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Abstract— Internet traffic contains a rich set of periodic
patterns imposed by various processes. Examples include back-
to-back packet transmissions on bottleneck links, periodic routing
information exchange, transport layer effects such as TCP
windowing behavior, and application layer effects such as miscon-
figured DNS clients. Analyzing such periodic patterns has wide
applications, including a better understanding of network traffic
dynamics, diagnosis of network anomalies, and detection of DDos
attacks. However, current understanding of periodic behavior in
aggregate traffic is quite limited. Many previous approaches often
analyze traffic on a per-flow basis, and do not scale well to analyze
high speed network traffic.

This paper explores the application of spectral techniques to
analyze network traffic. We propose an experimental methodol-
ogy to guide the application, and as a case study, we use this
methodology to analyze the spectral characteristics imposed by
bottleneck links on aggregate traffic.

In our approach, we passively gather packet traces from the
network and then apply spectral techniques to extract periodic
patterns embedded in the trace, particularly the regularities
imposed by various bottleneck links. Unlike techniques utilizing
packet inter-arrival time, our approach does not require flow
separation or grouping. The only information required is the
packet arrival time. Our experiments show that bottleneck links
impose distinct signatures on the underlying traffic, and these
signatures can be detected by a downstream monitoring point.
We introduce four non-parametric algorithms based on the
Bayes Maximum-likelihood Classifier to detect bottleneck flows
inside the aggregate, and evaluate their performance using real
Internet traffic. As our future work, we plan to design parametric
detection algorithms for better performance, and apply the
methodology to study other periodic network phenomena.

Index Terms— Spectral Analysis, Bottleneck Traffic

I. INTRODUCTION

There exist a variety of processes that govern the generation
and shaping of Internet traffic. Many of them are periodic
and reside at different communication layers. For example,
fixed bandwidth at the link layer can cause packets to be
transmitted back-to-back, creating periodic patterns in network
traffic. At the network layer and transport layer, exchange
of routing information and the TCP windowing mechanism
can result in periodic packet transmission on the network.
At the application layer, traffic automatically generated by
machines, such as zombies in DDos (Distributed Denial-of-
service) attacks or misconfigured DNS clients, can exhibit
strong regularities. Such periodic processes imprint their own
periodic signatures on network traffic. Periodicities are also
visible at several timescales, ranging from microseconds (e.g.,
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clocking out packets on gigabit links) to days and years (e.g.,
diurnal cycles and seasonal traffic variations).

Studying such periodicities can have wide applications,
including a better understanding of network traffic dynamics,
diagnosis of network anomalies, and detection of DDos at-
tacks. For example, typical Dos attacks involve sending small
packets at the maximum speed the machine and the network
can support. Analyzing the traffic through a link saturated
by such attack packets will reveal abnormally strong high
frequency components compared with a link saturated by
normal traffic composition. This strong high frequency signal
may be utilized to distinguish a Dos attack from congestion
due to high normal traffic load. Another example is to detect
attacks attempting to overload a web server through repeated
requests. Requests automatically originated by machines are
typically more regular and this can be used to distinguish them
from human-originated web requests.

Spectral techniques have been widely used in many other
fields to detect hidden patterns and trends from noisy back-
ground. Examples include sonar detection of submarine signals
from the ocean acoustic background, processing of weather
data to model its patterns and forecast its future, analysis of
stock market and other financial markets, etc. In the past few
years, researchers have begun to apply spectral techniques
to analyze network traffic for various purposes. Their work
presents strong evidence that applying such techniques to
the analysis of network traffic is a very promising approach
to study denial-of-service attacks [1], [2], DNS traffic be-
havior [3], traffic anomalies [4], and even protocol behavior
in encrypted traffic [5]. However, current understanding of
periodic behavior in general aggregate traffic is limited. Many
previous approaches often analyze traffic on a per-flow basis,
and do not scale well to analyze high speed network traffic.

This paper explores the application of spectral techniques to
analyze network traffic. We propose an experimental method-
ology to guide the application, and as a case study, we use this
methodology to analyze the spectral characteristics imposed
by bottleneck links on aggregate traffic. As a bottleneck link
is saturated by packets, it transmits packets out back-to-back,
which results in strong regularity in the packet stream. Such
regularity can be used to detect bottleneck traffic from aggre-
gate. Bottleneck traffic conveys important information about
network status and is useful for network traffic engineering
and planning. For example, if network operators can detect a
link is constantly congested, they can increase the link capacity
or divert part of the traffic through other links to ease the
congestion.

Spectral techniques open a new approach to study bottleneck
traffic. Such an approach would be advantageous compared to
current techniques, such as those based on SNMP statistics
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since not all network devices can provide SNMP statistics
and problem may hide in the coarse SNMP information, and
those using active probes since our approach is completely
passive and incurs no additional network traffic. It is also
complementary to techniques using packet inter-arrival time
[6], since it can be carried out without flow separation and
grouping. The only information required is the packet arrival
time. This is valuable in the sense that it does not rely on
packet content including packet header information.

The rest of the paper is organized as follows. We first pro-
pose our experimental methodology in section II. Then we vi-
sually demonstrate the spectral characteristics imposed by bot-
tleneck links under various environments in section III. Four
detection algorithms based on Bayes Maximum-likelihood
Classifier are introduced in section IV, and evaluated using
real Internet traffic in section V. Section VI reviews related
work. Section VII concludes the paper.

II. EXPERIMENTAL METHODOLOGY

In recent years there have been a number of papers from
the network research community that use signal processing
techniques to analyze Internet traffic for various purposes. Ex-
amples include distinguishing single-source and multi-source
DDoS attacks based on their spectra [1], detecting Dos attacks
and other network anomalies by analyzing IP flow-level and
SNMP information using wavelets [4], and detecting TCP
flows based on its windowing behavior [7], [5]. Their work
shows that spectral techniques can be a very powerful tool for
network traffic analysis.

However, as warned by Partridge in [8], [9], there is a
danger in blindly applying signal processing techniques to
networking without careful analysis and knowledge of the
ground truth. Without careful examination of the ground truth,
we may reach wrong conclusions or interpret incorrectly the
”pretty pictures” obtained from spectral analysis.

To face the challenge, it is essential to come up with a clear
methodology that defines the path from the raw data to the final
conclusion. Figure 1 illustrates our experimental methodology
originally suggested by Antonio Ortega. It contains three
main components, data generation, data representation, and
detection/estimation. The more detailed steps inside the three
components are:

1) Representative Data Sets: This is the generation of
representative data sets. It can be gathered from real-
world traffic, generated from controlled lab experiments,
or in more abstract level, synthesized from network
simulations.

2) Measurable Real-world Events This is the selection
of real-world events that can be directly measured. Ex-
amples are packet arrivals, packet losses, connection es-
tablishment, connection tear-down, etc. The correspond-
ing raw measurement data can be packet arrival time,
packet length, packet delay, packet loss rate, connection
duration, etc. For the detection of bottleneck traffic, we
select packet arrivals as the measurable event, and the
raw measurement data are packet arrival times.

3) Time Domain Representation: This involves the con-
version from raw traffic measurements to the signal

Fig. 1. Experimental Methodology (adapted from A. Ortega’s original
proposal)

represented by time series. This process is also called
sampling. Depending on the sampling period length, we
can have even sampling (with the same sampling period
length), or uneven sampling (with varying sampling
period length). In our work, we choose even sampling,
as we use Fourier transformation in the following step.

4) Spectral Domain Representation: This transforms the
time domain signal representation into the spectral do-
main signal representation. Examples include Fourier
transformation, and wavelet analysis with different types
of wavelets.

5) System Modeling: Based on knowledge gained from
above steps, we model the underlying processes to
capture the key features of the event and how they
evolve. We do not intend to model the general Internet
traffic, but only specific aspects of the traffic that affect
detection.

6) Non-parametric Detection: Non-parametric detection
methods identify and detect high-level events, such as
existence of bottleneck flows, using heuristics. They do
not require explicit modeling of the underlying pro-
cesses.

7) Parametric Detection: Parametric Detection will utilize
the system model of the underlying processes, and
improve the detection probability of the event of interest.

In our current work, we obtain representative data sets
through both controlled lab experiments and real world exper-
iments. Detailed description of these experiments is presented
in section III and V. In the next subsection, we will describe
step 2, step 3, and step 4 in detail for how to obtain the
spectral representation from raw measurement data. Four non-
parametric detection methods for detecting bottleneck traffic
will be introduced in sectionIV. It is our future work to model
the underlying processes and develop parametric detection
algorithms.
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A. Spectral Representation

In our methodology, there are three steps from raw mea-
surement data to the spectral representation. They are selection
of measurable real-world events, time domain representation,
and frequency domain representation. In our current work, we
adopt the techniques proposed by Hussain et al. in [1] for
these three steps with slight modification. They are described
in detail below.

First, we select packet arrivals as the measurable real-world
event. We run tcpdump or other trace tools to capture times-
tamped packet traces from the network. The only information
required from the packet trace is the packet arrival time.
We divide the packet trace into � -second long slices before
processing them in the following steps. The length of each
slice is a configurable parameter and we will discuss shortly
how to select it.

For the time domain representation, we sample each slice
with a sampling rate � (we will discuss shortly how to select a
proper � ) to obtain a time series � , where ������� is the number
of packets that arrive in the time period 	�
��
 
����� � . The time is
relative to the start of the slice, and � varies from � to ��������� .
This results in ������� � number of samples for each slice. In
addition, we subtract the mean arrival rate before proceeding
with spectral transformation in the next step, since the mean
value results in a large DC component in the spectrum that
does not provide useful information for our purposes.

