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Abstract 
This paper describes an initial cognitive framework that 
captures the reasoning involved in scientific data analyses, 
drawing from close collaborations with scientists in different 
domains over many years.  The framework aims to automate 
data analysis for science.  In doing so, existing large 
repositories of data could be continuously and systematically 
analyzed by machines, updating findings and potentially 
making new discoveries as new data becomes available.  The 
framework consists of a cycle with six phases: formulating an 
investigation, initiating the investigation, getting data, 
analyzing data, aggregating results, and integrating findings.  
The paper also describes our implementation of this framework 
and illustrates it with examples from different science domains. 
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Introduction 
Over the last decades, many scholars have shed light on the 

diverse and rich processes involved in scientific reasoning, 
from discovering laws [Simon 1977], to understanding causal 
mechanisms [Craver and Darden 2013; Pearl 2018], to 
collaboration [Trickett et al 2015], to producing paradigm 
shifts [Kuhn 1962].  The development of cognitive models 
that reflect how scientists think is indeed a daunting task.  Our 
goals are much narrower, focusing very specifically on 
capturing the scientific reasoning that we observed through 
many years of working with scientists in data analysis as we 
represented their tasks, implemented their computational 
methods, and supported their collaborative work.   

Our focus is on scientific research that revolves around 
data analysis, in particular observational science where data 
is abundant.  There are many other types of scientific research 
that are not directly linked to the analysis of data (though 
eventually they can be).  Some are designed to gain some 
understanding on how to tackle an open problem, perhaps by 
assembling information about the state-of-the-art in relevant 
publications or by coming up with new ways to frame a 
problem that can lead to new research avenues.  Other 
investigations are designed to be exploratory in nature in 
terms of trying out possible directions through informed 
guesses to gather more information about the problem.  These 
eventually lead to data analysis which is the current focus of 
our work. 

There is prior work on developing frameworks for 
scientific data analysis.  Others have focused on automating 

the extraction of findings from the literature [Tshitoyan et al 
2019], the exploration of complex search spaces [Senior et al 
2020], the formulation of hypotheses [Callahan et al 2011], 
or the design of laboratory experiments [Groth and Cox 
2017].  Our focus is on scientific reasoning involved in data 
analysis where there are significant data resources that enable 
the pursuit of many research problems, where we find current 
analyses are done in a piecemeal manual way.  This is the 
case in many science domains, where extensive amounts of 
data are available including biomedical, geosciences, and 
social sciences datasets.  Today, their analysis is driven by 
researchers with limited time and resources and much of the 
data is underutilized. Our work is the first to focus on 
capturing the scientific reasoning that can lead to the 
automated continuous analyses of these vastly underutilized 
data resources.   

This article draws on our work with scientists in very 
diverse domains, developing a variety of platforms to support 
their data analysis work.  We have worked on population 
genomics, clinical omics, water quality, cancer multi-omics, 
neuroscience, hydrology, agriculture, climate, wildfire, 
disease spread, and economics [Zheng et al 2015; Gil et al 
2019; Gil et al 2011; Gil et al 2017; Gil et al 2021; Khider et 
al 2020].  The contributions of this work are twofold:  
• A proposed general framing of scientific reasoning for 

data analysis as a cognitive framework with six 
distinct phases, based on our observations in several 
scientific domains 

• A description of our implementations that capture and 
represent the knowledge involved in four of the six 
phases in different domains and our use of this 
approach in different frameworks and science domains 

We begin by framing the kinds of reasoning involved in 
scientific data analysis, including formulating an 
investigation, initiating the investigation, getting data, 
analyzing data, aggregating results, and integrating findings.  
Then, we illustrate how we capture the knowledge required 
and carry out the reasoning involved in our implementations 
for different science domains.  We close with conclusions and 
directions for future work. 

Framing Scientific Reasoning for Data 
Analysis  

A long-term research project targets a broad set of open 
problems, which are tackled by breaking them down into 
smaller problems that can be accomplished in a reasonable 
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way with whatever resources are available for the project 
(people, computing, time, data, etc).  An open problem is 
broken down into subproblems, perhaps creating tasks and 
decomposing them in turn into subtasks.  Eventually they 
become tractable enough that they prompt specific research 
activities that can be undertaken to reach some conclusion 
given the resources available.  Here, we focus on such 
activities and refer to them as investigations.  More 
specifically, we consider here investigations that have a 
concrete goal that can be accomplished through data analysis 
whose results address that aim.   

