Remote Detection of Bottleneck Links Using Spectral and Statistical Methods

Xinming He ?, Christos Papadopoulos”, John Heidemann ¢, Urbashi Mitra 4, Usman Riaz ¢,
a(Clisco Systems, Inc., 725 Alder Drive, Milpitas, CA 95035, USA
b Colorado State University, Computer Science Department, Fort Collins, CO 80523, USA
¢ University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
d University of Southern California, Electrical Engineering Department, Los Angeles, CA 90089, USA

Abstract

Persistently saturated links are abnormal conditions that indicate bottlenecks in Internet traffic. Network operators are interested
in detecting such links for troubleshooting, to improve capacity planning and traffic estimation, and to detect denial-of-service
attacks. Currently bottleneck links can be detected either locally, through SNMP information, or remotely, through active probing
or passive flow-based analysis. However, local SNMP information may not be available due to administrative restrictions, and
existing remote approaches are not used systematically because of their network or computation overhead. This paper proposes a
new approach to remotely detect the presence of bottleneck links using spectral and statistical analysis of traffic. Our approach is
passive, operates on aggregate traffic without flow separation, and supports remote detection of bottlenecks, addressing some of the
major limitations of existing approaches. Our technique assumes that traffic through the bottleneck is dominated by packets with
a common size (typically the maximum transfer unit, for reasons discussed in Section 5.1). With this assumption, we observe that
bottlenecks imprint periodicities on packet transmissions based on the packet size and link bandwidth. Such periodicities manifest
themselves as strong frequencies in the spectral representation of the aggregate traffic observed at a downstream monitoring point.
We propose a detection algorithm based on rigorous statistical methods to detect the presence of bottleneck links by examining
strong frequencies in aggregate traffic. We use data from live Internet traces to evaluate the performance of our algorithm under
various network conditions. Results show that with proper parameters our algorithm can provide excellent accuracy (up to 95%)
even if the traffic through the bottleneck link accounts for less than 10% of the aggregate traffic.

Key words: Spectral Analysis, Bottleneck Detection, Traffic Analysis

1. Introduction to purchase more bandwidth; (¢) a denial-of-service (DoS)
attack that saturates a link near the victim; (d) individual
A link is saturated when the offered load at the link ex- attackers in a distributed DoS attack that saturate their

ceeds its capacity. A saturated link is very likely to be the access links as they try to send packets as fast as possible;
bottleneck link for traffic passing through it. Links may and (e) links that may become accidentally saturated due

become saturated for brief moments during normal oper- to faulty software or hardware.

ation in the Internet. However, with the exception of ex- These examples are of interest for several reasons. First,
pensive, highly utilized links (e.g., satellite or deep space information about saturated links is necessary to influence
links), a sustained, saturated link typically implies an ab- ~ long-term decisions such as capacity planning and traffic

normal condition in the network. Examples of such links matrix estimation, and in short-term response to exter-
that are of interest to network operators include: (a) an ~ Dal attacks or internal bugs. More importantly, bottlenecks
under-provisioned link that may spend most of its time represent a performance problem for users of the network.
saturated as many users share its capacity; (b) an under- Network operators would like to systematically monitor

provisioned access link that may indicate a customer’sneed ~ bottlenecks and report on them to their users. If traffic is
limited by an access link, it shows that a user needs to pur-

chase greater capacity. If within the ISP, a bottleneck link
Email addresses: xhe@cisco.com (Xinming He), represents a problem that may affect multiple users and

christos@cs.colostate.edu (Christos Papadopoulos), must be diagnosed. If outside the ISP, the bottleneck link
johnh@isi.edu (John Heidemann), ubli@usc.edu (Urbashi Mitra), .

. . demonstrates that the problem is external.
uriaz@usc.edu (Usman Riaz).

pu— ., 9 sy 1 4 . P 7 ~r B 7 PR

Currently, saturated links can be detected through direct
observation, e.g., network monitoring with SNMP. While
network monitoring tools are widely used, they are not a
panacea, particularly because access to SNMP data is of-
ten administratively limited and does not provide visibility
into a customer’s behavior or an external network’s perfor-
mance. In addition, SNMP reports are typically averaged
over long intervals (5 minutes or more) and so they miss
short but recurring saturation events. Finally, in some cases
SNMP data may not be collected or processed because of
economic or bandwidth costs.

