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ABSTRACT

Since its first appearance, IP anycast has become essential

for critical network services such as the Domain Name Sys-

tem (DNS). Despite this, there has been little attention to

independently identifying and characterizing anycast nodes.

External evaluation of anycast allows both third-party audit-

ing of its benefits, and is essential to discovering benign mas-

querading or hostile hijacking of anycast services. In this

paper, we develop ACE, an approach to identify and charac-

terize anycast nodes. ACE first method is DNS queries for

CHAOS records, the recommended debugging service for

anycast, suitable for cooperative anycast services. Its second

method uses traceroute to identify all anycast services by

their connectivity to the Internet. Each individual method

has ambiguities in some circumstances; we show a com-

bined method improves on both. We validate ACE against

two widely used anycast DNS services that provide ground

truth. ACE has good precision, with 88% of its results corre-

sponding to unique anycast nodes of the F-root DNS service.

Its recall is affected by the number and diversity of vantage

points. We use ACE for an initial study of how anycast is

used for top-level domain servers. We find one case where

a third-party server operates on root-DNS IP address, mas-

querades to capture traffic for its organization. We also study

the 1164 nameserver IP addresses that cover all generic and

country-code top-level domains, gather evidence that at least

14% and perhaps 32% use anycast.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network topology ; C.2.5
[Computer-Communication Networks]: Local and
Wide-Area Networks—Internet ; C.2.6 [Computer-Com-
munication Networks]: Internetworking
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1. INTRODUCTION

To provide rapid response and high availability to
customers, many large network services are distributed
globally. For some of these services, the abstraction of a
single logical service is provided by servers in multiple
locations with similar or identical replicated contents
accessed using a single logical identifier. Content deliv-
ery networks (for example, [12]), mirroring services (for
example, [11]), URNs [33], and IP anycast [28] all fit
this model.

IP anycast is one mechanism to provide an abstrac-
tion for a logical service distributed across the Internet.
As defined in RFC-1546 and RFC-4786, an anycast ser-
vice operates on a single IP address, but multiple any-
cast nodes replicate that service at different physical
locations. Each node may be implemented with one or
more servers (a physical or virtual machine), each of
which listens to both the anycast address and one or
more unicast addresses as well. Standard interdomain
routing directs clients to the nearest replica and han-
dles fail-over to other nodes as required. (We review IP
anycast details and terms in Section 2.1.)

Anycast is used for many core services of the Internet
today. It is widely used for DNS [15]: as of April 2011,
10 out of 13 root name servers employ anycast [30], and
in Section 4.2 we show that anycast is used in many
other top-level domain servers. It is also used for dis-
covering IPv6-to-IPv4 relay routers [17], load distribu-
tion [36, 13], sinkholes [14], and similar services. Any-
casted services benefit from anycast’s load balancing
and ability to mitigate denial-of-service attacks [1], and
research proposals have discussed improvements to scale
to many anycast destinations [19].

The use of anycast for core Internet services motivates
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the need for tools to understand anycast use. Since DNS
is central to the performance of web services (see for ex-
ample [34]) and content delivery networks, these tools
and methods can help Internet service operators un-
derstand how anycast affects their overall performance.
Although anycast providers can directly monitor the
status of their service, clients of anycast operators can
use these tools to audit the service they are purchasing,
and providers can obtain a “client’s-eye” view from ex-
ternal observations of their anycast service. By serving
the same IP address from multiple locations, anycast
uses the same mechanisms as route prefix hijacking, but
for good. Yet anycast services themselves can be sub-
ject to partial hijacking, as we observe in Section 4.1.
Finally, while anycast today is used mainly for DNS,
6to4 traffic, load distribution, and sinkholes, an under-
standing of the current deployment may spur additional
deployments. Although anycast performance has been
studied by a number of groups (we cover related work
in Section 5), these needs motivate our study of anycast
discovery and mapping.

The first contribution of our work therefore is to pro-
pose ACE (Anycast Characterization and Evaluation),
a set of new methods to identify anycast nodes in Sec-
tion 2. We begin with specific DNS query targets that
are the debugging methods anycast operators have built
and often employ in their systems [38]. This method
requires a cooperative and correctly configured target.
We therefore also develop a traceroute-based method
that only depends on anycast’s inherent characteristic:
traffic to the same IP address follows different paths.
We show that these methods complement each other
with a combined algorithm that reduces observation er-
ror.

The second contribution of our work is to validate
ACE and evaluate what factors affect its performance
(Section 3). We apply our methods from 242 PlanetLab
nodes, identifying the anycast infrastructure for the F-
root domain servers, and for Packet Clearing House’s
DNS servers, both of which provide ground truth. We
look at the coverage of our two data sources and the ac-
curacy of the two methods and their combination. The
precision of our results, how many answers are correct
anycast nodes, varies from 58% to 100% depending on
information source and target. Recall, how many of the
ground truth anycast nodes we find, varies from 38% to
49%. Recall is dominated by the number and diversity
of vantage points, so we study this factor explicitly.

Our final contribution is to apply ACE to understand
how anycast is used in practice over many domains. We
report two findings. First, in the process of validation,
we found a third-party DNS server masquerading as an
anycast node for a public root server (Section 4.1). Al-
though known to the root operator, ACE demonstrates
the importance of independent techniques to audit crit-

Figure 1: Anycast and routing: three anycast nodes
(N1, N2, and LN3) and their cacthments (dark, light
and medium grey regions).

ical Internet infrastructure. Second, in Section 4.2, we
apply ACE to servers for all generic and country-code
top-level domains (gTLDs and ccTLDs). Although we
cannot judge the size of each anycast instance (because
of the uncertain recall of our algorithms given our cur-
rent vantage points), our data suggests hundreds of ac-
tive anycast services in use, and gives some information
about how many unique anycast providers are in opera-
tion. Although our findings are not definitive, since our
observation methods are imperfect, to our knowledge
they are the first study of anycast use (as opposed to
performance) for TLD name services.