To get the frequency domain representation, we compute
the power spectral density (PSD) by performing the discrete-
time Fourier transform on the autocorrelation function (ACF)
of the time series. The autocorrelation is a measure of how
similar the steam is to itself shifted in time by offset ! [10],
[11]. When !"�#� we compare the packet stream to itself, and
the autocorrelation is maximum and equals to the variance of
the packet stream. When !�$%� we compare the packet stream
with a version of itself shifted by lag ! . The autocorrelation
sequence &'�(!)� at lag ! is

&'�*!)�+�,�.-�� /10324 5 6�7 �8�9��:;�<�>=�?�@���9�8:�A%!)���B=�?��C (1)

where =� is the mean of ����:;� , � is the number of samples,
and ! varies from �D� to � .

The power spectral density E �(F�� is obtained by applying
discrete-time Fourier transform to the autocorrelation sequence
of length G and using its magnitude.

ED�(F��<�IHKJ42 6�7 &'�*!)��L 0NMPORQ�ST2 H (2)

In addition, we calculate the cumulative spectrum P(f) as
the power in the range 0 to f, and normalize P(f) by the total
power to get the normalized cumulative spectrum (NCS) C(f).

U �(F��+� S�0 �4 
 6�7
ED�����VA9ED���3A��W�X (3)

Y �*F��+� U �(F��U �*F.Z [�\�� (4)

Intuitively, spectrum ED�(F�� captures the power or strength of
individual observable frequencies embedded in the time series,
while the normalized cumulative spectrum

Y �(F�� shows their
relative strength.

There are two important parameters in the above steps. The
first one is the length of each trace slice � . If the slice length� is too short, the spectrum will be sensitive to temporary
or transient phenomena on the network. If it is too long, the
arriving process is unlikely to be stationary. Since we target the
spectral characteristics of bottleneck flows, we use a default
value of 5 seconds for the slice length � .

The sampling rate � is another important parameter. Given
a sampling rate � , the highest frequency that is observable is

� O
according to the Nyquist Theorem. If the sampling rate is too
low, aliasing can occur. It it is too high, it will increase both
storage and processing overhead unnecessarily. For a given
link speed and packet size, one can compute the maximum
required sampling rate by computing the minimum packet
inter-arrival time and sampling at twice that frequency. A more
thorough exploration of varying sampling rate is the subject of
future work. In this paper, unless otherwise stated, we select
a conservative sampling rate of 100kHz, which is sufficiently
high to reduce the aliasing effect for typical packet streams
over a 100Mbps Ethernet.

III. VISUALIZING SPECTRAL CHARACTERISTICS OF

BOTTLENECK TRAFFIC

Before introducing algorithms that can detect bottleneck
flows from aggregate traffic, we first show visually the spectral
characteristics imposed by bottlenecks on aggregate traffic
to qualitatively demonstrate the feasibility of detection. Our
assumption is that if bottleneck flows can be visually detected
from the spectrum, then a detection algorithm is possible.

In this section, we will present the spectrum of aggregate
traffic under various scenarios to illustrate the signature im-
posed by bottlenecks and how it is affected by cross traffic. We
start from simple scenarios where there is no cross traffic, and
proceed to more complex environments with different types
of cross traffic.

A. Signatures of Bottleneck Links

When a link is saturated, it sends packets out back-to-back.
Assuming all packets are of the same length, we will see a
single periodic pattern with the period equal to the packet
transmission time (= link bandwidth / packet length). Even
if packets are of different length, Internet traffic has certain
packet length distribution as reported in [12] and [6]. The
spectrum of the traffic through a saturated link will still show
strong energy on frequencies regulated by the link bandwidth
and the packet length distribution.

In this section, we first reveal such characteristics imposed
by bottleneck links by conducting experiments in a simple
topology where the sender and the receiver are directly con-
nected through an Ethernet link and the trace machine runs
tcpdump to capture packets from the Ethernet link. We vary
the bottleneck link bandwidth and the traffic composition to
get the spectra under different scenarios.
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(b) Partial Spectrum

Fig. 2. Spectral signature of a 100Mbps link saturated with a TCP flow

For these experiments we use two traffic generation tools,
namely Surge [13] and Iperf [14]. Surge is used to generate
synthetic web traffic while Iperf generates controlled TCP and
UDP streams, which, for example, can mimic file downloads
(TCP mode) or Constant Bit Rate traffic (UDP mode). A
typical experiment lasts for 30 seconds and contains six 5-
second long slices. Although there is some variation in the
power spectra for the six slices, the variation is small, and
thus we only present the result from one representative slice
here. We use both PSD and NCS since PSD captures the
absolute power of individual frequencies while NCS shows
their relative strength.

1) a 100Mbps Link Saturated with a Single TCP Flow:
In the first experiment, we use a single Iperf TCP flow
to saturate a 100Mbps Ethernet link. Since the sender and
receiver are directly connected through the Ethernet link, the
TCP window is large enough for the TCP flow to capture
nearly the entire link bandwidth. The TCP throughput reaches
almost 91.5Mbps.

Figure 2(a) shows the full spectrum of the packet stream we
observe on the Ethernet link. This specific example depicts
a single TCP flow saturating a 100Mbps link with 1500-
byte packets. The spectrum contains spikes at the fundamental
frequency around 7630Hz and its multiples or harmonics. The
harmonics exist because the signal is an impulse train in the
time domain, resulting in a set of impulses in the frequency
domain. The fundamental frequency is close to the maximum
packet rate (8333 packets per second) on a 100Mbps link with
1500-byte packets. Since TCP adjusts its packet sending rate
according to network conditions, it does not reach the 8333
packet per second rate, but as demonstrated in this example,
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Fig. 3. Spectral signature of a 10Mbps link saturated with a TCP flow
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Fig. 4. Spectral signature of a 10Mbps link saturated with web traffic

the actual rate is quite close to the theoretical bound. Hence,
a high energy concentration near the 8000Hz will be a strong
indication that that the traffic contains a flow(s) through a
100Mbps bottleneck link.

To better demonstrate visually the effect of the bottleneck
link on the fundamental frequency, we will zoom in to the
interesting portion of the spectrum where the fundamental fre-
quency of the bottleneck link lies, as illustrated in Figure 2(b),
for all following results.

2) a 10Mbps Link Saturated with a Single TCP Flow:
In this experiment, we change the link bandwidth to 10Mbps
while keep the rest the same as in the previous experiment.
The throughput of the Iperf TCP flow reaches almost 9.4Mbps.
Figure 3 shows the corresponding spectrum of the packet
stream. We see strong energy around 784Hz, which is close
to the theoretical limit (833 Hz) imposed by a 10Mbps link
with 1500-byte packets.

3) a 10Mbps Link Saturated with Web Flows: In this
experiment, we replace the single TCP flow with web-like
traffic generated by Surge [13]. We continue to use a 10Mbps
Ethernet link, and configure Surge to emulate 640 “user
equivalents” (UEs), achieving a throughput around 8.2Mbps.

Figure 4 shows the spectrum under this experiment. We see
that there is still a spike around 800Hz, but it spreads out to
a wider range than the single Iperf TCP flow case. Also, the
highest amplitude is only 1/3 of the previous case. The reason
is that Surge simulates multiple web flows which have different
time duration depending on the download file size. It also
simulates the on-and-off user browsing behavior. This results
in lower link utilization and makes the bottleneck signature
more blurry, but still there is strong energy concentration
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(b) With 400-byte Packets

Fig. 5. Spectral signature of a 10Mbps link saturated with a UDP flow

around 800Hz because a number of 1500-byte packets are
transmitted back-to-back in this case.

4) a 10Mbps Link Saturated with an Iperf UDP flow:
To investigate how the spectrum changes with CBR traffic,
we saturate a 10Mbps link with an Iperf UDP flow. We first
configure Iperf to send out 1500-byte UDP packets with a
sending rate greater than the link bandwidth. This yields a
throughput of 9.6Mbps, slightly higher than the single Iperf
TCP flow case.

Figure 5(a) depicts the spectrum with the Iperf UDP flow.
We see that there is a single peak at 813.8Hz. Its amplitude is
about ten times the highest amplitude in the single Iperf TCP
flow case. This shows the UDP flow has a stronger regularity
than the TCP flow. The reasons is because TCP will adjust its
sending rate according to network conditions while the Iperf
UDP sender does not take feedback from the network and it
fully saturates the link.

In the second experiment, we configure Iperf to send out
400-byte UDP packets with a sending rate greater than the
link bandwidth. This yields a throughput of 8.53Mbps. This is
lower than the experiment with 1500-byte packets, because the
Ethernet channel efficiency decreases with smaller packet size.
The spectrum in Figure 5(b) shows a clear spike at 2867Hz,
which is equal to the packet rate over the link. Its amplitude is
also significantly higher than the experiment with 1500-byte
packets.

From the above experiments we see that the spectrum of
a saturated link can vary according to a number of factors.
Among them, link bandwidth and packet length distribution
are the two most important factors, and they will determine
where the dominant frequency will appear. Beyond that, UDP

Fig. 6. Different types of cross traffic

Fig. 7. Testbed topology

or CBR streams appear more regular than TCP flows, resulting
in higher amplitude in the bottleneck frequency. On the other
hand, the complex interaction among multiple web flows may
yield lower amplitude in the spectrum.

B. Effect of Cross Traffic

In previous examples, we present the spectral characteristics
imposed by a bottleneck link when there is no cross traffic.
In this subsection, we will investigate how cross traffic affects
the spectral signature. We first classify cross traffic into three
classes, and then carry out experiments to visually demonstrate
the impact from each of them on the the bottleneck signature.

1) Classification of cross traffic: Figure 6 illustrates three
classes of cross traffic that might affect our observations of the
bottleneck traffic. In the figure, traffic travels from source S
to destination D passing through a bottleneck between R1 and
R2, and we monitor traffic on link R3-O at the observation
point O. We are interested in observing the bottleneck signal
generated at the R1–R2 link at the observation point.

� Type I, unobserved bottleneck traffic: cross traffic that
traverses the bottleneck link but does not reach our
observation point. Such traffic carries part of the energy
from the signature imposed by the bottleneck. Missing
this traffic may attenuate the signal strength observed at
our observation point.

