• Parallel Execution
 • Simple Parallelism
 • Data Parallelism

• Pipelined Execution
 • Best Effort
 • Blocking
 • Buffered
 • Superscalar
 • Streaming
Parallel Execution: Pipelined Execution

- Stream multiple data elements sequentially through a sequence of tasks
Modeling Pipelined Execution

• Syntax very similar, but semantics changes a lot!

• How to deal with non uniform task duration?
 • Best Effort
 • Blocking
 • Buffering
 • Superscalar
 • Streaming
Best Effort Pipelined Execution

- Drop data elements on pipeline collisions
- Advantages:
 - Simplified implementation
 - Some applications may tolerate data loss
- Problem:
 - Downsampling is non deterministic
Blocking Pipelined Execution

- Tasks are blocked if successors are busy
- Advantages:
 - Avoid data loss in the pipeline
- Problem:
 - Pipeline speed limited by slowest task
 - Data may be lost before it enters the pipeline
Buffered Pipelined Execution

- Tasks are decoupled by buffers

Advantages:
- Collisions are prevented
- Best applied to tasks having variable speed

Problem:
- Buffer capacity is limited (Blocking still needed)
Superscalar Pipelined Execution

- If a task is busy, create another instance

- Advantage:
 - Data loss avoided without blocking

- Problem:
 - Data elements may overtake one another
 - Where to enforce synchronization?
Streaming Pipelined Execution

- Tasks exchange data while running

Advantages:
- Suitable for a distributed (P2P) engine

Problems:
- Shifts complexity from the workflow engine to the tasks
- Tasks exchange data while running
- Workflow/Task interface more complex
Conclusions

- Applying parallel computing techniques to Grid workflows has become a necessity for large scale eScience applications.

- Not all Grid workflow languages/systems we surveyed support all patterns:
 - Simple Parallelism & Static Data Parallelism supported by all
 - Dynamic Data Parallelism still a challenge (for some)
 - Pipelining implemented with many different semantics

- Let us know how your Grid workflow language/tool supports these patterns!
Parallel Computing Patterns for Grid Workflows

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland
pautasso@inf.ethz.ch – www.jopera.org