Workflow-based comparison of two Distributed Computing Infrastructures

J. Montagnat, T. Glatard, D. Reimert, K. Maheshwari, E. Caron, F. Deprez
(CNRS, I3S / CREATIS, INRIA, LIP)

WORKS'10
New Orleans
November 14, 2010

http://gwendia.polytech.unice.fr
• **Objectives**
 – Evaluate performance of different Distributed Computing Infrastructures (DCIs): a production (European EGI – former EGEE) and a research (French G5K) infrastructure

• **Motivations**
 – Workflow-based applications can be easily ported to different DCIs (or simultaneously use different DCIs)
 – DCIs hardware and middleware significantly differ
 – Distributed computing performance is difficult to assess

• **Method**
 – Experiments-based: same workflow application executed on different DCIs
 – Execution conditions aligned as much as possible
 – Comparison criterions identification and measurement
Different DCI models

• **Infrastructures**
 - EGI: production, 250+ computing centers, 160k+ CPU cores, 10k+ users, world-scale, gLite middleware (batch-oriented)
 - G5K: research, 9 sites, 5k+ CPU cores, 100's users, national-scale, reconfigurable (any middleware), reservable resources

• **Resources usage**
 - EGI: production = permanent (yet variable) workload
 ▪ SRM-compatible storage resources
 ▪ Amount of resources never precisely known
 ▪ WAN communications
 ▪ High-end resources in well equipped computing centers
 - G5K: research = higher workload variations
 ▪ NFS access to disks
 ▪ Controlled amount of resources
 ▪ National WAN communication on a private high-performance network
 ▪ 1-5 years old resources
Different DCI models

- **Middleware**
 - EGI: gLite
 - Batch-oriented computations
 - File servers with heavy compatibility front-ends
 - Scientific Linux (REHL-like) v4 or 5 OS
 - G5K: OAR resources reservation
 - Dedicated resources, any middleware
 - NFS servers site-wise, manual data transfer across sites (scp...)
 - Any OS system image

- **Heterogeneity**
 - All IA32/64-compatible CPUs
 - Although significant hardware variations cause practical problems for OS images deployment
• **Cardiac image segmentation workflow**
 - 2 initialization stages (mhd2qc + ImgAndModelInit)
 - Multiple instances of the segmentation process (det3D4)
Workflow runs

- **Parameter sweep application (parameters-combinatorial)**
 - Small-size: 2+12 segmentation instances (testing)
 - Medium-size: 2+200 segmentation instances (scale-up)
 - Large-size: 2+2080 segmentation instances (challenging)

- **Same binaries ran on each infrastructure**
 - Binaries compiled for SL4
 - SL4 OS image installed on G5K nodes (proved to be painful!)

- **Fixed-size infrastructure**
 - 54 (= 3 x 18) cores reserved for most experiments

- **Experiments were reproduced 3 to 5 times**
 - Compensate for inter-experiments variability
 - Results are given as average value +/- standard deviation

- **Experiments were ran on a single site or on 3 sites**
 - Both intra-site and WAN communications
Quantitative comparison

Grid Workflow Efficient Enactment for Data Intensive Applications

- **Compare EGI and G5K performance in similar conditions**
 - Allocate same size infrastructure and run same workflows
 - Measure makespan, data transfer time, activities execution time and idle time
- **DIANE pilots on EGI**
 - Resource reservation
 - Pilots submitted to batch using GASW
 - Pilots may fail (faulted, expired, killed by sysadmin, unreachable...)
- **Pilots used to reserve resources**
 - Need a fixed-number pool of pilots
 - Over-provisioning to replace failed pilot without delay
 - Submission of idle pilots until the needed number is available
- **54 resources reserved for experiment runs**
 - 70 to 90 pilots submitted for each experiment
Small-size runs

- **EGI (1 site)**

- **G5K (1 and 3 sites)**

 - **Features**
 - gLite overhead
 - Resources heterogeneity on G5K (1 to 2 CPU time)
Medium-size runs

- EGI (1 site)
- EGI (3 sites)
- G5K (1 site)
- G5K (3 sites)
Medium-size runs

- **Features**
 - Batches of 54 concurrent tasks
 - Desynchronization over time
 - Input files caching
 - DIET workflow decomposition strategy

- **Few task failures on EGI**
 - Causing resubmission

- **Difference between 1 and 3 sites runs**
 - Little impact on EGI; more impact on G5K (e.g. data transfers)

- **Makespan variability is higher on G5K than on EGI**
 - No better reproducibility on G5K than on EGI using pilots
Large-size runs

- EGI (3 sites)

- EGI (failed)

- G5K (1 site)

- G5K (3 sites)
Large-size runs

- **Features**
 - Linear profile

- **Many failed experiments**
 - EGI: pilot lifetime limitations
 - G5K: difficulty to proceed with reservations and platform failure

- **Reproducibility**
 - Higher on single site than on 3 sites with EGI
 - Higher on 3 sites than on single site with G5K
• **Greedy pilots allocation**
 – No limitation to 54 pilots
 – ~30 sites
 – ~3% failures

• **Features**
 – Delayed start (time for first pilots to register)
 – Sub-linear profile (more resources available)
 – Diane's favorite heavy tail

• **Performance**
 – Comparable makespan as with controlled conditions (54 pilots)
Conclusions

• Difficulty to compare different DCIs performance

• Experiments-based performance measurement
 – Sensitive to the workflow properties (e.g. the workflow used features maximal data parallelism and no critical bottleneck activity)

• Experimental setup
 – Aligning execution conditions with pilot jobs + pilot population controller + single runtime
 – Limited in scale

• Infrastructure properties outlined
 – Difference in CPU performance, network topology and middleware
Conclusions

• **A 54-nodes controlled infrastructure reaches makespans close to EGI knowing that:**
 – Experiments on EGI have been run on large, reliable sites
 - < 5% error rate in all cases
 – EGI can handle several concurrent users and experiments
 – Few failures are highly impacting makespan in production

• **Reproducibility may be as good on EGI as on G5K under controlled condition**
 – Feasibility of large-scale experiments on EGI