2. METHODS FORANYCASTDISCOVERY

We now describe our three methods to characterize
anycast services. Our DNS-query-based method uses
operator-configured information, our traceroute-based
method uses only network paths, and our hybrid algo-
rithm combines both. Before defining the algorithms,
we review anycast terminology.

2.1 Anycast Background

IP anycast provides clients of a distributed service
with a single-server abstraction [28]. Clients of the ser-
vice send traffic to a designated IP address identifying
the anycast service. However, the service itself is im-
plemented by a service provider using one or more any-
cast nodes that can be physically distributed around the
Internet. Standard routing protocols ensure that the
user’s packets are sent to a nearby anycast node. Be-
cause routing, and therefore node selection, is indepen-
dent of communication, anycast is usually used only for
stateless, single-packet-exchange services like DNS [15]
or datagram relay [17].

Figure 1 shows how three anycast nodes might cover
a network of six ASes. Looking inside each node, Fig-
ure 2 shows the complexity that is possible in practice
as anycast nodes are implemented by single or multiple
machines at a given site, each with one or more network
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Figure 2: Anycast node configurations, and CHAOS-
related observations in italics and traceroute penulti-
mate routers in bold.

interfaces. In addition, different routing options can be
used control anycast scope. We review these options
next, using the terminology defined in RFC-4786 [1].

Routing options.
The area covered by a given anycast node is its catch-

ment. Anycast nodes have two levels of external visi-
bility: global and local. In Figure 1, anycast nodes N1
and N2 are global, each with catchments encompassing
multiple ASes (AS11 and AS12; and ASes 21, 22, and
23, respectively),

Node LN3 is local and so affects only AS31. Global
nodes advertise an anycast IP prefix to BGP and are
visible Internet-wide [1]. Local nodes advertise an any-
cast IP prefix with the no-export BGP attribute [2]
and are visible only to adjacent autonomous systems.
Larger anycast services often include both local and
global nodes, but either may be omitted.

Anycast is available in both IPv4 and IPv6. We ex-
amine only its use for IPv4.

Options inside each anycast node.
While routing allows clients to access a nearby any-

cast node, there can be complexity inside the anycast
node as well, as one or more servers may provide the
service. Figure 2 enumerates the key features of all im-
portant configurations that we have encountered.

The top row (T1) shows the simplest case, where a
single server provides service at a given anycast node.
That anycast node listens to traffic on both the anycast
address that is shared with all other anycast nodes, but
also on a second, unique unicast address used for man-
agement.

Since anycast nodes are often placed in Internet ex-
changes (IXP) with complex local topologies, row T2
shows a single machine with multiple adjacent routers,
connected by a shared LAN, or a sever with multiple
network interfaces.

For large services such as a top-level domain server, a
service at an anycast node may be provided by multiple
physical servers. Cases T3, T4, and T4 show multiple
servers behind one (T3) or two or more (T4) routers.

Finally, case T5 shows two different anycast nodes
(N1 and N2), but with identical CHAOS records. Such
use is inconsistent with their specification, but may oc-
cur due to accident or hijacking. We cannot distinguish
T5 from T2 by external observation; we see neither case
in our ground truth but do observe such cases in our
study of TLDs (Section 4.2).

Identifying anycast nodes.
This review of anycast node configurations suggests

the two basic methods we use to identify anycast nodes.
Sometimes anycast servers or nodes are self-identifying
using DNS CHAOS records, as shown by the italic labels
next to the machines in Figure 2. This mechanism is the
diagnosis method recommended by anycast operators.
In Section 2.2 we describe how one can directly query
the servers. The target must have correctly configured
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DNS to support these queries; case T5 shows a risk
with this method: two different nodes mis-configured
with the same CHAOS TXT record may not be distin-
guishable.

As an alternative, we also examine the penultimate
router (PR) on a traceroute to the anycast node (Sec-
tion 2.3). This method depends more on details of
the network configuration of the anycast node, so the
distinctions between T1 and T2, or T3 and T4 can
cause possible measurement error. We use this method
to identify non-cooperative or misconfigured anycast
nodes, and to learn the different naming schemes providers
use for CHAOS records.

2.2 CHAOS DNS Queries

Operators of anycast services must have a means of
observing and debugging their services. RFC-4892 de-
fines a set of conventions using DNS records to iden-
tify individual anycast nodes and servers. Although not
mandatory, we find that these conventions appear to be
widely followed (Section 4.2).

Since anycast is widely used in global DNS services,
and since DNS provides a convenient external query
mechanism, RFC-4892 suggests how DNS can be used
to identify a specific anycast server [38]. It re-purposes
CHAOS network records (from the now defunct Chaos-
net [25], an alternative to IP), supported in the DNS
standard [24] for this purpose. Queries for the name
hostname.bind or id.server with type TXT and class
CHAOS are defined to return a unique string. Unfortu-
nately, the contents of this are not formally standard-
ized, so each provider selects some scheme to uniquely
identify their servers. We decode some of these schemes
in Section 4.3. We use the term CHAOS DNS query to
refer to this mechanism in this paper.