� Type II, unobserved non-bottleneck traffic: Cross traffic
that is introduced after the bottleneck link, but is not
observed at the observation point. Such traffic can distort
the signal of the bottleneck link, as it competes with
bottleneck traffic in the shared path, introducing variation
in packet arrival times and making the signal more noisy.

� Type III, observed non-bottleneck traffic: cross traffic that
does not go through the bottleneck link but is observed
at our observation point. It is also called background
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(b) with medium web traffic (80 UEs)
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(c) with heavy web traffic (640 UEs)

Fig. 8. Power spectra as Type I cross traffic increases

traffic. Its impact comes from two aspects: (a) like type
II cross traffic, it competes with bottleneck traffic in the
shared path; (b) it directly influence the spectrum of
observed aggregate traffic, as the aggregate contains both
bottleneck traffic and background traffic.

2) Impact of Type I Cross Traffic: To evaluate the impact
of the three types of cross traffic identified above, we use a
dumbbell topology depicted in Figure 7. We first investigate
the impact of Type I cross traffic. In this experiment, we set
the capacity of all links to 10Mbps. There are two types of
traffic, a single Iperf TCP flow from node S to D and web
traffic generated by Surge between nodes A1 and A2. The
bottleneck link will be link R1-R2. We observe the traffic on
link R2-D. In this experiment, the Iperf flow serves as the
bottleneck traffic, while the web flows serve as Type I cross
traffic. We vary the number of web users simulated by Surge
to control the volume of Type I cross traffic competing with
the Iperf TCP flow on link R1-R2.

Figure 8 shows the power spectra of the traffic observed at D

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15
x 10

5 TCP bin=0.01ms (mean=0.007052 std=0.083799)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

Frequency (Hz)

N
C

S

(a) with light web traffic (10 UEs)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8
x 10

5 TCP bin=0.01ms (mean=0.00685 std=0.082578)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

Frequency (Hz)

N
C

S

(b) with light web traffic (80 UEs)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4
x 10

5 TCP bin=0.01ms (mean=0.007034 std=0.083622)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

Frequency (Hz)

N
C

S

(c) with heavy web traffic (640 UEs)

Fig. 9. Power spectra as Type II cross traffic increases

when the number UEs in Surge vary from 10 to 640. The cor-
responding throughput at link R1-R2 stays around 8.3Mbps,
while the throughput at link R2-D is decreases from 8.2Mbps
to 5.3Mbps and 2.3Mbps as cross traffic increases. We can see
that as the volume of Type I cross traffic increases, the energy
around 800Hz becomes weaker, but still visible. In addition,
we see a new spike around 400Hz in Figure 8(b), where it is
common to see a Surge packet transmitted between two Iperf
packets in link R1-R2. Figure 8(c) shows new spikes around
266Hz, 400Hz, and 532Hz (a multiple of 266Hz), where it is
common to see one or two Surge packets transmitted between
two Iperf packets. The presence of the new spikes indicates
contention at the bottleneck link due to Type I cross traffic.
This phenomena was also observed in study of packet inter-
arrival times [6],

3) Impact of Type II Cross Traffic: To investigate the
effect of Type II traffic, we set the capacity of link S-R1
to 10Mbps, and the capacity of all other links to 100Mbps.
Other settings remain the same as in the previous experiment.
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Fig. 10. Power spectrum as Type III cross traffic increases

In this experiment, link S-R1 becomes the bottleneck link, and
the web flows from A1 to A2 serve as type II cross traffic.

Figure 9 shows the power spectra spectra of the traffic
observed at D as the cross traffic volume increases. The
corresponding throughput at link R1-R2 is 8.7Mbps, 13Mbps,
and 38.9Mbps, respectively, and the throughput at link R2-
D is steady around 8.3Mbps. We observe that as the volume
of Type II cross traffic increases, the energy around 800Hz
will spread out to a wider range, and the highest amplitude
also decreases accordingly. But there is still strong energy
concentration around 800Hz. The changes to the spectrum are
due to the contention between the bottleneck traffic and the
cross traffic at link R1-R2.

4) Impact of Type III Cross Traffic: Finally we consider the
effect of Type III traffic. We use exactly the same setting in the
second set of experiments, but move the observation point to
link R1-R2. Figure 10 shows the spectra of the aggregate traffic
through R1-R2 as load grows. We observe the following. First,
the energy around 800Hz decreases, as more packets from

Fig. 11. Setup of the wide-area network experiment environment

the bottleneck flow experience queuing delay in link R1-R2
due to competition with the web traffic. Second, the energy
over other frequencies increases as the observed aggregate
traffic contains not only the bottleneck flow, but also the web
traffic which has a strong low frequency component. Finally,
the relative visibility of the bottleneck signal around 800Hz
decreases (both in PSD and NCS) as the cross traffic load
increases. When the cross traffic load increases to some point,
the bottleneck signal becomes hard to detect visually from the
spectrum of aggregate traffic.

C. Wide-area network experiments

We next validate our testbed observations on the Internet by
considering a wide-area, multi-hop topology with richer, live
background traffic. The experiment environment is illustrated
in Figure 11. We place the trace machine close to a router
at the edge of USC. The latter forwards all incoming traffic
through the USC Internet II link to the trace machine by port
mirroring. The trace machine then records all packets using a
Endace DAG Network Monitoring Card [15], which is capable
of keeping up with 1Gbps link speed. Our bottleneck flow is
from a PC connected to a 10Mbps LAN in University of Santa
Barbara to a host at USC.

Figure 12(a) shows the spectrum of aggregate traffic ob-
served at the USC trace machine with the Iperf TCP bottle-
neck flow inside. The throughput of the TCP flow is around
9.4Mbps, suggesting the bottleneck is the LAN at the source.
The aggregate traffic volume is 24.2Mbps. We see a clear
spike around 800Hz in PSD, suggesting that the bottleneck
traffic is visible even mixed in aggregate traffic, although it is
relatively small in NCS. For comparison Figure 12(b) shows
the spectrum of aggregate traffic at a later time without the
Iperf TCP bottleneck flow. The strongest energy around 800Hz
is less than one fifth of the strength when the bottleneck flow
is present.

IV. DETECTION OF BOTTLENECK SIGNATURES

In the previous section we have shown that bottleneck
signatures can be visually observed. To automatically detect
bottleneck signatures from the aggregate traffic spectrum, in
this section we propose four non-parametric detection methods
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(b) without the Iperf flow

Fig. 12. Power spectra of aggregate traffic at USC Internet II link

based on Bayes Maximum-likelihood classifier. In our current
work, we focus on the accuracy of these detection methods,
and it is future work to study and improve their performance
in terms of running efficiency.

In Bayes Maximum-likelihood classifier, instances are clas-
sified into different groups. For example, packet traces without
bottleneck flows are put into one group, and packet traces
containing a 100Mbps bottleneck flow are put into another
group. Without loss of generality, we name the group without
bottleneck flows as group

� 7 , and the group with bottleneck
flows as group

���
, where � is the bandwidth of the bottle-

neck.
In order to make the classification, Bayes Maximum-

likelihood classifier first needs to select certain measurable
property from the packet trace to distinguish different groups.
This property can be the amplitude at certain frequency in
the packet trace spectrum, or the highest amplitude at certain
frequency band, etc. How to select this property is the main
difference among the four non-parametric detection methods,
and we will describe them in detail shortly. After selecting
the property, Bayes Maximum-likelihood classifier needs a
training phase to estimate the PDF (Probability Density Func-
tion) for the distribution of the values of this property for
each group. Each group has its own PDF, and it is used for
subsequent classification/detection.

Figure 13 illustrates the training process. For group
� 7 , we

first gather packet traces that do not have bottleneck traffic
and process them to get their spectra. We then gather the
value of the selected property, e.g., the amplitude at a selected
frequency, across all packet traces to form a distribution and
estimate the PDF for group

� 7 . For group
� � 7R7 J � ��� , we

Fig. 13. Training of Bayes Maximum-likelihood classifier

intentionally introduce a flow to saturate a 100Mbps bottleneck
link, gather packet traces again, and process them to estimate
the PDF for group

� � 7 7 J � ��� . We repeat the same procedure
for other groups, and put the PDFs of all groups into a spectral
database which is used in subsequent classification/detection.

For classification/detection, we match the new packet trace
against the database, and declare the trace contains traffic
through a bottleneck link of bandwidth � if the trace is closer
to group

� �
than of group

� 7 . The match is carried out as
follows. According to Bayes rule,U�� � � H 	N��� U�� �
	 H � ��� U�� � � �R- U�� �
	3�
where

U�� � � H 	3� is the probability that a trace belongs to
group

�
given the trace has value 	 on the selected property,U�� �
	 H � � is the PDF of group

�
,
U�� � � � is the probability

that a trace belongs to group
�

, and
U�� �
	N� is the probability

that a trace has value 	 .
Bayes Maximum-likelihood Classifier classifies the packet

trace with value 	 into group
���

if
U�� �
	�H �
� ��� U�� � �
� � $U�� �
	 H � 7 ��� U�� � � 7 � , and vice versa. Due to the lack of

information on
U�� � � 7 � and

U�� � �
� � , as the first step we
directly compare

U�� �
	 H ��� � against
U�� ��	�H � 7 � without con-

sidering
U�� � � 7 � and

U�� � � � � . It is our future work to
investigate

U�� � � 7 � and
U�� � � � � and include them in the

decision process.
Based on how the property is selected, we have four

different detection methods. Two of them, the Single Fre-
quency Method and the Top Frequency Method, use a single
variable for the detection. The other two use multiple variables,
and they are the Top-M Frequencies Method and the All
Frequencies Method. We describe them in detail below.