Figure 1 shows an overview of the cognitive framework 
that we have developed and the major phases that we have 
identified.  They are described in the rest of this section. 

 
 
 

 
 
Figure 1. A cognitive framework for scientific data analysis. 

Phase I: Initiating Investigations 
The aim of an investigation is to answer a question, which is 
most useful if it is well scoped to be tractable given the time 
and resources available.  An example of a question that we 
have seen in neuroscience is whether the effect of a specific 
genotype on the prefrontal cortex size is associated with age.  
Questions can be posed as testing a hypothesis, which would 
be a statement that can be supported or dismissed based on 
data analysis.  For example, in cancer omics we have 
analyzed data to test hypotheses that a particular protein 
known to be associated with colon cancer is present in a 
specific colorectal cancer patient sample.  Hypotheses can be 
implied, but when explicitly declared they are more effective 
in guiding the investigation. 

Sometimes the formulation of questions or hypotheses is 
itself the aim of an investigation.  Scientific endeavors can be 
arbitrarily complex, and as we mentioned we focus here on 
investigations that can be resolved through data analysis.  We 
will consider a question or hypothesis as the starting point. 

We have noticed general patterns in the types of questions 
that are posed in investigations for any given domain or 
context, and many of these patterns appear across domains.  
This is not surprising, since statistics, inference, and 
induction are general methodologies across sciences.   

Figure 2 illustrates broad categories of scientific questions.  
Some questions have to do with associations between 
observed variables.  For example, in neuroscience we can ask 
if a brain characteristic, such as hippocampus size, is 
associated with a disorder such as ADHD. Other questions 
are concerned with characterizing the data at hand.  For 
example, a question posed about a timeseries could be 
whether it has seasonality or longer periodicities.  There are 
many important questions that target a causal understanding 
of a complex system [Pearl 2018].  These are concerned with 
changes in its state over time (due to actions or events) that 
lead to other (causally related) changes.  

Table 2 shows examples of the kinds of questions that our 
collaborating scientists have set out to address. 

We have found that scientists spend significant time 
narrowing down the types of questions that they will focus 
on.  This is a process that can be considered an investigation 
in itself as we mentioned earlier.  

  
Figure 2. Broad categories of scientific questions about 

dynamic systems. 

   

 
 

I) Initiating 
Investigation

II) Getting 
Data

III) Generating
Results

IV) Synthesizing
Findings

Elaborate
Question

QUESTION

Preselected 
Data

Retrieving 
Data

Finding 
Data

Check Fit
to Question

Select general 
methods

Design
novel methods

Elaborate and 
implement 
methods

Run methods and 
collect results

QUALIFIED QUESTION

DATASETS

RESULTS

FINDINGS
V) Integrating

Findings

VI) Formulate 
Investigation

Select meta-
method

Design
novel meta-method

Elaborate and 
implement 

meta-method

Run meta-method to 
synthesize findings

Integrate New
Data Source

KNOWLEDGE

  
 

Prefactual
What outcome if event E occurs now?

Counterfactual
What outcome if event E had not occurred in the past?

Semifactual
Same outcome if event E had occurred instead of F?

Prediction
What future outcome if event E occurs now? 

Backcasting
What event G will have future outcome, what E,F before G?

Postdiction
What event E caused F that caused current outcome?

Diagnostic
What was observed about X given the last few events?

Intervention
What would I observe if I change X?

Association
Is X associated with Y?

Characterization
Do X, Y, Z conform to a pattern/function?



 
 

Table 2. Examples of general types of scientific questions. 
Question 
Category 

Example 

Association Is <brainCharacteristic> associated with 
<neurologicalDisorder> in comparison to 
healthy controls? 

Characterization Does <timeseries> have <period> 
seasonality? 

Diagnostic What local areas are subject to frequent 
flooding? 

Intervention What could be the yield of <crop> if 
<fertilizerSubsidies> are given this year? 

Counterfactual What would have been the yield of <crop> if 
precipitation had been <number> times 
<larger/smaller> last year? 

Backcasting What <plantingWindow> could have lead to 
increased crop yield this year over last year? 

Prefactual Can we expect <flooding> in <area> in the 
rainy season this coming year? 

Prediction How will future <climateScenarios> impact 
<waterResources> in <region>? 