In principle, presence of these records should make
identifying anycast servers trivial. Standard DNS tools
(such as dig or nslookup) can retrieve this information.
Because CHAOS records are tied to individual servers,
they correctly identify single-server nodes (cases T1 and
T2 in Figure 2) and can also detect each server in multi-
server nodes (cases T3 and T4).

However, in practice CHAOS records are not always
be sufficient to identify anycast servers. CHAOS records
are specified in an informational RFC, and not in a man-
dated standard. Thus anycast providers may choose
not to provide them. They were also defined initially in
the BIND DNS implementation (in fact, using a record
that includes the name “bind”), and availability in other
implementations has come later. In addition, CHAOS
records indicate anycast servers, but conventions to re-
late anycast servers to nodes are unspecified. Thus the
multi-server cases T3 and T4 in Figure 2 require addi-
tional information to determine the two servers located
at the anycast node. We show in Section 3.3 that a

standard here can avoid overcounting servers for nodes,
improving precision for some cases, and in Section 4.3
we consider naming conventions in top-level domains.
Third, as described above, CHAOS records may be mis-
configured (case T5 of Figure 2). Finally, as we discuss
later, a DNS masquerader or hijacker may intentionally
omit or provide duplicate CHAOS records.

For these reasons we next describe a second mecha-
nism to identify anycast nodes using traceroute.

2.3 Traceroute

In this section, we discuss how to use traceroute to
track the path to the server from a vantage point. In
Section 2.5 we show how traceroutes from many loca-
tions are combined to characterize the entire anycast
service.

Traceroute finds part or all of the network path from
the prober to a nearby anycast node. We simplify the
path and focus on the penultimate router, or PR. Our
hypothesis behind this method is that each anycast
node will have one PR, as in a node of type T1 in Fig-
ure 2.

In practice, this hypothesis is only partially correct,
since anycast nodes with a rich local topology some-
times have multiple PRs (case T2 of Figure 2) or mul-
tiple servers per node (cases T3 and T4). These cases
complicate our analysis. Since these routers are nearly
always co-located with the anycast node in the same
IXP, we use simple heuristics to partially address this
problem. We assume routers with “nearby” addresses
are in the same IXP; currently, we define nearby as
within the same /24 address block. When we cannot
identify multiple PRs as nearby, our traceroute method
overestimates the number of anycast nodes. In Sec-
tion 3.4 we evaluate how often multiple PRs cause over-
counts, and in the next section we show how a combi-
nation of the methods can help. Development of better
PR alias resolution is an area of ongoing work.

2.4 Combining CHAOS and Traceroute

Each of our observation methods (CHAOS and Tracer-
oute) works best when it can determine a single identi-
fier per anycast node. As shown in Figure 2, our ability
to determine identifiers depends on the anycast node
and network configuration. Sometimes both methods
work (case T1), or one of the two works (cases T2, T3,
and T5). In case T4, both methods fail with an over-
count of the anycast node, and when no vantage point
is in the node’s catchment, they undercount. The fact
that the two approaches have complementary success
cases suggests we can combine them, looking at both
the PRs and CHAOS records together.

To combine the methods, we observe that if either
method results in a single identifier, we know there is a
single anycast node, even if the other suggests multiple
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Figure 3: An example showing combining CHAOS
records and traceroute.

nodes. Figure 3 shows this process. We take observa-
tions from all vantage points as input, then separately
merge records with duplicate CHAOS and PR identi-
fiers. We then merge these lists to get our combined
estimate, as shown in the example at Figure 3.

This example shows how the combined method can
resolve ambiguities when observing cases T2, T3 and
T4 of Figure 2. Node n1 has the topology of case T2,
node n2 has the topology of case T3 and node n3 has
the topology of case T4. At the first step, the PR Ta-
ble groups multiple servers to a single node, assisting
for cases T3 and T4 (top right, where PR 192.168.34.1
groups servers a.n3.org and b.n3.org). The CHAOS
Table also groups multiple PRs in a node (top left,
grouping two PRs of node n1 and four of n3 ). Then in
second step we join these results with each other. The
algorithm is symmetric; only one side or the other is
required to produce the same result.

2.5 Observing from Many Vantage Points

CHAOS records and traceroute provide data about
specific anycast nodes. To build a picture of the anycast
service as a whole, we need to apply those methods from
many different vantage points (VPs) spread around the
Internet.

Each vantage point is in the catchment of some any-
cast nodes. Since standard routing allows only one
best route to each IP address, our coverage of the any-
cast service is limited by our number of vantage points.
However, Figure 4 shows some of the challenges that
arise when combining traceroute observations from dif-
ferent vantage points. VP a observes node N1. VP b
also observes N1, and with the same PR, so we detect
these as equivalent observations. VP c observes N1,

Figure 4: Observing anycast nodes N1, N2, and LN3
from vantage points a to e.

but with a different PR, suggesting that N1 has multi-
ple adjacent routers as in type T2 of Figure 2. Anycast
node N2 has two servers (Figure 2, type T4), and van-
tage points d and e detect each one separately. Finally,
there are no vantage points in the catchment for LN3,
so it goes unobserved.

Similar challenges arise when using CHAOS records.
While VPs a, b, and c will observe identical CHAOS
records for N1, the results from VPs d and e depend
on how the two servers at N2 are configured. And LN3
still is unobserved.

We evaluate the effect of number of vantage points
on both methods and their combination in Section 3.6.

3. VALIDATION

We next evaluate the accuracy of each of our methods
as compared to ground truth, and the effects of the
number of vantage points on our results.