A. Method I: Single Frequency Detection

In this method, we first gather the distribution of the ampli-
tude at a particular frequency � across all training instances
for each group in the database. In the example illustrated in
Figure 14(a), we gather the amplitude at 800Hz across all
training instances in a group. After obtaining the distribution,
we estimate the PDF (probability density function) for each
group, and then follow the basic Bayes Maximum-likelihood
Classifier to classify the new trace using its amplitude at
frequency � . The intuition behind this method is that when
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(a) Choosing � in the Single Frequency Method (b) Choosing � in the Top Frequency Method

(c) Choosing � in the Top-M Frequencies Method, where M =
2

(d) Choosing � in the All Frequencies Method

Fig. 14. Illustration of Choosing Property � in Different Methods

bottleneck traffic is present, the aggregate traffic spectrum will
typically have strong amplitude at some particular frequencies.
Looking at any of these frequencies may yield clue to detect
the bottleneck.

For simplification purpose, we approximate the PDFs for
group

� 7 and
�
�

with log-normal distributions with the
corresponding parameters ��� 7 
�� 7 � and ��� � 
�� � � estimated
from the training set, i.e.U�� ��	�H � 7 �+� �

� 7�� X	� L 0�
 \ 0
�	�������RO��	��U�� ��	�H � � ��� �
� � � X�� L 0�
 \ 0��	��� � �RO�� ��

where 	 is the log of the amplitude at frequency � , ��� 7 
�� 7 �
and ��� � 
�� � � are the mean value and standard deviation for
group

� 7 and
� �

in the training set, respectively.
Although the log-normal distribution is not always the best

fit for the actual distribution, we choose it because it is simple
and often a good approximation according to the central limit
theorem. Our experiment results also show it can approximate

the actual distribution fairly well. For example, Figure 15
shows the actual distributions of the amplitude (after log) at
8132Hz frequency for group

� 7 and group
�
�

, respectively,
in one experimental set involving a 100Mbps TCP bottleneck
flow. The dashed lines are the log-normal distributions with
the corresponding mean values and variances derived from the
experimental set for group

� 7 and group
� �

, respectively. We
see the dashed lines are not far apart from the solid lines.

With the log-normal distribution assumption, we can also
simplify the matching process by directly solving the equation
of the two log-normal distributions to find the region for group� �

and the region for group
� 7 . The equation of the two

log-normal distributions typically yields two roots, but only
one of them carries significance and is selected as the cut-off
threshold 	 � . If a new trace has an amplitude greater than 	 �
at frequency � , it will be classified as in group

� �
. By trying

the Single Frequency Method with different frequencies, we
can find frequencies that best capture the difference between
group

� 7 and
�
�

.
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Fig. 15. PDFs for the distributions of the amplitude (after log) at 8132Hz
for group ��� (left solid line) and ��� (right solid line)

B. Method II: Top Frequency Detection

In the Top Frequency method, we first get the distribution
of the highest amplitude in a particular frequency band across
all instances for each group in the database. For example, in
Figure 14(b), we gather the highest amplitude in the [800Hz,
804Hz] band across all instances in a group. After obtaining
the distribution, we follow the same procedure as the Single
Frequency method for the detection. The only difference here
is that we use the highest amplitude in a frequency band for the
detection, instead of the amplitude at one particular frequency.

The intuition behind this method is that when the bottleneck
flow is present, it should typically have some strong amplitude
in a particular frequency band related to the bottleneck band-
width � and the packet size. Due to changes in the cross
traffic and other time-variant factors, the strong amplitude
may appear at different frequencies at different time, but it
should stay in a relatively narrow band. So if we look the
highest amplitude in this narrow band, we will get bigger
difference between the cases with and without the bottleneck
flow, compared with the Single Frequency Method. Hence
it can result in a better distinction between group

� 7 and� �
. The width of the band will depend on the impact of the

background traffic on the spread of the bottleneck signature.
If we select a very narrow band, it may not include the strong
amplitude from the bottleneck for some instances. On the other
hand, we should not use a very wide band as it may include
strong amplitude caused by other reasons.

Figure 16 shows the distributions of the highest amplitude
(after log) in the frequency band [8100Hz, 8200Hz] for group� 7 and

�
�
in the same experimental set as in Figure 15.

We can see the two distributions can be closely approximated
by log-normal distributions represented by the dashed lines.
In addition, there is a wider gap between the two groups
here, suggesting it easier to separate the two groups with the
Top Frequency Method, compared with the Single Frequency
Method.

C. Method III: Top-M Frequencies Detection

A generalization of the Top Frequency Method is to use M
highest amplitudes instead of just the first highest amplitude in
a frequency band for detection. It works in the following way.
For each training instance, we select the M highest amplitudes
in a particular frequency band to form a vector 	 	 � 
 	 O 
������P
 	 J

�
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Fig. 16. PDFs for the distributions of the highest amplitude (after log) in
[8100Hz, 8200Hz] for group � � (left solid line) and � � (right solid line)

from high to low. We then estimate the joint distribution of this
vector for each group. Figure 14(c) illustrates the selection of
the 2 highest amplitudes in the [800Hz, 804Hz] band across
all instances for a group to obtain the joint distribution.

We approximate the joint distribution for both group
� 7

and
� �

using multi-variate log-normal distributions with the
corresponding parameters ��� 7 
 Y 7 � and ��� � 
 Y � � , i.e.U�� �
	�H � 7 �+� L 0
	� 
 \ 0
�	������
 � 
 \ 0
�	���� X�� Z�� LW: � Y 7 �

U�� �
	�H �
� �+� L 0 	� 
 \ 0
� � ����
 � 
 \ 0
� � �� X�� Z�� LW: � Y � �
where x is a vector containing the log of the M highest
amplitudes in the frequency band, ��� 7 
 Y 7 � and ��� � 
 Y � � are
the mean vector and the covariance matrix for group

� 7 and�
�
, respectively.

We estimate ��� 7 
 Y 7 � and ��� � 
 Y � � based on the training
set in the database, and then apply Bayes Maximum-likelihood
classifier with the above PDFs to classify if an input trace with
value 	 is in group

� �
or not.

D. Method IV: All Frequencies Detection

In this method, we use all frequencies in a particular
frequency band to form a multi-variate detector. For example,
Figure 14(d) illustrates the selection of all amplitudes in the
[800Hz, 804Hz] band across all instances for a group to obtain
the joint distribution.

Similar with the Top-M Frequencies Method, we approxi-
mate the joint distribution for both

� 7 and
� �

using multi-
variate log-normal distributions with the corresponding pa-
rameters ��� 7 
 Y 7 � and ��� � 
 Y � � . We use the training set to
estimate the parameters ��� � 
 Y � � and ��� O 
 Y O � . We then plug
the values in the PDFs and apply Bayes Maximum-likelihood
classifier to classify an input trace.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the detection methods,
we carried out experiments under different scenarios. These
include:

� detecting bottlenecks of different bandwidth;
� detecting bottlenecks under different background traffic

load;
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Fig. 17. Setup of the experiment environment
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(b) Traffic Volume in Packet Rate

Fig. 18. Aggregate Traffic with a 100Mbps TCP Bottleneck Flow

� detecting bottlenecks saturated by different network pro-
tocols.

The basic experiment environment is illustrated in Fig-
ure 17. It is very similar to the environment in Figure 11,
except that the Iperf flow is originated from ISI to USC. For
each scenario, we gathered a pair of 5-minute long traces
every two hours for 24 hours. In each pair, the first part was
5 minutes of background traffic alone, and in the second 5
minutes, we introduced a bottleneck flow of a particular type
(e.g., an Iperf TCP flow through a known 100Mbps bottleneck,
an Iperf TCP flow through a known 10Mbps bottleneck, and
an Iperf UDP flow through a known 10Mbps bottleneck), and
gathered the trace again. Each trace was then cut into 300
slices of 1 second long. These slices were then processed
with a sampling rate of 200KHz to obtain the power spectral
density. We use a shorter slice length here in order to get
enough instances to have a meaningful distribution. We also
use a higher sampling rate because the speed of the observed
link is significantly higher.
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 19. Detection Probability of the Single Frequency Method with 100Mbps
TCP bottleneck Traffic

TABLE I

VARIATION WITH DIFFERENT TRAINING SETS FOR THE SINGLE

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 8131 0.743 0.722 12.783 11.282 11.946
3am 8127 0.783 0.721 12.975 11.196 12.144
5am 8133 0.820 0.700 12.958 10.829 11.890
7am 8132 0.807 0.717 13.084 11.038 12.082
9am 8124 0.778 0.714 12.875 11.129 12.025
11am 8134 0.707 0.721 12.461 11.489 12.205
13pm 8131 0.750 0.715 12.579 11.118 11.832
15pm 8127 0.702 0.720 12.463 11.370 12.045
17pm 8119 0.713 0.695 12.517 11.362 12.003
19pm 8131 0.737 0.734 12.796 11.381 12.127
21pm 8122 0.745 0.721 12.616 11.326 12.132
23pm 8135 0.737 0.709 12.606 11.328 12.042
mean 8129 0.752 0.716 12.726 11.237 12.039
std 5 0.038 0.010 0.214 0.183 0.110

We train each detection method with a pair of traces,
and then evaluate its performance by feeding the training
set and the rest 11 pairs of traces to the detection method.
The performance of the detection method is measured by the
detection probability, which is the probability that the detection
method gives the correct answer on whether a trace slice
contains the particular bottleneck flow or not. We present the
results under different experiment scenarios below.