Detecting bottlenecks can also be done remotely by ac-
tive probing (Kim et al., 2004; Hu et al., 2004) or per-flow
analysis and traffic correlation (Katabi and Blake, 2001).
However, such techniques either require additional traffic
to be inserted into the network exacerbating the congestion
on the bottleneck link, or incur high computational cost as
packets have to be separated according to flows and then
correlated to detect sharing of bottlenecks. Ideally a net-
work operator would like to install a network monitoring
system that can detect saturated links quickly by looking
at the aggregate traffic level, and then resort to detailed
per-flow analysis only if a problem is detected.

We propose an approach that can remotely detect the
presence of bottleneck links in aggregate traffic without flow
separation. Note that we are interested in transient bot-
tlenecks, which are hard to detect with standard methods
such as SNMP monitoring Our key observation is that when
links are saturated, they send packets out as fast as possi-
ble, resulting in regular back-to-back packet transmissions.
We call this regular, back-to-back packet stream bottleneck
traffic as it is rate-limited by the capacity of the saturated
(bottleneck) link. If we observe the bottleneck traffic in the
frequency domain, the back-to-back packet transmissions
exhibit strong periodicities regulated by the bottleneck link
capacity and the packet size. While there are potentially an
infinite number of combinations of link speed and packet
size, resulting in many potential bottleneck frequencies, in
practice, both are constrained to a relatively few, common
values. Links typically come in discrete capacities (e.g.,
1.5Mbps, 10Mbps, 45Mbps, 100Mbps, 1Gbps, etc) corre-
sponding to WAN technologies. Packet sizes exhibit strong
modes governed by protocol design, including 60B for TCP
acknowledgments, 572B for the minimum supported Inter-
net datagram, 1500B for maximum size Ethernet segment.
Moreover, transient bottlenecks often result from large file
transfers; such transfers use the maximum available packet
size. Throughout this paper we assume that the bottle-
necks are caused by large flows, dominated by packets with
a common size (typically near the maximum transfer unit,
for reasons discussed in Section 5.1). We observe that the
strong periodicities in the packet transmissions along the
bottleneck link can manifest themselves as strong frequen-
cies in the spectral representation of the aggregate traffic
observed at a downstream monitoring point, and we show
that bottlenecks can be detected despite interference and
noise created by irregular packet transmissions of other

flows. Thus, we can detect the presence of bottleneck links
by detecting the existence of bottleneck traffic in the ag-
gregate traffic in the spectral domain. Our approach builds
on top of prior work of spectral analysis of network traf-
fic (Barford et al., 2002; Partridge et al., 2002; Cheng et al.,
2002; Hussain et al., 2003).

The main contribution of this paper is the development
of a novel approach to detect bottleneck links through the
periodic packet transmissions in network traffic. Our ap-
proach is completely passive and incurs no additional net-
work overhead. It can detect the presence of bottleneck
links without flow separation even if the traffic through the
bottleneck link accounts for less than 10% of the aggregate
traffic at the monitoring point. We also investigate the sen-
sitivity of our approach under different network conditions
such as different bottleneck bandwidths. We have not in-
vestigated deeply the performance of our algorithms when
only partial bottleneck traffic is observed. Such scenarios
reduce the bottleneck signal and make detection harder.
Further investigation is part of our future work.

The rest of the paper is organized as follows. First, we
describe potential applications of bottleneck link detection
in Section 2 and give an overview of our detection system
in Section 3. Then, in Section 4 we present our technique
for calculating spectral representation of network traffic.
After applying this technique to visually demonstrate spec-
tral characteristics of bottleneck links in Section 5, we pro-
pose an automatic detection algorithm based on Maximum
Likelihood Detection in Section 6 and evaluate its perfor-
mance using real Internet traffic in Section 7. Finally we
conclude the paper in Section 9.

2. Applications of Bottleneck Detection

We are not the first to explore the problem of detect-
ing bottlenecks by passively monitoring traffic. Others have
used the regularities in the packet transmission along the
bottleneck link to detect bottleneck sharing among multiple
flows (Katabi and Blake, 2001). However, network opera-
tors today rarely explore traffic at this level for at least two
reasons. First, current approaches to bottleneck traffic de-
tection are computationally expensive, requiring splitting
traffic into flows and then combining different flows into
groups sharing the same bottleneck, an expense we avoid in
this paper. Second, perhaps because of this expense, there
has been limited exploration of how useful early detection
of bottleneck traffic might be in network operations. We
explore several possibilities below.