3.1 Validation Methodology

To validate, we run our three methods (CHAOS DNS
queries, traceroute, and combined) from many global
vantage points to two large anycast services for which
we have ground truth.

Vantage points: We gather our data from 242 Plan-
etLab nodes at 238 unique sites in 40 different countries.
At four sites we use two nodes to cope with node out-
ages. Each node runs our data gathering scripts, using
traceroute and dig to do the actual queries. We gather
all observations at a central site for analysis.

Targets: We consider two targets: the F-root DNS
server run by ISC, and the Packet Clearing House Any-
cast service that hosts 37 ccTLDs and 1 gTLD, and
provides secondary service for 18 more. We selected
these providers as targets for two reasons. First, both
are large, professionally run anycast providers serving
dozens of important major domains—thus, they are
representative of other major anycast providers. Sec-
ond, both are non-profit organizations that emphasize
outreach to research and provide public descriptions of
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their infrastructure. Their willingness to respond to our
queries about their infrastructure was essential to gain-
ing faith in our validation.

Ground truth: We consider two types of ground
truth: oracle truth, and authority truth. By oracle
truth, we mean the actual set of nodes that respond to
an anycast address in the Internet at any instant. We
identify it as “oracle” truth because defining it requires
a perfect snapshot of network routing from all parts of
the Internet—an impossible goal. We define authority
truth (written as A) as the list of anycast nodes that
we get from the anycast service operator.

Oracle and authority truth can diverge for two rea-
sons. First, third parties may operate anycast nodes for
a given service with or without the provider’s knowl-
edge. Such third party nodes would not be part of au-
thority truth. We discuss an example of a third-party
node for F-root in Section 4.1. Second, we derive au-
thority truth from public web pages. We find these web
pages sometimes lag the current operational system, as
discussed in Section 3.3.

3.2 Metrics

We evaluate our approach using precision and recall,
metrics taken from the field of information retrieval.
We refine these terms for our application to recognize
different error cases and authority and oracle ground
truth.

To review these terms and how we apply them in
our case, consider Figure 4 where five vantage points
(a through e) probe three anycast nodes. Probes from
a through c find N1, and d and e find N2, the true
positives. Node LN3 is omitted because there are no
vantage points in its catchment, so it is a false nega-
tive (an undercount). To correct this error, we need a
new vantage point in LN3’s catchment; we study this
relationship in Section 3.6.

There are three cases that might be classified as false
positives. If we are unable to distinguish that two ma-
chines at N2 represent a single anycast node, then we
would overcount. In an overcount, neither observation
is completely wrong (since both N2a and N2b are any-
cast servers), but they result in a mis-estimate of the
number of anycast nodes. When we detect a node that
we confirm is operated by the anycast provider but is
not in authority truth, we have an missing authority
(“missauth” for short). Finally, if a non-authorized any-
cast node appeared in the AS with vantage point b, we
record an extra node. An extra node is a false posi-
tive when compared to authority truth, but it is a true
positive when compared to oracle truth.

We now define our version of precision against au-
thority and oracle truth as:

precisionauthority =
tp

tp+overcount (1)

precisionoracle =
tp+missauth+extra

tp+missauth+extra+overcount
(2)

In general, we do not have false positives (because
everything we find is an anycast server). Therefore au-
thority precision reflects our level of accidental over-
counts due to multi-server or multiple PR nodes.

Recall captures the coverage of authority truth we
obtain:

recall =
tp

tp + fn
(3)

We do not define a recall for oracle truth because, by
definition, we do not have a complete set of the oracle
population.

3.3 Validating Use of CHAOS DNS Queries

We now evaluate our method using CHAOS DNS
queries. We know that both of our targets use CHAOS
records in their anycast services, so we expect CHAOS
records to be very precise, while exercising our recall.

Success of the query infrastructure: We first
consider how often our DNS query infrastructure works
successfully. Table 1 shows the results of our query
process. We see that we are unable to use about 5%
(10 or 14 of 242) of our monitoring infrastructure at
any given time; typical churn in PlanetLab can be as
high as 30% [35]. To reduce the effects of these outages
we added second PlanetLab machines at four sites. Our
DNS queries require the dig program (part of BIND);
we were unable to install it on 2 PlanetLab nodes.

About 6% of queries that are sent fail to provide
CHAOS records. We see two types of failure. About 5%
of queries we send do not reach their destination, sug-
gesting routing churn or server failure. Since we know
the servers are professionally run, high-value servers, we
assume unreachability represents routing failures. Yet
a 5% routing failure rate is 5–25× greater than typical
rates of 0.2–1% [22]. This large difference suggests fu-
ture work to explore whether anycast routing is more
prone to failure than unicast routing.

The other 1% of failures for F-root are due miss-
ing CHAOS records at a successfully contacted server.
Since we expect all servers in this study to support
CHAOS records for debugging, our first thought was
that these were caused by operator misconfiguration.
However, our traceroute method shows that these cases
were actually third party nodes masquerading as any-
cast servers, as discussed in detail in Section 4.1,

Finally, about 94% of the time we get CHAOS records,
suggesting the method can provide data almost all the
time.

Success of CHAOS result analysis: We next con-
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CHAOS DNS Queries: F-Root PCH
vantage points (duplicates) 242 (4) 242 (4)

unable to access vantage point 10 14
DNS tool unavailable 2 2
query sent 230 100% 226 100%

no records returned 14 6% [100%] 11 5% [100%]
name server unreachable 12 5% [75%] 11 5% [100%]
no records in response 2 1% [25%] 0 0% [0%]

record returned (|Ã|) 216 94% 215 95%

Table 1: Success of our DNS query infrastructure.