A. Experiment I: Detecting 100Mbps TCP Bottleneck Traffic

In this experiment, the bottleneck flow is an Iperf TCP
flow through a known 100Mbps bottleneck from ISI to USC.
Figure 18 shows aggregate traffic volume in terms of bit rate
and packet rate. In the graph, we use the average value for the
5-minute long trace with the Iperf flow to represent the traffic
volume in the corresponding 2 hour interval. The figure shows
that the traffic reaches the lowest (around 192Mbps or 40.8K
packets per second) in the interval from 6am to 8am, and the
highest (around 395Mbps or 83.4K packets per second) in the
interval from 14pm to 16pm. The throughput of the Iperf TCP
flow is about 90Mbps or 7.5K packets per second.
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 20. Detection Probability of the Top Frequency Method with 100Mbps
TCP bottleneck Traffic

TABLE II

VARIATION WITH DIFFERENT TRAINING SETS FOR THE TOP

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 8110 0.992 0.975 14.732 13.600 14.110
3am 8080 0.995 0.974 14.830 13.431 14.058
5am 8090 1.000 0.961 14.878 13.222 13.970
7am 8090 1.000 0.978 14.948 13.334 14.103
9am 8090 0.998 0.975 14.848 13.440 14.063
11am 8070 0.960 0.973 14.672 13.825 14.224
13pm 8070 0.987 0.953 14.537 13.497 13.950
15pm 8060 0.948 0.975 14.457 13.668 14.050
17pm 8080 0.962 0.980 14.669 13.743 14.178
19pm 8070 0.987 0.979 14.780 13.662 14.157
21pm 8100 0.993 0.978 14.703 13.561 14.104
23pm 8090 0.985 0.980 14.653 13.587 14.107
mean 8083 0.984 0.973 14.726 13.547 14.090
std 14 0.017 0.008 0.142 0.172 0.079

Figure 19 shows the detection probability of the Single
Frequency method using the trace pair obtained around 7am
as the training set. The top graph is the detection probability
on the training set alone, and the bottom graph is the detection
probability on all other 11 sets. In both graphs, the x axis is the
frequency that is used to obtain the amplitude distribution. As
we see from the graph, the detection probability has a sharp
spike in the [8000Hz, 8250Hz] range. This frequency range
is very close to the highest packet rate through a 100Mbps
bottleneck with 1500byte packets. This clearly demonstrates
that aggregate with a 100Mbps bottleneck flow (group

� �
)

differs significantly in statistics with aggregate without the
100Mbps bottleneck flow (group

� 7 ) in their spectra around
8000Hz, and this difference persists over the time. Hence we
can use the difference extracted from the training set to classify
other instances. On the other hand, the detection probability
on other sets is lower than the detection probability on the
training set, suggesting that the difference can vary over the
time.

Table I shows how things change over the time. The first
field is the time when the training set was gathered. The
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 21. Detection Probability of the Top-20 Frequencies Method with
100Mbps TCP bottleneck Traffic

TABLE III

VARIATION WITH DIFFERENT TRAINING SETS AND M FOR THE

TOP-M FREQUENCIES METHOD

Time Top 1 Top 2 Top 5 Top 10 Top 20
1am 0.979 0.987 0.994 0.995 0.995
3am 0.975 0.982 0.993 0.996 0.997
5am 0.963 0.976 0.991 0.996 0.993
7am 0.978 0.987 0.993 0.988 0.987
9am 0.978 0.983 0.993 0.996 0.997
11am 0.973 0.985 0.988 0.988 0.990
13pm 0.953 0.960 0.974 0.983 0.987
15pm 0.978 0.986 0.990 0.992 0.992
17pm 0.979 0.988 0.993 0.995 0.996
19pm 0.979 0.987 0.993 0.996 0.995
21pm 0.979 0.986 0.993 0.995 0.994
23pm 0.980 0.987 0.993 0.995 0.996
mean 0.974 0.983 0.991 0.993 0.993
std 0.008 0.008 0.006 0.004 0.004

second field is the frequency � in the [7500Hz, 8500Hz]
range that yields the highest detection probability on the
training set. The third and fourth fields are the corresponding
detection probabilities on the training set and on all other sets,
respectively. The fifth and sixth field are the mean values of
the amplitude at � for group

� �
and

� 7 , respectively. The
seventh field is the corresponding cut-off threshold calculated
by the Single Frequency Method. The result shows that the
statistics of the training set can vary over the time, which
results in variation on the cut-off threshold and the detection
probability. But such variation is small. For example, the
frequency that yields the highest detection probability on the
training set stays in a close range around 8129Hz, and the
detection probability on all other sets has a mean of 71.6%
and a standard deviation of 1%.

Figure 20 shows the detection probability with the Top
Frequency Method, again using the trace pair obtained around
7am as the training set. We use 100Hz wide frequency bands,
and the x value represents the lower bound of the frequency
band. To obtain a point (x, y) in the graph, we first get
the distributions of the highest amplitude in the frequency
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 22. Detection Probability of the All Frequencies Method with 100Mbps
TCP bottleneck Traffic

TABLE IV

VARIATION WITH DIFFERENT TRAINING SETS FOR THE ALL

FREQUENCIES METHOD

Time Freq Pd Training Pd All
1am 8130 0.965 0.924
3am 8120 0.987 0.935
5am 8120 0.993 0.928
7am 8130 0.995 0.932
9am 8110 0.982 0.917
11am 8120 0.942 0.923
13pm 8120 0.968 0.905
15pm 8120 0.928 0.930
17pm 8110 0.955 0.912
19pm 8130 0.958 0.927
21pm 8120 0.965 0.935
23pm 8120 0.973 0.929
mean 8121 0.968 0.925
std 7 0.020 0.009

band [x, x+100Hz] for both group
� 7 and

� �
using the

training set, and then derive the the cut-off threshold based
on the estimated ��� 7 
�� 7 � and ��� � 
�� � � . We then calculate the
detection probability y by evaluating the detection method on
the training set or on all other 11 sets.

The result shows the detection probability can reach almost
100% if we use the frequency band in the [8000Hz, 8250Hz]
range. This is significantly better than the Single Frequency
method. It validates that the intuition that the highest amplitude
in a frequency band can capture the difference between group� 7 and

� �
better than the amplitude in a single frequency,

and thus can yield better detection probability.

Table II summarizes the changes as we use different training
sets. The meaning of each field is almost the same as in Table I,
except that the second field refers to the lower bound of the
100Hz wide frequency band that yields the highest detection
probability on the training set and the lower bound is in
the [7500Hz, 8500Hz] range. Similar to the result for Single
Frequency method in Table I, there are some changes for using
different training sets with the Top Frequency Method, but the
change is fairly small. For example, the detection probability
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(b) Traffic Volume in Packet Rate

Fig. 23. Aggregate Traffic with a 10Mbps TCP Bottleneck Flow

on other sets has a mean of 97.3%, and a standard deviation
of 0.8%.

Figure 21 shows the detection probability with the Top
20 Frequencies Method. Again we use the 7am training set
and 100Hz wide frequency bands. Like the result for the Top
Frequency Method, the detection probability can reach almost
100% on both the training set and all other sets if we use
frequency bands in the [8000Hz, 8250Hz] range. In addition,
for other frequency bands, the detection probability on the
training set is almost 20% higher than the detection probability
on all other sets which stays flat near 50%. This suggests that
the statistical difference extracted from the training set over
these frequency bands is local to the training set, and does not
persist over all other sets.

Table III shows the detection probability on other sets when
we use top 1, 2, 5, 10, 20 frequencies in the frequency band
[8070Hz, 8170Hz] and train with different training sets. The
results indicate that increasing the number of top amplitudes
can improve the detection probability, but the improvement is
fairly small.

Figure 22 shows the result with the All Frequencies Method
using the 7am training set and 10Hz wide frequency bands. We
use a smaller band here because the All Frequencies Method
uses all amplitudes in the frequency band. When the band
is too wide, the covariance matrix of the joint distribution
becomes singular and the All Frequencies Method can not
classify the input trace. The result is very similar to the Top-
20 frequency Method 21, except that the highest detection
probability on all other sets can only reach 93%. Again we see
the detection probability for the training set is almost about
20% higher than on other sets for frequency bands not in
the [8000Hz, 8250Hz] range. This suggests that the statistical
difference extracted from the training set over these frequency
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 24. Detection Probability of the Single Frequency Method with 10Mbps
TCP bottleneck Traffic

TABLE V

VARIATION WITH DIFFERENT TRAINING SETS FOR THE SINGLE

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 793 0.573 0.526 11.212 11.011 11.602
3am 817 0.580 0.495 10.816 10.512 11.177
5am 805 0.582 0.511 10.736 10.449 10.774
7am 764 0.567 0.512 10.672 10.310 10.427
9am 771 0.567 0.520 10.810 10.670 11.389
11am 753 0.568 0.511 11.232 10.866 10.633
13pm 840 0.500 0.500 10.795 10.980 -5.085
15pm 764 0.567 0.514 11.014 10.789 11.303
17pm 809 0.558 0.509 11.013 10.983 12.047
19pm 761 0.563 0.510 11.042 10.779 11.213
21pm 848 0.500 0.500 10.595 10.797 3.729
23pm 813 0.593 0.500 11.439 12.087 23.568
mean 795 0.560 0.509 10.948 10.853 10.231
std 32 0.009 0.009 0.255 0.447 6.500

bands does not persist across other trace sets.
Table IV shows the variation on detection probability as we

use different training sets. The meaning of each field is almost
the same as in Table II, except that the frequency bands are
10Hz wide here. We see there is not much variation on the
detection probabilities on both the training set and on all other
sets as we use different training sets. Their mean values are
96.8% and 92.5% with standard deviation of 2% and 0.9%,
respectively.
B. Experiment II: Detecting 10Mbps TCP Bottleneck Traffic

In this scenario, the bottleneck flow is an Iperf TCP flow
through a known 10Mbps bottleneck link from ISI to USC.
Figure 23 shows aggregate traffic volume in terms of bit rate
and packet rate. Again we use the average value for the 5-
minute long trace with the Iperf flow to represent the traffic
volume in the corresponding 2 hour interval. The figure shows
that the traffic reaches the lowest (around 131Mbps or 35.7K
packets per second) in the interval from 6am to 8am, and the
highest (around 298Mbps or 72.7K packet per second) in the
interval from 14pm to 16pm. The throughput of the Iperf TCP
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 25. Detection Probability of the Top Frequency Method with 10Mbps
TCP bottleneck Traffic

TABLE VI

VARIATION WITH DIFFERENT TRAINING SETS FOR THE TOP

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 793 0.612 0.530 12.860 12.669 12.826
3am 783 0.617 0.528 12.569 12.393 12.491
5am 783 0.623 0.527 12.406 12.163 12.258
7am 758 0.593 0.530 12.301 12.169 12.210
9am 750 0.592 0.529 12.549 12.405 12.486
11am 763 0.557 0.513 12.825 12.769 13.001
13pm 770 0.567 0.528 12.594 12.496 12.476
15pm 823 0.575 0.519 12.701 12.611 12.594
17pm 803 0.570 0.501 12.846 12.711 12.872
19pm 788 0.585 0.538 12.615 12.484 12.505
21pm 840 0.557 0.500 12.357 12.411 11.471
23pm 753 0.582 0.529 12.607 12.458 12.559
mean 784 0.586 0.523 12.603 12.478 12.479
std 28 0.023 0.012 0.186 0.192 0.394

flow is about 9Mbps or 750 packets per second.