 
Questions can be elaborated by adding qualifiers to narrow 

down the scope of the question.  In our examples, this might 
involve selecting a specific time period (e.g., going from 
“future” to “the next 10 years”), a region (e.g. the Northern 
side of a river basin), or a threshold (e.g., flooding is defined 
as water covering the soil by more than 2 inches for more than 
1 day.). In some cases the qualifiers are determined by the 
resources available.  For example if computational resources 
are limited a smaller time frame will be chosen.   

Alternatively, questions can be decomposed into further 
subquestions whose results need to be aggregated to answer 
the original question.  For example, to determine the yield of 
a crop for given planting dates one might have to consider 
different values for fertilizer use.  Each possible amount of 
fertilizer that will be considered would result in a 
subquestion.  In this kind of exploration of the solution space, 
sometimes cast as parameter sweeping, different values of a 
parameter are tried and then all the results are combined 
(through an average or some other function) into an answer 
for the overall question. 

In more complex cases, a question can lead to a collection 
of subtasks.  For example, a question concerning fertilizer 
subsidies could lead to a subtask to find an agroeconomic 
model that combines agriculture yield predictions with 
socioeconomic aspects of the likelihood of uptake of 
fertilizers by farmers based on market prices.  Finding such a 
model may not be straightforward, and the scientist may need 
to consider if it is possible to build it given the time and other 
resources available.  If the question is important and requires 
developing new sophisticated models, it may take many 
months to get that subtask done before any data analysis can 
take place.  Another example is questions concerning 
flooding or water resources where a preexisting model may 
provide a starting point but needs to be calibrated to adapt it 
to the region at hand.  In those cases, the calibration subtask 

may also take significant effort but is required before any 
meaningful data is available for analysis. 

Phase II: Getting Data 
As we mentioned earlier, for some investigations there are 
significant amounts of data available in shared repositories.  
In certain cases, simulations or other predictive models can 
be used to generate the data needed.  But in other cases, the 
data is already preselected and is the center of the 
investigation.  We discuss each situation in this section. 

 
Preselected Data Sometimes a question is posed about a 
specific dataset that is provided along with the question.  In 
those cases, there may be subtasks concerning whether the 
dataset is right for the question asked.  

Although there may be no need to seek out data, it may 
still be useful to still try to find relevant data and alert the 
scientist that other data is available that they are not aware of. 

   
Retrieving Data Given a question that can be addressed with 
available datasets, the investigation proceeds by retrieving 
the relevant data.  When using data repositories, this involves 
mapping each question to a query that describes the relevant 
datasets.   

 
Finding Data Some questions require running simulations of 
a complex dynamic system.  Datasets must be found to set up 
the initial state.  For example, an economic model may need 
the current market price of different crops. In addition, 
datasets may be needed to support the analysis of different 
scenarios.  For example, different drought conditions can be 
explored if datasets are found that contain climate forecasts.  
It may not be trivial to locate data repositories that contain 
the desired datasets. 

 
In all these cases, if the necessary data are not found, then the 
question cannot be pursued and has to be adjusted or 
abandoned. 

Phase III: Generating Results 
To analyze the data available, a data analysis method is 
applied to the data.  In rare cases, a new method may need to 
be developed as one of the subtasks to address the question 
posed.  But in most cases, there are widely-used proven 
methods that can be applied to the data at hand.  The analytic 
method is often discipline specific, but it can be general such 
as statistical methods or machine learning algorithms.  For 
example in population genomics a common method is 
association testing, while in document analysis a common 
method is hierarchical clustering.  In the case of simulations, 
setting up models is a key part of the method. 

 
Multi-Step Methods Over the years, we have implemented 
and/or executed hundreds of scientific data analysis methods.  
They always consist of multiple interdependent steps.  The 
steps are executed in turn, often started by the scientist 



through simple interfaces such as a command line invocation 
or a map-based application.   

 
General Methods We have found that scientists typically 
follow a method as described in a publication or a method 
that is commonly used.  At the same time, it is rare that all 
labs have the same software: some labs prefer Python and 
others R or Matlab.  Therefore, even though the execution of 
the data analysis software is done with particular software, 
scientists have a concept of general methods in an 
implementation-independent manner. General methods are 
abstract plans.  Abstract plan steps are decomposed into 
several substeps or specialized into more specific substeps 
that eventually bottom out in data analysis software that can 
be executed.  The main steps in the general method could 
involve a simulation model or an empirical model.  A main 
step in the method could also be a statistical function.   