CHAOS DNS queries: F-Root PCH
authority truth 47 53
oracle truth 58 53

records considered (|Ã|) 216 215

estimated anycast nodes (|Â|) 34 26
true positives 21 26
overcounts 12 (0) 0
missing authority 1 0
extra 0 0

authority precision 64% (100%) 100%
oracle precision 65% (100%) 100%
recall 45% 49%

Table 2: Accuracy of CHAOS DNS query analysis.

sider how effective CHAOS DNS queries are at identi-
fying anycast nodes. Table 2 evaluates the process of
distilling our observations into estimates. As can be
seen, most of our vantage points duplicate coverage.

For coverage, we observe about half of the target’s
authority truth (recall is 45% and 49% for F-root and
PCH). While we have many vantage points, PlanetLab
is focused on academic institutions and are biased to-
wards the United States and Europe, while production
anycast servers focus on commercial IXPs with broader
global coverage. We expect a more diverse set of prob-
ing sites would increase our recall. We study the effect
of number of vantage points in Section 3.6, and tech-
niques to grow the number of perspectives are future
work.

Our precision is better: PCH precision is 100%. F-
root precision falls to 64%, mostly because of 12 over-
counts. These overcounts are due to T3 or T4 configura-
tions where multiple servers provide service for a single
node. Since ISC’s CHAOS records are per-server (not
per-node), multi-servers result in overcounts.

CHAOS records also reveals one case of incomplete
authority truth for F-root. Although missing from the
public web page, ISC confirmed that one anycast node
we found should have been listed. This missing author-
ity makes our oracle precision very slightly better than
authority precision, from 64% to 65%.

Traceroute: F-Root PCH
vantage points (duplicates) 242 (4) 242 (4)

unable to start traceroute 8 14
traceroute attempted 234 100% 228 100%

no PR 54 23% 27 12%
no ICMP reply 22 9% 21 9%
different target 19 8% 3 1.5%
multiple PRs 13 6% 3 1.5%

PR discovered (|Ã|) 180 77% 201 88%

Table 3: Success of our traceroute infrastructure.

Our basic CHAOS algorithm does not interpret the
contents of the reply, because there is no formal stan-
dard. However, each anycast service provider has their
own convention, something we explore in Section 4.3.
As an experiment, we decoded ISC’s convention, to ex-
tract identities of both the anycast node and the spe-
cific server. We show the results of this F-Root-aware
CHAOS algorithm in parenthesis in Tables 2 and 6.
This provider-specific interpretation makes the CHAOS
method completely correct, suggesting it would be ben-
eficial to standardize reply contents, or other means of
making this distinction.

3.4 Validating Use of Traceroute

We next consider accuracy of the traceroute method
described in Section 2.3. An important aspect of tracer-
oute is that its coverage depends on the level of ICMP
filtering in the network, rather than on debugging sup-
port at the anycast provider.

Success of the traceroute infrastructure: We
begin by evaluating how often we can collect data with
traceroute. Table 3 shows how often our traceroutes
succeed. We define success as traceroute producing
a single IP address in both its final and penultimate
records. Again, a few PlanetLab nodes are unavailable
when we collect our data (8 or 14 of 242, less than 5%
of our vantage points).

Many more traceroutes fail than do CHAOS DNS
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Traceroute: F-Root PCH
authority truth 47 53
oracle truth 58 53

records considered (|Ã|) 180 201

estimated anycast nodes (|Â|) 34 33
true positives 18 26
overcounts 13 7
missing authority 2 0
extra 1 0

authority precision 58% 79%
oracle precision 62% 79%
recall 38% 49%

Table 4: Accuracy of traceroute analysis.

queries—23% and 12% for F-root and PCH, compared
to only 6% for CHAOS. We find two main causes of
these failures. First, in a plurality of cases (22 of 54
for F-Root and 21 of 27 for PCH), routers near the tar-
get produced no ICMP reply for either the PR or the
target. Second, we see two different cases that suggest
either multiple interfaces or multiple servers and load
balancing (cases T2 and T4 from Figure 2). For dif-
ferent targets, the last hop of the traceroute is different
than the IP address we are using as our target, likely
due to a single server with multiple network interfaces,
or multiple adjacent routers on its LAN. For multiple
PRs, traceroute’s multiple ICMP echo requests for the
PR return different addresses, suggesting load balanc-
ing across multiple machines. Currently we treat these
cases as errors, but we believe we can partially interpret
them and are in the process of improving our analysis
to do so.

Overall, traceroute provides data for most targets
(77% and 88%), but slightly less coverage than CHAOS
DNS queries. We attribute this difference to the preva-
lence of ICMP filtering by network operators.

Success of PR analysis: Given traceroute cover-
age, Table 4 looks at the accuracy of its predictions for
our two anycast target services. Compared to CHAOS
DNS queries, traceroute finds the same (26 for PCH) or
slightly fewer (20 instead of 22 for F-root) true anycast
nodes. It also finds many more overcounts: 13 and 7,
as opposed to 12 and 0 with CHAOS. F-root operates
several multi-server nodes (case T4 in Figure 2), all of
which are overcounted by both methods. PCH does not
operate multi-server nodes, but may of their nodes have
multiple PRs (case T2 in Figure 2) likely due to nodes
with multiple interfaces or rich IXP topologies.