Figure 24 shows the detection probability of the Single
Frequency method using the 7am training set. Compared with
the result for detecting 100Mbps TCP bottleneck traffic, the
detection probability is very low for both the training set
and other sets. The spike around 800Hz frequency associated
with the 10Mbps TCP bottleneck traffic is barely noticeable.
The reason is that the packet rate of the 10Mbps bottleneck
flow is only about 1/10 of the packet rate for the 100Mbps
bottleneck flow, and its presence does not bring much change
to the overall aggregate spectrum. In other words, there is little
statistical difference between group

� �
which contains the

10Mbps TCP bottleneck flow and group
� 7 which contains

no such bottleneck flow.
Table V shows the variation over different training sets. The

meaning of each field is almost the same as in Table I, except
that the frequency � in the second field is selected from the
[750Hz, 850Hz] range. The table shows there is only small
difference on the average amplitude values between group

� �
and

� 7 . For some training sets, like the 13pm training set, the
statistics of group

���
and

� 7 (e.g., mean value and standard
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 26. Detection Probability of the Top-20 Frequencies Method with
10Mbps TCP bottleneck Traffic

TABLE VII

VARIATION WITH DIFFERENT TRAINING SETS AND M FOR THE

TOP-M FREQUENCIES METHOD

Time Top 1 Top 2 Top 5 Top 10 Top 20
1am 0.533 0.533 0.513 0.506 0.500
3am 0.528 0.532 0.536 0.531 0.520
5am 0.523 0.523 0.522 0.532 0.525
7am 0.534 0.536 0.516 0.520 0.514
9am 0.522 0.521 0.507 0.513 0.503
11am 0.541 0.531 0.532 0.518 0.512
13pm 0.534 0.530 0.515 0.525 0.515
15pm 0.525 0.530 0.523 0.537 0.519
17pm 0.533 0.529 0.531 0.519 0.517
19pm 0.531 0.536 0.518 0.511 0.509
21pm 0.528 0.514 0.493 0.497 0.504
23pm 0.533 0.531 0.536 0.522 0.512
mean 0.530 0.529 0.520 0.519 0.513
std 0.005 0.006 0.013 0.011 0.007

deviation) is so close that the Single Frequency Method fails
completely by producing a negative cut-off threshold, basically
classifying all instances as having 10Mbps TCP bottleneck
traffic.

The result for the Top Frequency Method using the 7am
training set is shown in Figure 25. The frequency bands here
are 10Hz wide. A point (x, y) in the graph represents the
detection probability using the distribution of the top frequency
in the band [x, x+10Hz]. It shows only slight improvement
compared with the Single Frequency Method. The highest
detection probability on the training set can reach 59.2%,
versus 56.7% for the Single Frequency Method.

Table VI shows the changes as we use different training sets.
The meaning of each field is almost the same as in Table I,
except that the second field refers to the lower bound of the
frequency band that yields the highest detection probability on
the training set and the lower bound is in the [750Hz, 850Hz]
range. As we can see, there is only small difference on the
average amplitude values between group

� �
and

� 7 across
all different training sets. The detection probability stays fairly
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 27. Detection Probability of the ALL Frequencies Method with 10Mbps
TCP bottleneck Traffic

TABLE VIII

VARIATION WITH DIFFERENT TRAINING SETS FOR THE ALL

FREQUENCIES METHOD

Time Freq Pd Training Pd All
m 780 0.718 0.518
3am 770 0.722 0.507
5am 790 0.717 0.520
7am 770 0.722 0.515
9am 810 0.728 0.492
11am 820 0.725 0.491
13pm 800 0.718 0.501
15pm 750 0.715 0.499
17pm 750 0.725 0.496
19pm 840 0.720 0.507
21pm 790 0.723 0.500
23pm 790 0.733 0.508
mean 788 0.722 0.505
std 27 0.005 0.010

low no matter which training set we use.
Figure 26 shows the detection probability with the Top 20

Frequencies Method using the 7am training set and 10Hz
wide frequency bands. Similar to the result for detecting
100Mbps TCP Bottleneck traffic, the detection probability
on the training set is almost 20% higher than the detection
probability for all other sets, while the latter is almost the
same as the Top Frequency Method. This again suggests that
statistical difference extracted from the training set is local to
the training set, and does not persist over the time.

Table VII shows the detection probability on all other sets
when we use top 1, 2, 5, 10, 20 frequencies in the frequency
band of [783Hz, 793Hz] and train with different training
sets. The results indicate that increasing the number of top
amplitudes does not improve much the detection probability,
and in some case it even reduces the detection probability. But
the change is bounded to a very close range (within 4%).

The result for the All Frequencies Method is shown in
Figure 27. The training set was gathered at 7am, and the
frequency bands here are 10Hz wide. The result is very similar
to the result for the Top-20 Frequencies Method. Table VIII
shows that there is only small variation on the detection
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(b) Traffic Volume in Packet Rate

Fig. 28. Aggregate Traffic with a 10Mbps TCP Bottleneck Flow and Low
Background Load

probability as we use different training sets.

C. Experiment III: Detecting 10Mbps TCP Bottleneck Traffic
with Low Background Load

In this scenario, we used an Iperf TCP flow to saturate
the same 10Mbps bottleneck link, but the background traffic
volume was significantly lower than the previous case, as we
collected the trace at the start of a regular school semester.
Figure 28 shows aggregate traffic volume in terms of bit rate
and packet rate. The traffic reaches the lowest (around 28Mbps
or 7.4K packets per second) in the interval from 6am to 8am,
and the highest (around 78Mbps or 15.8K packets per second)
in the interval from 14pm to 16pm. The throughput of the Iperf
TCP flow is about 9Mbps or 750 packets per second.

Figure 29 shows the detection probability of the Single
Frequency method with the 7am training set. We see the
detection probabilities for both the training set and other
sets are better than the previous experiment (Figure 24).
The detection probability has spikes around 789Hz and its
multiples (harmonics). This demonstrates that in this scenario
aggregate with the 10Mbps TCP bottleneck flow shows notice-
able statistical difference with aggregate without such flow in
their spectra around 789Hz and its multiples.

Table IX shows the variation as we use different training
sets. The meaning of all fields is the same as in Table V.We
can see the average amplitude values for both group

� 7 and� �
are generally much lower than their counterparts in the

previous experiment (Table V), because the traffic volume is
about 1/5 to 1/3 of the traffic load there. The gap between
the average amplitude values for group

� 7 and
� �

is also
wider than the previous scenario, making it easier to detect
the 10Mbps bottleneck flow.

The result for the Top Frequency Method using the 7am
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 29. Detection Probability of the Single Frequency Method with 10Mbps
TCP bottleneck Traffic and low background load

TABLE IX

VARIATION WITH DIFFERENT TRAINING SETS FOR THE SINGLE

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 785 0.668 0.598 9.740 8.903 9.429
3am 793 0.703 0.591 9.712 8.448 9.144
5am 794 0.705 0.589 9.450 8.452 9.164
7am 789 0.685 0.599 9.657 8.650 9.308
9am 789 0.677 0.601 9.675 8.767 9.339
11am 782 0.615 0.582 9.765 9.190 9.653
13pm 785 0.618 0.602 9.933 9.365 10.004
15pm 791 0.642 0.613 10.187 9.624 10.139
17pm 812 0.758 0.531 11.236 9.374 10.486
19pm 797 0.648 0.600 9.674 8.884 9.231
21pm 815 0.617 0.528 9.731 9.019 9.981
23pm 770 0.597 0.540 9.315 8.938 9.634
mean 792 0.661 0.581 9.840 8.968 9.626
std 12 0.047 0.030 0.490 0.369 0.437

training set is shown in Figure 30. The frequency bands here
are 10Hz wide. The detection probability on the training set
can reach almost 90%, while thedetection probability on other
sets can reach 70%, both significantly higher than the Single
Frequency Method. The 20% difference between detection
probability on training set and other sets suggests that there
is a significant mismatch between the statistics of the training
set and other sets.

Table X shows the changes as we use different training sets.
Now we see the detection probability on other sets can differ
by as much as 19%. This implies that in this scenario, the
statistical difference between group

� 7 and
� �

can change
significantly over the time, and it is important to use the
proper training set. It is our future work to model the variation
of the statistics over the time and load level, and design
parametric detection methods that consider such variation for
better detection probability.

Figure 31 shows the detection probability with the Top 20
Frequencies Method using the 7am training set and 10Hz wide
frequency bands. Compared with the result for Top Frequency
Method, the most noticeable difference here is that using
top 20 Frequencies yields higher detection probability on the
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 30. Detection Probability of the Top Frequency Method with 10Mbps
TCP bottleneck Traffic and low background load

TABLE X

VARIATION WITH DIFFERENT TRAINING SETS FOR THE TOP

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 788 0.842 0.737 11.481 10.688 11.084
3am 788 0.912 0.695 11.283 10.212 10.758
5am 788 0.890 0.692 11.208 10.227 10.735
7am 788 0.905 0.709 11.323 10.345 10.839
9am 783 0.862 0.727 11.402 10.579 10.993
11am 785 0.785 0.711 11.645 11.065 11.352
13pm 788 0.752 0.707 11.623 11.110 11.368
15pm 785 0.778 0.653 11.868 11.255 11.560
17pm 803 0.807 0.565 12.212 11.038 11.597
19pm 788 0.742 0.747 11.286 10.739 11.058
21pm 805 0.678 0.596 11.337 10.813 11.235
23pm 750 0.695 0.559 11.202 10.754 10.978
mean 787 0.804 0.675 11.489 10.736 11.130
std 13 0.079 0.066 0.303 0.348 0.294

training set across all frequency bands other than those around
789Hz and its multiples. This again suggests that statistical
difference extracted from the training set over these frequency
bands is local to the training set, and does not persist over the
time.