2.1. Capacity Planning and Traffic Engineering

In capacity planning and traffic engineering it is impor-
tant to understand which parts of the network are bottle-
neck limited. Bottleneck information is useful in capacity
planning to inform decisions about link upgrades; in traffic

engineering it can help operators make informed decisions
to fine-tune routing and label switching.

Current approaches to these problems typically use net-
work monitoring (with SNMP (Case et al., 1990)) and traf-
fic matrix estimation (Zhang et al., 2003). SNMP runs on
individual interfaces in an ISP’s network. While essential,
these approaches are limited to ISP links only (customer
links are typically inaccessible) and information is often
aggregated at coarse timescales (5 minutes or more). Our
proposed approach is able to detect the presence of a bot-
tleneck from afar (e.g., an upstream ISP) without the use
of SNMP. It does so by monitoring incoming or outgoing
traffic at an ISP ingress or egress. If a bottleneck is detected
at the incoming traffic, the bottlenecked is clearly exter-
nal to the ISP. If the bottleneck is detected at the outgo-
ing traffic, the bottleneck’s is internal to the ISP network,
and perhaps it was not detected by SNMP because it hap-
pened on a non-SNMP capable interface, or traffic from a
customer. Moreover, our approach is able to detect bottle-
neck traffic in a manner of seconds rather than minutes.
While planning and even traffic engineering decisions may
be done infrequently, trend analysis of the frequency of bot-
tlenecks is important information for the network operator.
Our system does not reveal the exact location of the bot-
tleneck link, but only the presence of one. However, it can
be used as early-warning to trigger further actions such as
costly active probing techniques to locate the bottleneck.

2.2. Preemptively Diagnosing Performance Problems for
Customers

For customers it is challenging to diagnose network per-
formance problems. Performance limitations may exist at
the application, the access link, the receiver or “somewhere
in the network”. Our technique can be the basis for a poten-
tial new service for ISPs, where they continuously monitor
customer traffic and preemptively determine if the bottle-
neck is inside or outside the ISP. This can be done by mon-
itoring traffic at the ISP egress point, and using our tech-
niques to determine whether incoming or outgoing traffic is
bottlenecked on not. In addition to the value-added service
to the customer, such diagnosis provides several attractive
opportunities for the ISP. A frequently bottlenecked client
access link might help persuade the client to upgrade. Prob-
lems inside the ISP’s network can be detected and resolved
quickly, before users notice. Problems tracked outside the
ISP it can avoid open tickets and tarnish to the ISP’s rep-
utation.

2.3. Detecting DDoS attacks and other network anomalies

Although “smart” denial-of-service (DoS) attacks have
been described in (Kuzmanovié¢ and Knightly, 2003), many
such attacks harm their victims by simply saturating links.
Our system is perfectly suited for detecting flooding at-
tacks such as distributed DoS attacks (DDoS), where many

:ﬂ
End Host

=5\

; —
End Host =

End Host
End Host

Fig. 1. A Typical System Deployment

machines (called zombies) generate small streams that re-
sult into a damaging aggregate at the target. Individual
zombie attack traffic could be also be detected because it
typically saturates the zombie’s access link (Hussain et al.,
2003). While our focus here is not on zombie detection, our
techniques are directly applicable to this problem, comple-
menting signature-based schemes and obviating the need
for signature discovery and distribution. We do not evaluate
the effectiveness of such techniques here and it is possible
that they would generate many false positives, if focused on
an individual stream. However, an ISP could look for the
appearance of multiple bottlenecks at the same time, with
the same destination. Such correlation would most likely
drastically reduce false positives.

3. System Overview

Figure 1 depicts a typical deployment of our system for
detecting the presence of bottleneck flows, rate-limited by
the capacity of one or more bottleneck links. Note that we
expect the network administrator to deploy our system at
the access link of the network to maximize traffic visibility.

Figure 2 illustrates the processing steps in our system.
First, we capture packet streams from the network and
record the arrival times of each packet. Then, we map the
packet arrival-time sequence to a uniformly sampled time
series. Each number in the series is the number of packets
that arrive during a fixed interval. A Fourier Transforma-
tion converts the time domain representation into the fre-
quency domain, where the Power Spectral Density (PSD)
shows the strength (or energy) at each individual frequency.
Finally, we employ an algorithm based on Maximum Like-
lihood Detection (Trees, 1968) to examine the PSD of the
aggregate traffic and detect bottleneck flows using the prob-
ability density functions (PDFs) estimated from training
data (a step that must be performed infrequently, when
traffic changes drastically — we will describe this shortly).