These overcounts result in a lower precision for tracer-
oute than for CHAOS queries: 58% and 79% compared
to 64% and 100%. We will see that the combination
method resolves some of these overcounts.

observations F-root PCH
vantage points (duplicates) 242 (4)100% 242 (4)100%

no CHAOS, unk. PR 17 7% 19 8%
CHAOS and PR 171 71% 193 80%

valid 169 70% 192 79%
false combination 2 1% 1 0.5%

CHAOS or PR, not both 54 22% 30 12%
no CHAOS but PR 9 4% 8 3%
CHAOS but unk. PR 45 18% 22 9%

Table 5: Success of combined infrastructure.

Incomplete authority truth is also a problem. F-
root’s authority truth is missing two nodes. One of
these was found and discussed in CHAOS, the other is
found only by traceroute. That anycast node was vis-
ible only from a single vantage point, and although it
supported traceroute, we were unable to install dig on
it to run CHAOS DNS queries. F-root also has one ex-
tra node, a third party server operating on the F-root
anycast address that we discuss in Section 4.1. These
differences in ground truth causes oracle precision to be
about 4% higher than authority precision due to dif-
ferent ground truth; we discuss the extra node case in
detail in Section 4.1.

Finally, the reduced coverage of traceroute results in
a slightly lower recall for F-Root: 38% vs. 45% with
CHAOS queries.

3.5 Validating the Combined Method

Our combined method uses both CHAOS DNS queries
and traceroute as information sources. It improves re-
sults to the extent that those two sources are uncorre-
lated.

Ability to combine data sources: Table 5 mea-
sures the degree of correlation between the two infor-
mation sources. As can be seen, there is some indepen-
dence between the two sources, with 22% and 12% of
cases present in only one of the two information sources
for F-Root and PCH. This independence suggests that
a method that combines traceroute and CHAOS records
may be more accurate that either of those methods
alone. Moreover, in the majority of cases (71% and
80%) for which both data sources are present, a com-
bined algorithm can use the more informative of the two
sources, for example, to resolve ambiguities in identify-
ing cases T2, T3 and T5 from Figure 2.

Our combined method introduces one new source of
infrastructure failure: if routing changes between the
CHAOS observation and traceroute, analysis could in-
correctly combine observations from different nodes. We
detected these cases and identify them as false combi-
nation in Table 5, removing them before analysis; they
occurred primarily because our prototype took CHAOS
and traceroute data hours apart. We plan to take CHAOS
observations before and after traceroutes to automate
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Combined Method: F-Root PCH
authority truth 47 53
oracle truth 58 53

records considered (|Ã|) 225 223

estimated anycast nodes (|Â|) 27 26
true positives 21 26
overcounts 3 (0) 0
missing authority 2 0
extra 1 0

authority precision 88% (100%) 100%
oracle precision 89% (100%) 100%
recall 45% 49%

Table 6: Accuracy of combined analysis.

detection of routing changes.
Success of the combined method: Table 6 mea-

sures how much our results improve by considering two
sources of information. We see that combining sources
allows true positives to follow the larger of the two
stand-alone methods for both targets. It reduces the
number of overcounts by 75% (3 instead of 12 or 13) for
F-root, even without decoding F-root CHAOS replies.
It eliminates overcounts for PCH.

These improvements translate into better precision
and recall for the combined method. For F-Root, pre-
cision rises to 88% (compared to 64% or 58% authority
precision, with similar results for oracle precision), and
PCH precision remains at 100%, the maximum of the
single-source algorithms. Recall also follows the maxi-
mum of the two algorithms, reaching 45% and 49% of
ground truth.

The improvements of the combined method depend
on the target. F-Root shows larger improvements be-
cause our single-source estimates of it were poorer than
were our estimates of PCH. We conclude that the com-
bined method is desirable because it should always im-
prove accuracy.

3.6 Effects of Vantage Point Diversity

Ultimately our recall is dominated by our ability to
see different anycast nodes. At best, each vantage point
is in a different catchment and sees a new node; at
worst, they are all in the same catchment and we are
uncertain if the target is using anycast at all. In Fig-
ure 4, we see that vantage points a, b and c duplicate
each other, as do d and e. This challenge is apparent
in the statistics about each method: while the precision
of the three approaches varies, the recall of all is simi-
lar. Since we find only 40–50% of the anycast nodes of
our two trial targets, clearly our vantage points show
significant redundancy in their coverage.

Our study of recall is limited by the use of PlanetLab
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Figure 5: Recall of the combined method as number of
vantage points vary. Each box shows median and quar-
tiles, with the whiskers showing extrema. Squares show
mean values, or exact results at 242 vantage points.
Data for F-Root is on the left of each pair; for PCH is
on the right. Exact values (filled squares) represent our
best experimental results.

for our measurement platform. For example, F-root
has an anycast node in Bangladesh, and PlanetLab’s
coverage in south Asia is poor, and its nearest node is in
India. Unfortunately, it is quite expensive to deploy new
vantage points, although we are considering additional
sources as possible future work.

To study the effect of the number of vantage points on
recall, we can consider subsets of our current measure-
ment infrastructure. Figure 5 shows our evaluation of
different size subsets of vantage points from our exper-
imental data. We draw 1000 randomly chosen samples
from our observations and plot median and quartiles as
boxes, minimum and maximum as whiskers, mean with
squares and our maximum recall with squares.

Care must be taken to interpret the results of this
experiment; because of the limited size of our vantage
point population, results naturally converge as we select
large and larger subsets. However, we see that median
recall stays fairly high with half the vantage points, but
drops fairly quickly with fewer. The best possible recall
from the randomly selected subset is quite high even as
their number drops; this suggests, as future work, ways
to select or deploy the “best” (most diverse) vantage
points. Results for both F-Root and PCH are qualita-
tively similar.