Table XI shows the detection probability on all other sets
when we use Top 1, 2, 5, 10, 20 Frequencies in the frequency
band of [788Hz, 798Hz] and train with different training sets.
The result shows that increasing the number of top frequencies
does not improve much the detection probability, and in some
case it even reduces the detection probability. It suggests that
the top frequency has captured the most important difference
between group

� 7 and
�
�

, and utilizing more frequencies
does not yield significant gains.

The result for the All Frequencies Method using the 7am
training set is shown in Figure 32. The frequency bands width
here are still 10Hz wide. It is very similar to the result with
the Top-20 Frequencies Method, although the highest detection
probabilities on both the training set and other sets are slightly
lower.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 31. Detection Probability of the Top-20 Frequencies Method with
10Mbps TCP bottleneck Traffic and low background load

TABLE XI

VARIATION WITH DIFFERENT TRAINING SETS AND M FOR THE

TOP-M FREQUENCIES METHOD

Time Top 1 Top 2 Top 5 Top 10 Top 20
1am 0.734 0.748 0.758 0.756 0.734
3am 0.692 0.696 0.696 0.691 0.685
5am 0.692 0.695 0.697 0.695 0.692
7am 0.708 0.718 0.719 0.719 0.719
9am 0.730 0.744 0.748 0.747 0.737
11am 0.715 0.720 0.725 0.716 0.696
13pm 0.705 0.716 0.724 0.711 0.694
15pm 0.651 0.649 0.662 0.655 0.648
17pm 0.702 0.709 0.715 0.715 0.693
19pm 0.745 0.754 0.764 0.751 0.727
21pm 0.752 0.755 0.746 0.725 0.678
23pm 0.745 0.748 0.742 0.724 0.675
mean 0.714 0.721 0.725 0.717 0.698
std 0.029 0.031 0.030 0.028 0.027

Table XII shows the changes on detection probability as
we use different training sets. Like the result for the Top-
Frequency Method, we now see the detection probability varies
significantly across time, implying that parametric detection
methods may be needed to consider the variation of the
statistics over the time and load level.

D. Experiment IV: Detecting 10Mbps UDP Bottleneck Traffic
with Low Background Load

In this scenario, we used an Iperf UDP flow to saturate
a known 10Mbps bottleneck link. The UDP packet length is
set to 1500 bytes. The traffic load level is comparable to the
previous scenario. Figure 33 shows aggregate traffic volume
in terms of bit rate. The traffic reaches the lowest (around
24.7Mbps or 7.2K packets per second) in the interval from
6am to 8am, and the highest (around 72.3Mbps or 15.9K
packets per second) in the interval from 12pm to 14pm. The
throughput of the Iperf UDP flow is about 9.6Mbps or 800
packets per second.
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 32. Detection Probability of the All Frequencies Method with 10Mbps
TCP bottleneck Traffic and low background load

TABLE XII

VARIATION WITH DIFFERENT TRAINING SETS FOR THE ALL

FREQUENCIES METHOD

Time Freq Pd Training Pd All
1am 790 0.875 0.721
3am 780 0.932 0.646
5am 790 0.913 0.663
7am 780 0.923 0.677
9am 790 0.887 0.707
11am 790 0.813 0.677
13pm 790 0.827 0.688
15pm 780 0.840 0.621
17pm 810 0.827 0.535
19pm 790 0.797 0.686
21pm 810 0.770 0.546
23pm 750 0.780 0.537
mean 788 0.849 0.642
std 15 0.056 0.067

Figure 34 shows the detection probability of the Single
Frequency method using the 7am training set. We see the
detection probabilities for both the training set and other sets
are better than the result for detecting 10Mbps TCP flow with
comparable traffic load (Figure 29). The detection probability
has spikes around 811Hz and its multiples (harmonics). 811Hz
is slightly higher than 789Hz in the previous scenario, and
closer to the highest packet rate through a 10Mbps bottleneck
with 1500byte packets. The main reason behind the better
detection probability is that the Iperf UDP flow fully saturates
the bottleneck with a constant packet rate, while a TCP flow
will adjust the packet transmission based on acknowledgments.
As a result, the packet transmission of the UDP flow appears
more regular than the TCP flow, resulting in stronger energy at
a slightly higher fundamental frequency. The stinger amplitude
will widen the difference between group

� 7 and
�
�

, yielding
better detection probability. Also we see much higher detection
probability on the harmonics than the TCP case, since the UDP
flow is more regular and its spectrum has stronger energy in
harmonics.
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Fig. 33. Aggregate Traffic with a 10Mbps UDP Bottleneck Flow and Low
Background Load
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 34. Detection Probability of the Single Frequency Method with 10Mbps
UDP bottleneck Traffic and low background load

TABLE XIII

VARIATION WITH DIFFERENT TRAINING SETS FOR THE SINGLE

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 810 0.725 0.689 10.581 9.062 9.769
3am 812 0.843 0.686 10.724 8.407 9.552
5am 811 0.848 0.694 10.802 8.592 9.687
7am 811 0.802 0.692 10.530 8.426 9.505
9am 811 0.810 0.724 11.001 8.979 9.958
11am 811 0.683 0.743 10.606 9.602 10.372
13pm 811 0.715 0.732 10.771 9.459 10.100
15pm 812 0.762 0.734 11.161 9.364 10.225
17pm 811 0.797 0.725 10.945 8.965 9.956
19pm 812 0.740 0.721 10.691 9.199 10.014
21pm 797 0.698 0.582 10.295 9.169 9.721
23pm 805 0.670 0.625 9.997 9.133 9.800
mean 810 0.758 0.696 10.675 9.030 9.888
std 4 0.062 0.048 0.314 0.385 0.264
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(a) detection probability on the training set
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(b) average detection probability on all other sets

Fig. 35. Detection Probability of the Top Frequency Method with 10Mbps
UDP bottleneck Traffic and low background load

TABLE XIV

VARIATION WITH DIFFERENT TRAINING SETS FOR THE TOP

FREQUENCY METHOD

Time Freq Pd Training Pd All Mean �
�

Mean �
�

Threshold
1am 800 0.920 0.814 11.808 10.711 11.249
3am 805 0.980 0.796 12.013 10.174 11.150
5am 805 0.995 0.791 12.106 10.150 11.127
7am 803 0.963 0.771 11.904 10.255 10.987
9am 808 0.962 0.826 12.289 10.801 11.516
11am 805 0.828 0.833 12.088 11.290 11.697
13pm 803 0.880 0.824 12.217 11.256 11.731
15pm 805 0.918 0.807 12.318 11.197 11.772
17pm 805 0.962 0.836 12.317 10.828 11.557
19pm 805 0.880 0.846 12.091 10.983 11.533
21pm 790 0.888 0.625 11.715 10.851 11.284
23pm 800 0.872 0.821 11.676 10.783 11.227
mean 803 0.921 0.799 12.045 10.773 11.402
std 5 0.052 0.059 0.227 0.399 0.264

Table XIII shows the variation as we use different training
sets. Like the result for detecting TCP bottleneck flow in IX,
we see significant variation over the time, suggesting smarter
detection methods are needed for better performance. But in
general, no matter which training set we use, the detection
probability is much better than the detection of TCP bottleneck
flow under similar conditions.

The result for the Top Frequency Method using the 7am
training set is shown in Figure 35. The frequency bands here
are 10Hz wide. Again we see better detection probability than
the Single Frequency Method. It is also better than the TCP
case (Figure 30), The detection probability on the training set
can reach 96%, while the detection probability on other sets
can reach 77% for the [803Hz, 813Hz] band. Again the 19%
difference between detection probabilities on training set and
other sets suggests that there is a significant mismatch between
the statistics on the training set and other sets.

Table XIV shows the changes as we use different training
sets. Like the result for detecting TCP bottleneck flow under
similar environment X, we see significant variation of the de-
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(a) detection probability on the training set

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

(b) average detection probability on all other sets

Fig. 36. Detection Probability of the Top-20 Frequencies Method with
10Mbps UDP bottleneck Traffic and low background load

TABLE XV

VARIATION WITH DIFFERENT TRAINING SETS AND M FOR THE

TOP-M FREQUENCIES METHOD

1am 0.823 0.826 0.841 0.841 0.837
3am 0.797 0.802 0.820 0.825 0.823
5am 0.794 0.802 0.814 0.818 0.814
7am 0.756 0.751 0.756 0.756 0.752
9am 0.839 0.850 0.857 0.858 0.856
11am 0.835 0.847 0.862 0.857 0.826
13pm 0.802 0.821 0.833 0.826 0.812
15pm 0.808 0.820 0.818 0.815 0.808
17pm 0.837 0.850 0.864 0.862 0.859
19pm 0.847 0.856 0.865 0.862 0.850
21pm 0.833 0.834 0.836 0.827 0.802
23pm 0.854 0.860 0.858 0.860 0.840
mean 0.819 0.827 0.835 0.834 0.823
std 0.028 0.031 0.031 0.031 0.029

tection probability on other sets, arguing for smarter detection
algorithms that consider the variation of the statistics over the
time and load level.

Figure 36 shows the detection probability with the Top
20 Frequencies Method using the 7am training set and 10Hz
wide frequency band. Compared with the result for the Top
Frequency Method, the only noticeable difference here is that
using top 20 Frequencies yields higher detection probability on
the training set on frequency bands other than those around
811Hz and its multiples. This again suggests that statistical
difference extracted from the training set over these frequency
bands is local to the training set, and does not persist over the
time.

