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1 Introduction

This document describes a package of Python code for implementing various non-parametric
continuous entropy estimators (and some discrete ones for convenience). After describing
installation, Sec. 3 provides a wide-ranging discussion of technical, theoretical, and nu-
merical issues surrounding entropy estimation. Sec. 4 provides references to the relevant
literature for each estimator implemented. If you use these estimators in your research,
please cite the appropriate authors. Sec. 5 describes the functionality and options in details.

2 Installation notes

This package contains Python code implementing several entropy estimation functions.
The implementation is very simple. It only requires that numpy/scipy be installed. It
requires a fairly recent version of scipy (≥ 0.12).

$curl -O http://www.isi.edu/~gregv/npeet.tgz

$tar -xvf npeet.tgz; cd npeet

$python

>>> import entropy_estimators as ee

>>> x = [[1.3],[3.7],[5.1],[2.4],[3.4]]

>>> y = [[1.5],[3.32],[5.3],[2.3],[3.3]]

>>> ee.mi(x,y)

Out: 0.168

You can run “python test.py” and see code inside for example usage.
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3 Notes about entropy estimation

3.1 Theoretical

The basic idea behind non-parametric entropy estimators is that you locally estimate the
log probability density at each sample point, then you average these to get an estimate.
In spirit, this is very similar to kernel density estimation, except we do not have to go
through the intermediate step of constructing a probability density and then integrating
over it. This local probability density estimate at each point is subject to caveats, however.
In particular, it is assumed that the probability density around a point is uniform within
the (max-norm) ball containing its k-nearest neighbors. It is easy to imagine that this
can fail; we will discuss some potential problems below. However, as N , the number of
samples, gets big, this procedure should be a consistent estimator, unlike kernel density
estimates [8].

Manifolds What if your high-dimensional vectors lie on a low-dimensional manifold? It
depends on what is on the manifold, and what quantity you are looking for. You can
define the entropy restricted to the manifold and Alfred Hero has some work investigating
that. If you are estimating mutual information MI(x : y) and the points x or y or both
are restricted to low dimensional manifolds, that is no problem. The dimension does not
enter into the estimators, only nearest neighbors in the joint and marginal subspaces. We
investigate this nice property of mutual information estimators [11].

On the other hand if the joint distribution of x, y is on a manifold, or even nearly so,
there is a problem. As a concrete example, imagine y = x + noise. Nearly functional
relationships like this badly violates our assumption that the probability density is nearly
uniform in a max-norm ball around each sample point. As the relationship between x, y
gets closer to functional, the estimator will converge to log(N), where N is the number of
samples, (as opposed to diverging as it should). This makes sense in a way. In principle
you cannot tell if x gives more than logN bits of information about y from only N samples.
(But in practice, you can often do this if you make any reasonable assumptions at all about
your data.)

Entropy decomposition In principle, you do not need fancy estimators for every en-
tropy. You just need the basic estimator H(X), then you can combine it in clever ways
to produce higher order entropies. Take the conditional mutual information as an exam-
ple I(X : Y |Z) = H(X,Z) + H(Y,Z) − H(X,Y, Z) − H(Z). If this quantity is nearly
zero, but each of those individual entropies is big, you will be adding errors together for
each term and you will get a very unreliable estimate. This is what is done for the mixed
continuous-discrete mutual information estimator and the discrete estimators, so beware.
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Mixed estimator In particular, if we have I(X : Y ) where X is a continuous variable
and Y is discrete, taking values Y = 1, . . . , k, we can write mutual information as,

I(X : Y ) = H(X) +

k∑
i=1

p(Y = i)H(X|Y = i).

Our estimator replaces H(X) and H(X|Y = i) with the standard k-nearest neighbor
entropy estimator. After conditioning on some value of Y = i, there may not be enough
points remaining to estimate entropy (fewer than k+1 points). In that case, we assume the
entropy is maximal, i.e., Ĥ(X|Y = i) ≡ Ĥ(X). That way, insufficient samples produces a
mutual information of zero. This represents a philosophical choice that we should prefer
to err on the side of under-estimating mutual information given insufficient data.

3.2 Implementation

In the Kraskov paper, they use the max-norm, as we do here. They claim that any norm
would be fine. Anecdotally, I have had problems with convergence when trying to use the
Euclidean norm. I did not try very hard though, so possible it was due to some mistake.

As mentioned, we use k = 3 nearest neighbors by default [5]. Smaller k should lead to
less bias (because we are only assuming constant density in a smaller neighborhood), but
can lead to more noise. Larger k reduce variance. k = 3 seems to strike a good balance.

Kraskov et. al. in the ”Implementation details” section describe adding low intensity
noise to break degeneracies in calculating nearest neighbors. I have done that as well. The
noise is of order 10−10, so be sure this is a small perturbation compared to your data.