Next, we briefly describe capturing network traffic. The
remaining steps are covered in Sections 4 and 6.

Packet arrival times

t

Sampled time series

1{0 1‘(_]‘1‘0‘0‘1‘0

Spectiiun PSD
QT Y o

Detection bazed on PDF

b

Fig. 2. Processing Steps
3.1. Packet Capture

Packet capture is typically done by capture machines ex-
posed to network traffic via port mirroring or in-line tap-
ping.

Port mirroring is commonly available in most enterprise
level routers and switches. Here routers forward a copy of
the traffic through one or more ports to a mirror port con-
nected to the capture machine. While this method is com-
mon, it adds a burden to the router and may add jitter,
caused by queuing at the router.

In-line tapping uses a network tap physically attached to
the monitored link. In-line tapping does not affect network
operation, except for a brief interruption when it is first
installed. It works at line speed and does not distort packet
timing. A disadvantage is the need for additional hardware.

Once packets reach the capture machine, they can be cap-
tured with normal network cards and commonly available
sniffing tools (e.g., tcpdump). This inexpensive approach,
however, may drop packets at high speeds and suffer from
inaccurate timestamps due to interrupt coalescing. More
expensive specialized devices such as the Endace DAG net-
work monitoring cards (Endace, 2005), support line speed
capture and nanosecond timestamp resolution, as well as
GPS synchronized clocks.

4. Spectral Representation of Network Traffic

While there are many different methods to analyze net-
work traffic once it is captured, ours differs from most in
that our analysis is in the spectral domain. This section
briefly reviews the techniques used by our system for calcu-
lating the spectral representation of network traffic. In Sec-
tion 5 we use our techniques to visually observe the spectral
characteristics of bottleneck links to build intuition.

Other researchers have explored spectral representations
of network traffic (Barford et al., 2002; Partridge et al.,
2002; Cheng et al., 2002; Hussain et al., 2003). Here we
adopt the technique proposed by Hussain et al. (Hussain

et al., 2003) with minor modifications, to obtain the spec-
tral representation of network traffic.

Our approach has three main steps. First, we capture
packet traces from the network (see top box, Figure 1) us-
ing tcpdump or other tools. The only information we need
from the trace is the packet arrival time. We divide the cap-
tured trace into segments of f-second long before further
processing. The length of each segment ¢ is a configurable
parameter; we discuss its selection in the next subsection.

Second, we sample each segment with a sampling rate p
(see second box, Figure 1; we discuss in Section 4.1 how to
select a proper p) to obtain a time series X, where X (7)
is the number of packets that arrive in the time period
[z_iw’ %) Time is relative to the start of a segment, and 4
varies from 0 to ¢ x p— 1. This results in N = £ X p number
of samples for each segment. We then subtract the mean
arrival rate before proceeding with spectral transformation
in the next step, since the mean value results in a DC com-
ponent in the spectrum that does not provide useful infor-
mation for our purposes.

Third, the Power Spectral Density (PSD) is computed as
the discrete Fourier transform of the auto-covariance func-
tion (ACF) of the time series data (see third box, Figure 1).
Auto-covariance is a measure of how similar the stream is to
itself shifted in time by offset k (Box et al., 1994; Bracewell,
1986). When k£ = 0 we compare the packet stream to itself,
the auto-covariance is maximum and equals to the variance
of the packet stream. When k > 0 we compare the packet
stream with a version of itself shifted by lag k. The auto-
covariance sequence c(k) at lag k is

N—
(k)=

k—1
=0

(X () = X)(X(t + k) — X); (1)

~

where X is the mean of X (¢), N is the number of samples,
and k varies from —N to N.

The PSD is obtained by applying discrete-time Fourier
transform to the auto-covariance sequence of length M.
While the PSD contains both phase information and am-
plitude information, we are mostly interested in the ampli-
tude information calculated as follows.

M-—1

Z c(k:)e_zz’rfk

k=0

S(f) = (2)

The spectrum amplitude S(f) captures the power, or
strength, of the individual observable frequencies embed-
ded in the time series. The overall computational complex-
ity of calculating PSD for a segment is O(N + N? + N *
log(N)) = O(N?).

4.1. Parameter Selection

There are two important parameters to be selected for
PSD calculation. The first one is the trace segment length
£. If the segment length ¢ is too short, we may not have
enough samples to reveal interesting patterns inside the

packet trace from the spectrum. What it shows may be tem-
porary or transient phenomena on the network. If it is too
long, patterns inside the packet stream may have changed
during this long period. For the detection of bottleneck
traffic, we suggest using a segment length on the order of
seconds. Here we use a default value of 1 second and inves-
tigate the impact of segment length in Section 7.5.