 
Data Preparation General methods do not typically mention 
steps that are not critical to the method but are necessary for 
running its implementation.  For example, data 
transformation steps may be added as the general method is 
elaborated.  Data preparation steps are always needed to pre-
process data so it fits the requirements of the software used 
to implement the main steps of the method.   

 
Results Once data analysis is executed, there will be a 
collection of results that needs to be aggregated in the next 
stage.  Associations may have been analyzed for each of the 
datasets available, and now the individual results need to be 
combined.  In other cases, hundreds of simulations using 
different parameter values may have been run, whose 
individual results would need to be combined in order to 
answer the initial question.  We have also seen cases where 
several alternative analysis methods are run (i.e., an ensemble 
method), and combining their results helps increase 
performance or reduce uncertainty. 

Phase IV: Synthesizing Findings 
The individual results of the data analysis phase are then 

synthesized into a set of overall findings.  As was the case in 
the prior phase, this requires identifying an existing method 
or designing one.  This might be as easy as taking an average 
of the results, or some other statistical function.  This is 
sometimes called meta-analysis when the datasets were 
collected independently (e.g., in different studies).  When the 
investigation starts with a hypothesis, the finding must be in 
support or against it (for example with a confidence value 
being high or low). 

In extreme cases, analysis results are hard to aggregate into 
conclusive findings of an investigation.  For example, in 
cancer omics we may look at data from several hundred 
patients but there are different types of data available for each 
(for one it may be only genomic data, for another it may be 
genomic and also proteomic data from mass spectrometry, 
and for yet another it may be genomic data and proteomic 
data from fluorescence imaging).  In such extreme cases, 

scientists often consider the evidence separately for each type 
of data, making the meta-analysis a straightforward 
aggregation for each type of data.  

We found an interesting case in neuroscience, where the 
scientists do not run the data analysis, only the meta-analysis.  
They worked with several data providers who did not want to 
share their data, but were willing to run the analysis in their 
respective sites and share the results.  The scientists then did 
the meta-analysis over those results. 

Phases V and VI: Integrating Findings with 
Current Knowledge and Formulating the Next 
Investigation 

The findings from data analysis are integrated with existing 
knowledge or theories, leading to revisions or extensions.  
The final phase includes prioritizing problems or questions 
based on their potential impact, refining problems into 
subproblems or subquestions, and ultimately initiating new 
investigations so the cycle is back to Phase I.   

These two phases have not been the focus of our work so 
far.  They have been studied by others [Thagard 2012; 
Samuels and Wilkenfeld 2019; Addis et al 2016; 
Chandrasekharan, S. & Nersessian 2015]. 

Capturing Scientific Reasoning for Data 
Analysis Inquiries 

This section describes the representations and reasoning in 
our implementation of four of the six phases of our cognitive 
framework, namely: initiating the investigation, getting data, 
analyzing data, and aggregating results.  We leave out two 
phases that will be subject of future work: the last phase of 
integrating findings with what is known, and the subsequent 
phase that re-iterates the cycle by formulating the next 
investigation.  We have used these representations in 
different systems that address different science domains and 
purposes [Gil et al 2021; Gil et al 2017; Gil et al 2011]. 

In describing these representations, we provide examples 
using a simplified, more readable format.  In our 
implementations, we use semantic web representation 
standards from the World Wide Web Consortium (W3C), 
including OWL, RDF, SPARQL, SWRL, and PROV [World 
Wide Web Consortium 2022].  These languages have 
expressive limitations, but come with open-source tools and 
efficient off-the-shelf reasoners.  Their limitations have not 
been an issue for our research so far, and there are many 
benefits to doing our work on an open-source substrate.  In 
addition, many scientists are familiar with these languages, 
as they are widely used in biomedicine and increasingly used 
in other scientific disciplines. 

Initiating Investigations 
In our framework, scientists provide the initial hypotheses 

and questions that initiate the investigations. 
We create a question ontology that includes classes of 

objects or concepts in the domain that can be used to 
formulate questions.  For the cancer omics domain, our 



question ontology included classes such as <protein>, <gene>, 
and <patient-sample>.  For the neuroscience domain, a 
question ontology can include classes such as <genotype>, 
<brainCharacteristic>, and <demographicAttribute>.  Some of the 
terms may appear in existing domain ontologies, but they 
have to be agreed upon as valid terms for expressing 
hypotheses. 