4. EVALUATION

Now that we have validated the accuracy of our ap-
proach, we next report three results about anycast use
in the Internet. We describe one case where ACE dis-
covered an “extra” anycast node run by a third party,
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then we evaluate anycast use in both country and generic
top-level domains (ccTLDs and gTLDs), and finally we
attempt to characterize anycast providers.

4.1 Masquerading Anycast Nodes

As part of our validation of ACE on F-Root, we en-
countered an anycast server providing root-domain con-
tent. However, the PR for this server was not on ISC’s
list of F-Root anycast nodes, and the CHAOS record
returned an empty string. This server was a non-ISC
server running on the F-Root IP address.

Discussions with ISC revealed two general cases where
other organizations operate nodes at the F-Root any-
cast address. First, some organizations operate local
copies of the root zone, and internally masquerade re-
sponses to *.root-servers.org. While ISC discour-
ages this behavior, redirection of internal traffic is gen-
erally left up to the organization. Second, other organi-
zations have attempted to hijack root DNS server from
others, often to promote a modified root zone.

For the case that we found, the PR of the target is
202.112.36.246, at AS4538 in CERNET, the China Ed-
ucation and Research Network. We found this anycast
responder from two vantage points also inside CER-
NET: planetlab-1.sjtu.edu.cn (202.112.28.98, in the
same AS as the anycast node), and pl1.6test.edu.

cn (219.243.208.60, in AS23910, another AS that whois
identifies as run by CERNET). The contents of the two
zones appeared the same based on the SOA record, al-
though we did not exhaustively compare the zones. ISC
identified this non-ISC anycast node as a masquerading
node, not a hijacked one, and we concur.

While this case represents a network operator choos-
ing to handle requests from their own users using mas-
querading, nearly the same mechanisms can be used
for maliciously hijacking DNS servers. This potential
illustrates the benefits of actively monitoring anycast
services, at least until use of DNSsec becomes perva-
sive.

4.2 Anycast Use in Top-Level Domains

While we know that anycast is widely used, particu-
larly for DNS servers, to our knowledge there has been
no systematic study of how wide its use is. We next use
ACE to begin to answer this question. Our answer to
this question is necessarily incomplete; we know our re-
call of F-Root and PCH is moderate at best. However,
complete identification of all anycast nodes for a given
domain name is not necessary to begin to understand
where anycast is used: knowledge of two anycast nodes
for a specific DNS IP address confirm that it employs
some level of anycast.

Target: Our targets for study are the 227 country-
code top-level domain names (ccTLDs), and the 33 generic
TLDs (gTLDs). Together they have 1164 name servers

CHAOS traceroute (number of PRs)
(# recs.) > 1 1 0
> 1 anycast anycast;

T3 unicast
anycast;
T3 unicast

1 T2 unicast;
mis-config
anycast

unicast unicast;
mis-config
anycast

0 non-BIND
anycast;
T2/T4
unicast

unicast insufficient
information

Table 7: Interpretation of CHAOS DNS queries and
traceroute on TLD nameservers.

gTLD Results

CHAOS traceroute (# PRs) possible
(# recs.) > 1 1 0 anycast
> 1 46 (46) 1 (1) 24 (24) 71
1 13 (0) 5 (0) 15 (0) 0
0 4 (4) 1 (0) 29 (0) 4

total anycast and unicast: 138 (75)

ccTLD Results

CHAOS traceroute (# PRs) possible
(# recs.) > 1 1 0 anycast
> 1 130 (120) 18 (2) 127 (127) 249
1 177 (1) 101 (0) 276 (0) 1
0 50 (50) 44 (0) 103 (0) 50

total anycast and unicast: 1026 (300)

Table 8: Possible anycast services discovered for gTLD
(top) and ccTLD (bottom) DNS servers. The number
in braces is the number, obtained by ACE, of name
servers that are likely to use anycast.

at unique IP addresses, 1026 for ccTLDs and 138 for
gTLDs. These lists are from the IANA website as of
mid-April 2011 [18].

Methodology: We apply ACE to each IP address
for each name server, recording the CHAOS DNS records
and PRs from traceroute. We collected data on April
13th for ccTLD and April 18th for gTLD name servers.

Table 7 shows how we interpret our observations for
these TLDs, since we no longer are testing against ground
truth. Of these cases CHAOS > 1 ∧ PR > 1 is the
strongest evidence for anycast, while the other cases
where CHAOS > 1 or PR > 1 are likely partially ob-
served anycast addresses.

Results: Table 8 show our results for gTLD and
ccTLD, respectively. We observe that about half of
gTLDs nameservers and about one-quarter of ccTLD
nameservers show some evidence of anycast use. About
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33% (gTLD) or 12% (ccTLD) of all TLD nameservers
show strong evidence of anycast with both multiple
CHAOS records and multiple PRs. If we adopt CHAOS >

1∧PR > 1 as a lower bound and CHAOS > 1∨PR > 1
as an upper bound, then least 14% (166 of 1164) and
perhaps 32% (375 of 1164) of TLD servers use anycast.

The main implication of these findings is that anycast
is an important component of the DNS, and needs to be
protected from hijack attempts (Section 4.1). Anycast
addresses are not handled by traditional route hijack de-
tection methods because hijack detection assumes any
multiple routes for the same prefix are a hijack (Sec-
tion 5), while with anycast, multiple routes are part of
regular operation.

4.3 How Many Anycast Providers Exist?

From our observations of top-level domains we next
evaluate how many independent anycast systems ap-
pear to be operating. Since a number of organizations
provide anycast service to multiple parties, our observa-
tions from Section 4.2 provide only a loose upper bound.