The sampling rate p is another important parameter.
Given a sampling rate p, the highest frequency that is ob-
servable is £ according to the Nyquist Theorem. If the sam-
pling rate is too low, aliasing can occur. If it is too high, it
will increase both storage and processing overhead unnec-
essarily. A compromise has to be made between reducing
the overhead and obtaining a better spectral representa-
tion. In this paper, we select a conservative sampling rate
of 200kHz, which is sufficiently high to capture the peri-
odic patterns of transmitting 1500-byte packets over an
100Mbps Ethernet link (8333 packets per second). A more
thorough exploration of the trade-off for selecting a proper
sampling rate is the subject of future work.

5. Building Intuition: Spectra of Bottleneck Traffic

The final step in Figure 1 is to detect bottleneck links
based on the traffic PSD. In this section, we apply the
techniques described in Section 4 to visually demonstrate
the spectral characteristics of bottleneck traffic. The goal
is to develop intuition behind our automated detection al-
gorithm. While in this section we focus on graphical rep-
resentations of the spectrum, in Section 6, we build upon
intuition to design a quantitative algorithm to detect bot-
tleneck traffic. We begin with experiments in a simple con-
trolled lab environment and then proceed to more complex
wide-area experiments.

5.1. Signatures in Controlled Lab Experiments

When a link is congested, it sends packets out back-to-
back. Assuming for now that all packets are of the same size,
this translates to a single periodic pattern in the spectral
domain, with a period equal to the packet interarrival time.
The packet interarrival time is calculated as follows.

Packet Size

Int wal Time =
nterarrival Time =m0 o ®)

The frequency of this pattern is the inverse of the inter-
arrival time and it can be calculated as follows.

Link Bandwidth ()
Packet Size

Our approach assumes that the bottleneck traffic is dom-
inated by packets of a single size. It is well established that
a few common packet sizes dominate Internet traffic (see,
for example, (Claffy et al., 1998), (Katabi and Blake, 2001),
and (Sinha et al., 2006)). We believe bottlenecks will be
particular prone to a few packet sizes, since they are typi-
cally caused by either denial-of-service attacks or large or

Base Frequency =

15- B

a
3 1k B . 4
o

LLL‘“‘L Lol bt
3 4 5 6 7 8 9 10
Frequency (Hz) 10"

(a) Complete Spectrum

15 B
8 1 ,
o

05 1

; ; ; ; ; ; ; . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz)

(b) Partial Spectrum

Fig. 3. Spectral signature of a 100Mbps link saturated with a TCP
flow

many TCP flows. Denial-of-service attacks today typically
use fixed packet sizes, partially because random packet sizes
would make them vulnerable to entropy analysis (Lakhina
et al., 2005). TCP ensures that for bulk traffic, the majority
of segments will be as large as the the maximum transmis-
sion unit. Only a mix of many short TCP flows will show
significant variability in packet sizes, but studies show that
most Internet traffic (by bytes) is in longer flows (for exam-
ple, (Thompson et al., 1997)). For these reasons we focus on
detecting the effects of a single dominant packet size, and
the experiments in this paper primarily use the packet size
1500-byte for the bottleneck traffic. However, our approach
becomes less effective if our assumption about packet size
is relaxed, and it would work poorly if the bottleneck traffic
consists of packets with random sizes.

Our experiments use a very simple topology, where the
sender and the receiver are directly connected through an
Ethernet switch. We select a switch instead of a hub be-
cause a switch forwards traffic more efficiently and switches
are far more widely used today. We use tcpdump on the
receiver side to gather packet traces. We also use different
Ethernet bandwidth (10 or 100Mb/s) and vary the trans-
port protocol (TCP or UDP) to get the spectra under dif-
ferent scenarios. We use Iperf (Tirumala et al., 2003) to
generate TCP and UDP packet streams, which mimic TCP
file downloads or UDP CBR (Constant-Bit-Rate) traffic.
Each experiment lasts for 30 seconds. We divide the trace
into individual segments, each 1-second long and use the
techniques in Section 4 to calculate the PSD for each seg-
ment. With the exception of the first segment, which in-
cludes startup effects, we observe little variation in the
spectra among the remaining 29 segments. Thus, we only
present results from an arbitrarily selected segment from
the 29 segments.