We also formulate question templates, which are logic 
expressions that includes variables of a type already included 
in the question ontology, in addition to text that expresses the 
question being posed.  Examples in neuroscience include:  

Is the effect of <genotype> in <brainTrait> associated with 
<demographicAttribute>? 
Is the effect size of <genotype> on <brainRegionTrait> of 
<brainRegion> associated with <demographic>?  

 
Then, scientists create question statements by specializing 

question templates.  For example, from the last question 
template above the following question statement could be 
formulated:  

Is the effect of APOE in HyppocampalVolume associated 
with Age? 

 
As we mentioned, questions may need to be further 

specified.  We do this with domain-specific qualifiers that 
need to be defined using a qualifier ontology.  For example, 
this question: 

What will be the increase in <crop> yield if there are <item> 
subsidies? 
 

may prompt the following qualifiers: 
What will be the increase in <crop> yield if there are <item> 
subsidies measured as <potentialCropProduction>, from 
<beginDate> to <endDate>, in <region>? 

 
We have noticed that often times the scientists do not 

have a choice in these qualifiers, as they may be determined 
by the datasets that are available.  For example, if data is only 
available for certain years, then the years selected will have 
to be within that range. Therefore, for elaborating questions 
to include all necessary qualifiers, we have developed in the 
past user interfaces to elicit those qualifiers from users.   

Getting Data 
Once the question is specified, it can be used to formulate the 
right queries that will get relevant data. 

 
Retrieving Data For retrieving data, we need to represent 
data queries. Those queries are then issued against the data 
repository to retrieve the data.  For that reason the queries are 
formulated using metadata attributes defined for the data 
repository, otherwise an ontology mapping or translation step 
would be needed.  The following is an example of a SPARQL 
query to retrieve data for the second question template above: 

         SELECT ?dataset WHERE { 
    ?cohort a Cohort . 

    ?cohort HasGeneticDataType ?Genotype . 
    ?cohort HasDataset ?dataset . } 
 
which requests a dataset from a study cohort that has the 
desired genotype specified in the question. Note that the data 
repository needs to offer appropriate metadata so that queries 
like these can be formulated.  Not all data repositories do, and 
in that sense our work creates new requirements for scientific 
repositories in order to support automated data analysis. 
 
Finding Data  For finding data, we start with an elaborated 
question.  For example, a question to generate crop yield in a 
region with fertilizer subsidies would require running an 
agriculture model.  Different agriculture models have 
different data needs, but generally they would require data 
about soils and slopes and weather predictions. We represent 
the data requirements for each model, in this example in 
terms of physical variables needed for soil and atmosphere: 
       MODEL {Cycles} MODEL_REQUIRES { 
             soilThickness, surfaceSlope, soilMoisture, dailyMaxTemp, 
             atmosphSaturation, dailyPrecipitationpVolume } 
 
and we know this is a useful model for the query because it 
generates the measurement that the query requires: 
       MODEL {Cycles} MODEL_GENERATES { 
 potentialCropProduction } 

 
Now that we know what data is required, we issue data 

queries accordingly.  For example, the following is a JSON 
query to retrieve data for the model above: 
      QUESTION_REQUIRES  
            Variables {  
               soilThickness, surfaceSlope, soilMoisture, dailyMaxTemp,                
               atmosphSaturation, dailyPrecipitationpVolume } 

       SpatialCoverage_Intersects { ?region} 
       TemporalCoverage_Intersects { ?beginDate ?endDate } 
 
We have found that if the scientist selects a specific model 

first, that narrows down the data needs to those of that model 
alone.  But in some cases, it may be preferrable to run as 
many models as there is data for.  This is a good example of 
how these phases are not necessarily done sequentially, and 
scientists do backtrack and change some of their decisions 
based on what they see happening downstream.  For example, 
they may have a question in mind but the data to run the 
necessary models cannot be found, and if so the question will 
be changed to adapt it to the data available.  This back and 
forth is often done manually, doing web searches to find 
relevant data that might support the desired model.  

Generating Results 
Once the data is located, a method can be selected. 