3.3 Numerical

Although the estimators are asymptotically unbiased, for small N , there may still be bias
(see e.g. [12]). You can even see this in the example in “test.py”. If you are comparing
multiple entropies, it may be better to use the same number of samples for each estimate.
If you want you can average the estimated entropy over multiple random subsamples of
fixed size.

Negative MI Mutual and conditional mutual information (even for continuous variables)
should never be negative. However your estimate may be negative, due to error in the
estimator. If you want to get a handle on the error in your estimator, use something like
the shuffle test routine on your data.

Other Limitations The shuffle test gives an estimate of the error that is especially useful
for small mutual information. However, your resolution is still fundamentally limited by
N , and this can cause problems if you are not careful [4].
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Optimization In general, the slowest part of entropy estimation is finding the nearest
neighbors. This is implemented in C using scipy’s cKDTree method, so it should be pretty
fast (O(N logN)). On the other hand, in high-dimensions, KDTree’s are not very good,
and you might be reduced to the speed of brute force N2 search for nearest neighbors. If
N is too big, I recommend using multiple, random, small subsets of points (N ′ << N) to
estimate entropies, then average over them.

4 References

If you make use of any estimators, please cite the appropriate literature described below.
Feel free to cite this document if you find the software to be a useful tool.

The mutual information estimator is from Kraskov et. al. [7]. Note that it corresponds
to the estimator they call I(1) in Eq. 8. The continuous entropy estimator is based on
Kozachenko and Leonenko [6], but, as a non-Russian speaker, I implemented it based on the
Kraskov paper. The conditional mutual information estimator comes from Palus et. al. [9].
There were other choices [8], but this one was particularly simple. The KL Divergence
estimator comes from Wang et. al. [13], Eq. 5. They suggest many nice variations as well.
And, of course, mutual information can be written as a KL divergence, so this can provide
some alternate estimators. The estimators from Wang et. al. can be particularly useful if
you know something about relevant length scales. I have not seen the mixed continuous-
discrete mutual information estimator before, but my implementation described above is
fairly obvious. Another version has been considered [3]. We also introduce an elegant
version of this estimator [4], which will be implemented in future versions.

4.1 Discrete entropy estimation

The discrete estimators are simply the “naive” or “plug-in” estimators, which can be badly
biased in the absence of sufficient data. There is a well-developed literature on estimating
discrete entropies in the case that the number of samples not much larger than the number
of discrete states. We discuss a few of the simple approaches taken in the neuroscience
literature along with references in [10]. See DeDeo et. al.’s paper for more sophisticated
methods and references [2]. They have also made a package available implementing these
bias correction procedures for discrete entropies at http://thoth-python.org/.

5 Functions

5.1 Continuous

entropy(x) Estimates the (differential) entropy of x ∈ Rdx from samples x(i), i = 1, . . . , N .
The input should be a list of “vectors”, that is a list of lists, as in the example above. Re-
member, differential entropy, unlike discrete entropy, can be negative! [1]
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mi(x,y) Estimates the mutual information between x ∈ Rdx and y ∈ Rdy from samples
x(i), y(i), i = 1, . . . , N .

cmi(x,y,z) Estimates the conditional mutual information between x ∈ Rdx and y ∈ Rdy

conditioned on z ∈ Rdz from samples x(i), y(i), z(i), i = 1, . . . , N .

kldiv(x,xp) Estimates the KL divergence between two distributions p(x), q(x) from sam-
ples x, drawn from p(x) and samples x′ drawn from q(x). The number of samples do not
have to be the same. KL Divergence is not symmetric. This function is untested.

5.2 Discrete

entropyd(x) Estimates the discrete entropy given a list of samples of discrete variable
x.

midd(x,y) Estimates the mutual information between discrete variables x and y.

cmidd(x,y,z) Estimates the conditional mutual information between discrete variables
x and y conditioned on discrete variable z.

5.3 Mixed

micd(x,y) Estimates the mutual information between a continuous variable x ∈ Rdx and
a discrete variable y. Note that mutual information is symmetric, but you must pass the
continuous variable first. This routine has not been tested. Additional caveats below apply.

5.4 Utilities

shuffle test(measure,x,y,[z]) Shuffle the x’s so that they are uncorrelated with y, then
estimates whichever information measure you specify with “measure”. E.g., mutual infor-
mation with mi would return the average mutual information (which should be near zero,
because of the shuffling) along with the confidence interval (95% by default, set with the
keyword ci = 0.95). This gives a good sense of numerical error and, particular, if your
measured correlations are stronger than would occur by chance.

vectorize(x) Turns a list of scalars into a list of one-dimensional vectors, as required by
the estimators. E.g. [1, 2, 3] to [[1], [2], [3]].
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5.5 Options

For continuous estimators, you can set the number of nearest neighbors to use by passing
the argument k =?. The default is k = 3. The reason for this choice is that it has worked
well for me, and for Kraskov, and our intuitions were confirmed by a more extensive
study [5]. All information is reported in bits, but this can be changed by passing the
argument base =?.
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