5.1.1. TCP Traffic through a 100Mbps Bottleneck
In the first experiment, we use a single Iperf TCP flow to
saturate a 100Mbps switched Ethernet link with 1500-byte

x10°

PSD

6
5
4
3L 4
2
1
0

I I I I | I I I
0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

1000

Fig. 4. Spectral signature of a 10Mbps link saturated with a TCP
flow

packets. We set the TCP socket buffer size to 128K bytes
to ensure there is no window starvation and RTT was less
than 1ms. Under these conditions, TCP utilizes virtually
the entire link bandwidth; we measured actual bit rates of
around 99.9Mbps (including Ethernet header overhead).

Figure 3(a) illustrates the complete measured spectrum
of the packet stream along the Ethernet link. A complete
measured spectrum is the spectrum that shows the energy
(or strength) at all observable frequencies from 0Hz up to
the Nyquist limit (half the sampling rate), 100KHz in our
case since we sample at 200KHz. The amplitude at each fre-
quency represents the power or strength of the frequency. In
Figure 3(a), we observe spikes around the 8130Hz base fre-
quency and at multiples (harmonics) of this frequency. The
amplitude at 8130Hz in the PSD reaches nearly 17,000,000,
while the amplitudes at other frequencies are much lower,
especially at frequencies other than 8130Hz and its harmon-
ics. The important conclusion of this simple experiment is
that the periodic patterns are very distinct and clearly vis-
ible.

We refer to the 8130Hz base frequency as the bottleneck
frequency. To fully understand why there is strong energy
at 8130Hz, we precisely calculate the frame size on the wire.
The Ethernet frame format, specified in IEEE 802.3 2002
Standard (IEEE, 2002), specifies that each Ethernet frame
has a 38-byte overhead, including an 8-byte preamble, a 6-
byte destination MAC address, a 6-byte source MAC ad-
dress, a 2-byte type/length field, a 4-byte CRC, and a 12-
byte “Inter-Packet Gap”. The max length of the Ethernet
data payload is 1500-byte, which is what we used with the
Iperf TCP flow in our experiment. Hence the packet in-
terarrival time for the Iperf flow according to Equation 3
is (1500 + 38) * 8 bit / 100Mbps = 0.12304ms. The in-
verse of 0.12304ms is a frequency of 8127.44Hz. However,
since tcpdump (our packet capture tool) has a time reso-
lution of 1 microsecond, the majority of the packet inter-
arrival times stamped at 0.123ms, resulting in strong en-
ergy around 8130Hz (the inverse of 0.123ms), in the actual
spectral representation.

From this experiment, we can see that high energy
around the 8130Hz base frequency and its harmonics is
a strong indication of the presence of traffic through a
100Mbps bottleneck link. We explain the presence of har-
monics in Section 4.1. Since harmonics do not provide
additional information, we focus mainly on the partial
spectrum in the range OHz..10kHz in Figure 3(b).

5.1.2. TCP Traffic through a 10Mbps Bottleneck

In the second experiment, we repeat the prior experiment
but with a 10Mbps switched Ethernet link. TCP traffic
can also nearly fully utilize the link bandwidth with an
actual bit rate very close to 10Mbps (including the Ethernet
header overhead).

Figure 4 shows the corresponding spectrum of the packet
stream. As expected, we see strong energy around 813Hz,
a tenth of the previous experiment. The PSD amplitude
at 813Hz reaches 510,000, which is much lower than the
amplitude in the previous experiment. The lower amplitude
is not surprising since the packet rate here is much lower.
Note that we excluded harmonics from this graph.

5.1.3. UDP Traffic through a 10Mbps Bottleneck

To investigate how the spectrum changes with CBR traf-
fic, we use Iperf to saturate the 10Mbps link. We configure
Iperf to send out 1472-byte UDP packets with a sending
rate of 10Mbps. The Ethernet frame data payload length is
1500 bytes after adding 28-byte UDP/IP headers. We mea-
sure 10Mbps (including Ethernet packet overhead), verify-
ing that the UDP flow can fully utilize the link bandwidth.

Figure 5(a) depicts the spectrum of the Iperf UDP flow.
we observe a single peak at the 813Hz base frequency
(again, we exclude harmonics). The PSD amplitude at
813Hz is 612,000, which is a bit higher than the amplitude
for TCP in Figure 4. We believe the reason to be that
packet transmission with UDP is more regular than TCP
due to UDP’s lack of a window mechanism. However, the
difference in our experiments is not significant due to lack
of competing cross traffic.