 
Multi-Step Methods  As we mentioned, we have found that 
methods typically consist of multiple interdependent steps. 
Most methods can be represented as a workflow, with input 
data and output data.  Methods may involve iterating over 



some steps while tweaking their setup and manually checking 
the results until the scientist is satisfied.  If there is no need 
for manual inspection, methods can be cast as workflows so 
they are automatically executed by a workflow system. We 
use a workflow language to represent methods and their 
execution [Gil et al 2011]. 

 
General Methods  General methods can be represented as 
abstract plans.  What we have found is that in most cases the 
general methods are quite prescriptive, leaving little room for 
decomposition or elaboration.  That is, most general methods 
can be described as skeletal plans, a special form of abstract 
plans where there is only specialization and no 
decomposition [Friedland and Iwasaki 1985].  That is, each 
step in the skeletal plan is specialized into a more specific 
step and the steps in the final plan have a one-to-one 
correspondence with the steps in the original skeletal plan.  
We have adapted these ideas to develop a workflow 
management system that can specialize workflow templates 
into executable workflows, and can incorporate reasoning 
about constraints in the process.  This is described in detail 
elsewhere [Gil et al 2011].  For example, an abstract step 
might indicate the use of an agriculture model which can be 
specialized to use specific models, or an abstract step could 
be to detrend a time series which can be specialized to linear 
detrending or polynomial detrending. 

 
Data Preparation  We also cast data preparation steps as 
workflows.  We find that they do not tend to use general 
methods, instead they are implemented by cutting corners to 
save time.  The cost of implementing data preparation often 
deters scientists from examining questions thoroughly.  Their 
automation appears very feasible and very desirable. 

Synthesizing Findings 
We synthesize findings through meta-workflows.  Our meta-
workflows are implemented using the same workflow 
representations, except they take as inputs the workflows that 
generated the results.  This is important, since the reasoning 
to synthesize and aggregate results needs to take into account 
the method and the implementation used to generate them.  
Our semantic web representations allow us to publicly 
publish workflows by posting them on the Web with a unique 
persistent URL, and to access them through that URL as well 
as all its constituent steps and intermediate datasets. 

Integrated Reasoning through Lines of Inquiry 
A key innovation in our work is capturing how questions, 
methods, and meta-analysis are connected together to allow 
the inquiry to be triggered and proceed.  A line of inquiry 
(LOI) is the mechanism that we use to make such a 
connection. It includes: 
1. A question template, with variables that will be bound by 

the values provided by the user when the formulate a 
question based on the template 

2. A query template, which contains the variables in the 
question as well as additional variables to describe the 

desired characteristics of the dataset.  Running a query 
template returns dataset identifiers 

3. One or more workflow identifiers, with their input and 
output data as variables that can be linked to the dataset 
identifiers that result from running the query template   

4. A meta-workflow with its input data as variables that can 
be linked to workflow identifiers  
In cases when an LOI is created for a hypothesis, the 

finding returned by the meta-workflow must be in support or 
against the hypothesis or else a refinement of the hypothesis 
if evidence was found for it. 

When the user poses a question, it is matched against the 
question template in all available LOIs.  The LOIs that match 
are then triggered, which results in their query being 
executed, then the workflows, and then the meta-workflow.  
LOIs are fundamental knowledge structures for science.  
They are often constructed as the investigation proceeds, and 
if properly captured they can be reused for subsequent 
investigations.  

Conclusions 
We presented a cognitive framework with six distinct phases 
to model key aspects of scientific reasoning for data analysis. 
We also showed with examples our representations of the 
knowledge used about the data, methods, and meta-analysis 
in the four phases that we have addressed with our work.  The 
framework needs to be extended further to cover the 
important phases of integrating findings and formulating 
investigations.  Its application to new domains and problems 
would be needed to evaluate it, as well as characterizing the 
nature of its limitations and designing appropriate future 
extensions. 

The proposed framework can be used to guide the 
development of user interfaces and systems for scientific data 
analysis in new domains, by guiding requirements elicitation, 
ontology design, and process flow. The framework can also 
be used to characterize the role of different systems and tools 
that support scientific data analysis. These benefits are 
applicable beyond science, as the framework is relevant more 
generally to the emerging field of data science as a 
methodological guide. The ultimate goal of this research is 
automating scientific data analysis tasks in areas of science 
where significant amounts of data are available, to enable 
continuous analysis of data to update findings and accelerate 
discoveries.     
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