To identify anycast providers, we reviewed the CHAOS
queries to confirmed anycast nodes; we find 240 likely
anycast services with CHAOS > 1.

To go from services to providers, we examine the pat-
ters in their replies. We identify a potential provider
based on either a unique pattern, or a provider-specific
identifier in a standard pattern. For example, several
organizations include operator’s domain name in their
reply, while others use distinctive patterns. We see
two general patterns: in the most common (21 likely
providers found), the reply uses hostname-like strings,
often encoding geographic information along with server
and node identity. Examples of this format include
lax1b.f.root-servers.org for a server b at an IXP-1 in Los
Angeles, and host.bur.example.net for server host at an
IXP near Burbank airport. The second format we iden-
tified, with 10 likely providers, is even more provider
specific, with just a serial number example1 for server
1 by provider example, or server plus a geographic code
s1.lax for server 1 in Los Angeles.

We found 15 providers serving gTLDs, and 25 providers
of ccTLDs. There is some overlap of providers, 31
providers are unique in the entire set. These counts
represent likely lower bounds: likely, because it seems
unlikely for providers to use very dissimilar patterns,
and lower bounds because the second format is general
enough that two providers may have adopted the same
scheme accidentally.

Finally, Figure 6 shows how many services each provider
operates. We can see that most providers are unique to
one service (about half, from 18 to 31, are unique). A
few large providers operate many services, with the first
seven providers operating more than 80% of services
(198 of 240).
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Figure 6: Estimates of number of services (anycast
IP addresses) operated by each estimated provider (as
identified by CHAOS response patterns).

5. RELATEDWORK

While there has been significant work exploring the
DNS performance and anycast use in root nameservers,
to date there has been little work exploring anycast dis-
covery, at least outside the operational community. We
review that work, and broader related work in route
hijack detection.

Anycast discovery: The Internet Systems Consor-
tium and the DNS operational community has devel-
oped several techniques to support debugging anycast
nodes. In RFC-4892 they propose using queries of DNS
text records “hostname.bind” and “id.server”, where
the otherwise obsolete CHAOS class is re-purposed to
identify anycast servers [38]. Although originally devel-
oped in the BIND implementation of DNS, the approach
is now supported in other DNS server software (for ex-
ample, NSD [26]). We use this approach as one of our
methods (Section 2.2).

Subsequent standards activity has suggested the need
for additional debugging support. RFC-5001 [3] de-
fines an new NSID (name server identifier) option for
DNS. By using a new option, it differs from RFC-4892
in specifying that recursive DNS servers will not for-
ward NSID requests. Although the RFC explores sev-
eral possible payloads NSID could return, it explicitly
defers standardizing contents to future work. A recent
draft [23] proposes using unique-per-node AS numbers
for anycast node identification. Future anycast surveys
can use these methods when they are widely deployed.
These approaches suggest the need for additional any-
cast monitoring tools. We agree more information is
needed; our work explores new ways to evaluate anycast
with existing services. Our work could be extended as
these new methods are deployed.

Root nameserver performance: Several measure-
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ment studies have explored proximity and the stability
of routing to root and other TLD name servers. Several
active probing-based approaches have used PlanetLab
nodes [9] and other vantage points to study the affin-
ity and proximity to root servers or several TLD name
servers [31, 7, 4, 5, 10]. Most of these approaches used
hundreds of vantage points, while Ballani et al. [5] used
20,000 recursive DNS servers. Other studies have at-
tempted to characterize proximity and affinity by col-
lecting data at name servers [6, 21]. Like most of this
work, we use PlanetLab to get diverse viewpoints on
anycast, but unlike this work we explore anycast struc-
ture, not DNS performance.

Two groups have evaluated routing changes to any-
cast nodes using CHAOS records to discover anycast
name servers [8, 32]. Like their work, we use CHAOS
DNS queries, but we study anycast structure, not rout-
ing.

To our knowledge, to date, no work other than ours
has developed a methodology for identifying anycast
servers, and then characterized anycast deployment.

Route Hijack Detection: Closest to our study
of DNS masquerading and hijacking is work on gen-
eral route hijacking and protection of routing to name
servers.

Before widespread deployment of anycast, Wang et
al. [37] proposed a BGP path-filtering method to pro-
tect routes to critical TLD name servers. Others have
discussed the importance of detecting hijacked unicast
prefixes [27], and proposed methods for hijack detec-
tion using the control plane [20], data plane [40, 39,
29], and hybrid control-and-data plane approaches [16].
Detecting anycast hijacking is qualitatively harder than
detecting unicast hijacking, since by definition, anycast
packets can be sent to one of many destinations, one
or more of which may be suspect while with unicast
routing any examples of multiple destinations are ille-
gitimate.

6. CONCLUSIONS

Through its use in many top-level DNS servers, any-
cast has become an indispensable part of the Internet.
We developed ACE, which actively discovers, using sev-
eral vantage points, anycast nodes by issuing CHAOS
DNS queries and traceroutes. We find these approaches
have generally good precision: what they find are cor-
rect anycast nodes, although depending on the amount
of information we can gather, overcounting can affect
precision. We study how recall, the completeness of
our results, is affected by the number of vantage points.
Finally, our studies of F-Root and PCH anycast infras-
tructure detect one third-party site masquerading as
an anycast node, and our evaluation of all country-code
and generic top-level domain servers, shows anycast is
used by 12% of ccTLDs and 33% of gTLDs.
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