In the next experiment, we try a different packet size. We
again use Iperf to send 772-byte UDP packets at 10Mbps.
The Ethernet frame data payload length is 800 bytes after
adding the 28-byte UDP/IP header. The bit rate along
the Ethernet link is still 10Mbps (including the Ethernet
header overhead). The spectrum in Figure 5(b) shows a
spike around 1492Hz, which agrees with Equation 4, with
10Mbps link bandwidth and 838-byte packet size (800-byte
data payload plus 38-byte Ethernet overhead). In the PSD,
the amplitude at 1492Hz reaches 1,944,000, which is more
than three times the amplitude at 813Hz for the earlier
experiment with 1500-byte packets in Figure 5(a).

5.1.4. A Multi-Flow Bottleneck

In the above experiments the bottleneck was satu-
rated with a single Iperf flow. In practice, however, high-
bandwidth links are often saturated by many flows. Our
approach detects the characteristics of a saturated link,
whether saturated by one flow or many, but becomes less
effective if we can only observe some of the bottleneck traf-
fic. To understand this scenario better we conducted con-
trolled lab experiments with the following two scenarios:
(a) we observe all flows through the bottleneck, and (b) we
observe only a fraction of the flows through the bottleneck.

PSD
IS o
T T
I I

~N
T
I

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

(a) With 1472-byte UDP Packets

o ; ; ; ; ; ; ;
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (Hz)

(b) With 772-byte UDP Packets

Fig. 5. Spectral signature of a 10Mbps link saturated with different
size UDP packets

5]
T 250000
b=

=
1 200000

150000

ude ne

7 100000
A

550000
0 . W -

o
0.102 0. 425 0.62

Percentage of unobserved bottleneck traffic

al

Fig. 6. Peak Amplitude with increasing percentage of unobserved
bottleneck traffic

In case (a) the bottleneck traffic spectrum is similar to
the case where a single flow saturates the bottleneck link.
The reason is that the bottleneck shapes packet transmis-
sion based on bandwidth and packet size, regardless of how
many flows are saturating the link. Experiments supporting
this observation are omitted here due to space limitations,
but can be found in our technical report (He et al., 2005).

Case (b) is more challenging as we do not observe all
packets that carry the bottleneck signal. We call the flows
that traverse the bottleneck link but do not reach the ob-
servation point unobserved bottleneck traffic; the fraction of
unobserved traffic greatly affects our ability to detect the
bottleneck.

Figure 6 shows the impact of unobserved bottleneck traf-
fic. In the test, we use one Iperf TCP flow and multiple web
flows generated by a tool called Surge (Barford and Crov-
ella, 1998) to saturate a 10Mbps switched Ethernet link.
Only the Iperf TCP flow reaches the observation point,
while the web flows do not reach the observation point and
thus serve as unobserved bottleneck traffic. We vary the
number of simulated web users in Surge to change the un-
observed bottleneck traffic volume.

The X-axis of the graph shows the percentage of unob-
served bottleneck traffic in terms of packet count out of all
packets through the bottleneck in a 1-second window. The
Y-axis shows the peak amplitude of observed bottleneck
traffic around the 800Hz frequency. The high-level obser-
vation is that as the percentage of unobserved bottleneck

o oA AL oA S A MR WA
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

(a) with an Iperf flow through a 10Mbps bottleneck link

8

6

PSD

4

|
mm&mmmmhmJMUJH.LM.I.IML.\M. lummm\hmm.u‘llmMA‘

100 200 300 500 800 900 1000
Frequency (Hz)

(b) without the Iperf flow

Fig. 7. Power spectra of aggregate traffic at USC Internet II link

traffic increases the bottleneck signal (i.e., the peak am-
plitude) becomes weaker and hence more difficult to de-
tect. We provide additional results and more detailed dis-
cussion on the effects of unobserved bottleneck traffic else-
where (He, 2006). In this paper, we focus on case (a) where
we observe all bottleneck traffic. Refinement to improve
sensitivity to partial observation is an area of future work.

5.2. Wide-area Network Fxperiments

The previous examples show that strong periodicities of
bottleneck traffic can be easily observed from the spectra
in simple lab experiments without cross traffic. However,
the situation is more complicated in wide-area network en-
vironments with real Internet traffic. Differences include
a much more complex network topology, the monitoring
point being far away from the actual bottleneck link, and
much richer cross traffic, which will interact with the bot-
tleneck traffic and affect the spectra.