Table XV shows the detection probability on other sets when
we use top 1, 2, 5, 10, 20 frequencies in the frequency band
of [805Hz, 815Hz] and train with different training sets. The
results indicate that increasing the number of top frequencies
does not improve much the detection probability, and in some
case it even reduces the detection probability.

The result for the All Frequencies Method using the 7am
training set is shown in Figure 37. Again, it is very similar
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(a) detection probability on the training set

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

(b) average detection probability on all other sets

Fig. 37. Detection Probability of the ALL Frequencies Method with 10Mbps
UDP bottleneck Traffic and low background load

TABLE XVI

VARIATION WITH DIFFERENT TRAINING SETS FOR THE ALL

FREQUENCIES METHOD

Time Freq Pd Training Pd All
1am 800 0.917 0.772
3am 810 0.962 0.759
5am 810 0.978 0.745
7am 810 0.952 0.724
9am 810 0.983 0.808
11am 810 0.828 0.792
13pm 810 0.902 0.797
15pm 810 0.930 0.788
17pm 810 0.958 0.809
19pm 810 0.892 0.794
21pm 790 0.887 0.602
23pm 800 0.890 0.761
mean 807 0.923 0.763
std 7 0.046 0.057

to the result of the Top-20 Frequencies Method, although the
highest detection probabilities on both the training set and
other sets are a bit lower. Table XVI shows the changes
on detection probability as we use different training sets.
Like the table for the Top-Frequency Method, we see the
detection probability varies significantly across time, implying
that parametric detection methods may be needed to consider
the variation of the statistics over the time and load level.

E. Discussion

From the above results, we can see a clear relation between
the detection probability and the ratio of the bottleneck flow
volume and the background traffic volume (or signal-to-noise
ratio). The first experiment scenario has the highest ratio
ranging from 1/3.5 to 1/1.1 in terms of bit rate or 1/10 to
1/4.5 in terms of packet rate, and it has the highest detection
probability, close to 100% with the Top Frequency Method.
The second scenario has the lowest ratio ranging from 1/32
to 1/13 in terms of bit rate or 1/96 to 1/46 in terms of packet
rate, and it has the lowest detection probability, below 55%
even for the Top Frequency Method. The third scenario has

a ratio about 1/8 to 1/2 in terms of bit rate or 1/20 to 1/9
in terms of packet rate, and its detection probability is in the
middle, reaching 70% for the Top Frequency Method. This
observation agrees with our intuition that the higher the ratio,
the easier the detection.

Although training with different sets plays a limited role
in the extreme scenarios where the signal-to-noise ratio is
either very high or very low (the first and second experiment
scenarios), it has a significant impact on the detection proba-
bility when the signal-to-noise ratio is in the middle (the third
and fourth experiment scenarios). For example, the detection
probability of the Top Frequency Method in the third scenario
can vary by as much as 19% when we use different training
sets. This implies that the statistical difference between group� 7 and

�
�
can vary significantly across time, and we need

to model such variation further to design parametric detection
methods that consider such variation.

Regarding the Protocol impact, we see that it is easier
to detect the Iperf UDP bottleneck flow than the Iperf TCP
bottleneck flow. The reason is that the Iperf UDP flow fully
saturates the bottleneck with a constant packet rate, while a
TCP flow will adjust the packet transmission rate according to
network conditions. As a result, the Iperf UDP stream appears
more regular than the TCP stream under similar conditions,
yielding bigger difference when compared with background
traffic.

Operated under the same conditions, the Single Frequency
Method yields the lowest detection probability, while the Top
Frequency Method performs significantly better as it considers
the shift of the bottleneck signature in the spectrum across
time. Both the Top-M Frequencies Method and All Frequen-
cies Method improve the detection probability on the training
set by considering more frequency information, but they do not
produce significant gains on the detection probability on other
sets, compared with the Top Frequency Method. This suggests
that the top frequency captures most of the statistical difference
that persists over the time. It is our future work to carry further
investigation why these two multi-variate methods do not
provide better performance and refine them for improvements.

VI. RELATED WORK

In recent years, a number of researchers have used spec-
tral techniques to analyze network traffic. Hussain et al.
apply spectral techniques to packet arrival time series to
distinguish single-source and multi-source DDoS attacks [1],
and more recently have extended this approach to attack re-
identification [2]. But they mostly examine attack traffic in
isolation of background traffic. Barford et al. use wavelets to
analyze IP flow-level and SNMP information to detect Dos at-
tacks and other network anomalies [4]. Cheng et al. also apply
spectral analysis to separate normal TCP traffic which exhibit
strong periodicities around its round-trip time from DOS
attack traffic [7]. Magnaghi et al. propose a wavelet-based
framework to proactively detect network misconfigurations,
which utilizes the TCP retransmission timeout events during
the opening phase of the TCP connection [16]. Partridge et al.
apply the Lomb periodogram technique to retrieve periodicities
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in wireless communication, including CBR traffic and the
periodicity around the FTP round-trip time [5]. In addition,
Partridge warns of the dangers of blind application of signal
processing techniques in networking without careful analysis
and knowledge of ground truth [8], [9].

Kim et al. apply wavelet denoising to improve the detection
of shared congestion among different flows [17]. They use the
cross-correlation between the one-way-delay experienced by
packets in different flows for the detection, and then improve
the performance by reducing the impact of random queuing
behavior while preserving the behavior of highly congested
link through wavelet denoising, since a highly congested link
has a larger low frequency component in the spectrum of
the one-way-delay sequence. The technique requires inserting
active probe packets into the network to measure the one-way-
delay. Another closely related work in detecting bottleneck
traffic is in [6]. In this paper, Katabi et al. use packet inter-
arrival times to infer the path characteristics such as bottleneck
capacity, and bottleneck sharing among flows as the entropy
of packet inter-arrival times is much lower for flows sharing
the same bottleneck. A number of techniques have been used
for estimating link capacity and available bandwidth [18],
[19], [20], [21], [22], [23]. Besides scope, there are several
key differences between these and ours. First, they need to
isolate specific flows, whereas our techniques work on large
aggregate traffic. Second, they need access to both ends of the
path, whereas we assume a single observation point. Finally,
most such techniques rely on active measurements, whereas
ours are passive.

Network tomography typically uses a limited number of
active or passive measurements (typically at network edges) to
infer network performance parameters and topology. Examples
include network and link parameter estimation [24], [25],
topology inference [26], [27], [28] and traffic matrices [29],
[30]. The input signal is typically packet delays, round-
trip time, loss, etc., and tomography tries to infer network
characteristics using correlation techniques such as maximum
likelihood estimation and Bayesian inference. Unlike our tech-
niques, in network tomography multiple observation points
may be required and flows need to be separated from aggregate
traffic.

As compared to other research, our approach is passive (i.e.,
does not require probing packets), can operate on aggregate
traffic (so that component traffic flows do not have to be
extracted), transform the data to a suitable spectral domain
representation (rather than operating with time-domain infor-
mation), and make use of more rigorous statistical methods
(rather than relying on more qualitatively visual evidence).

VII. CONCLUSIONS

As the Internet has evolved to become an inseparable part of
millions of people’s daily life, it is important for us to better
understand and diagnose it in a broad scale. Spectral tech-
niques have been shown to a powerful tool to extract hidden
patterns in many fields, and they are becoming widely used
by the network research community to analyze Internet traffic
to infer useful information ranging from network anomalies to
protocol behavior.

In our work, we presented an experimental methodology for
the application of spectral techniques to network problems, and
used it to analyze the regularities imposed by bottleneck links.
In addition to visual demonstrating the signature imposed by
various bottleneck links and how it evolves as the bottle-
neck flow traverses the network, we proposed four detection
algorithms based Bayes Maximum-likelihood Classifier to
automatically detect the bottleneck signature embedded in
aggregate traffic, and evaluated their performance using real-
world Internet traces. Our results show that we can have fairly
high detection probabilities in many cases.

In summary, we believe that spectral techniques provide a
very promising approach to study the Internet traffic dynamics
and the knowledge gained would make a vital contribution
for the continuing success of the Internet. As future work we
plan to strengthen our techniques by addressing the following
aspects.

� Refine the detection algorithms by looking deep into
their assumptions, such as the log-normal distribution
assumption for the Single Frequency Method and the Top
Frequency Method, and the multi-variate log-normal dis-
tribution assumption for the Top-M Frequencies Method
and the All Frequencies Method.

� Investigate why the Top-M Frequencies Detection and the
All Frequencies Method do not yield better performance
than the Top Frequency Method. We see that they can
improve significantly the detection probability on the
training set, but not on the other sets. Understanding the
reason behind this may help us find other heuristics for
improving the detection probability.

� Study other multi-variate detection methods, like the one
utilizing harmonics, as harmonics may convey additional
information besides the fundamental frequency.

� Model the underlying processes that govern the gen-
eration of bottleneck traffic and how it is shaped by
competing traffic, and use the model to design para-
metric detection algorithms that take traffic load and
other time-varying factors into consideration. We see the
performance of the non-parametric detection algorithms
depends on the heavily on the signal-to-noise ratio, and
in some cases it also depends on which training set we
use. We hope to improve the detection probability by
modeling the underlying processes and designing para-
metric detection algorithms that consider the variation
across traffic load and time.

� Apply the detection methods in more diversified environ-
ment, including at different trace points, with different
bottleneck locations, different types of traffic composition
(e.g., single flow versus multiple flows), and different
types of cross traffic, so that we can gain a more thorough
understanding of how they perform and validate the
findings from system modeling.

� Study and improve the performance of our detection
methods in terms of efficiency, so that the detection can
be done in real-time with high speed network traffic.

� Extend the techniques into a framework that can be
applied to study other periodic traffic phenomena, such
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as TCP windowing behavior and network anomalies. This
will expand the applicability of our methodology and help
gain insight of other network phenomena.
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