We attempt to observe some of these challenges by car-
rying out experiments on a live, wide-area network. We
place the capture machine close to an Internet II router
at the edge of our university’s network. We mirror traf-
fic at the router to a separate port and capture it using
a Endace DAG network monitoring card (Endace, 2005).
These purpose-built cards are capable of nanosecond res-
olution timestamps and can keep up with the 1Gbps links
without dropping any packets. We introduce an artificial
10Mb/s bottleneck traversed by an Iperf TCP flow, which
flows through the capture point.

Figure 7(a) shows the spectrum of aggregate traffic ob-
served at the capture machine, which includes the bot-
tleneck flow. The throughput of the TCP flow is around
9.03Mbps, and the aggregate traffic volume is 30.9Mbps.
We see a spike around 790Hz in the PSD. Compared with
the spectrum in Figure 4 we observe three main differ-
ences. First, the peak amplitude in the spectrum appears
at 793Hz, which is close, but different than the 813Hz ob-
served for the spectrum without cross traffic. Second, the

peak amplitude is 140,000, only 27.5% of the peak ampli-
tude of the previous case. We believe that these differences
are due to interference from cross traffic. While it is hard to
precisely quantify how cross traffic affects the spectrum of
the aggregate traffic as the underlying process is non-linear
in nature, we have two general observations. First, cross
traffic competes with the bottleneck traffic and distorts the
regularity in the periodic nature of the bottleneck traffic.
This results in a lower peak amplitude and a slightly dif-
ferent location of the peak frequency. Second, background
traffic at the monitored link introduces its own frequency
components to the observed spectrum resulting into noise.
We expect that the presence of noise will make if harder to
detect the signal from the bottleneck traffic. We investigate
the effect of noise on detection in later sections.

In Figure 7(a) we observe the spectra from a different ex-
periment, this one between our university and the Univer-
sity of Santa Barbara. Here we still see a prominent spike
near the 813Hz base frequency despite the the presence of
noisy cross traffic. This suggests that there are cases where
the bottleneck traffic could be detected even when mized
with aggregate traffic. Finally, Figure 7(b) shows the spec-
trum of aggregate traffic at a time when our artificial TCP
bottleneck flow was not present. Note that the strongest
energy around 790Hz is only 1/3 of the peak amplitude
when the bottleneck flow is present. The aggregate traffic
volume is about 17.8Mbps.

From the above experiments we conclude that despite
noise introduced by background traffic the bottleneck traf-
fic spectra may still be detected by examining the PSD of
the aggregate traffic. This is encouraging and motivates the
work in the next section, where we present a quantitative
approach to detecting the presence if bottleneck traffic by
examining the aggregate.

6. Detection of Bottleneck Traffic

In the previous section we have visually demonstrated
the presence of a spectral signature of bottleneck traffic in
both controlled lab experiments and wide-area network ex-
periments. In this section we propose and investigate the
performance of an automated process to detect bottleneck
traffic based on a classic statistical method, Maximum Like-
lihood Detection. We will first describe how to apply Max-
imum Likelihood Detection with a generalized framework
suitable for any detection feature. Then, we will propose a
specific algorithm, namely the Top-Frequency Algorithm,
which extracts the peak amplitude in a frequency window
as the detection feature. we will also simplify the matching
operation by approximating the data with normal distribu-
tions. We will explore alternative detection features later,
in Section 6.5.

6.1. Mazimum Likelihood Detection

Maximum Likelihood Detection (Trees, 1968) is a mature
technique that has been applied to many problems. We ap-
ply it to the detection of bottleneck traffic by treating the
detection problem as a binary-hypothesis-testing problem
where hypothesis Hp corresponds to the presence of bot-
tleneck traffic of a given type in aggregate traffic, and hy-
pothesis Hy corresponds to the absence of such bottleneck
traffic.

For these two hypotheses, we select a feature drawn from
the aggregate traffic as the random variable. We discuss
potential features in Sections 6.4 and 6.5. For example, one
possible feature can be the highest amplitude in a frequency
window of the spectrum of the aggregate traffic. We denote
the PDFs (probability density functions) for the feature
under these two hypotheses as p(x|Hy) and p(x|Hp), re-
spectively. Formally, if a random variable has a probability
density function f(x), then it has a probability of f(x)dx
to have a value in the infinitesimal interval [z, x + dx].

We now first introduce Maximum Likelihood Test Rule
that determines which hypothesis is more likely to be true
for a given trace segment using the PDF's of the designated
feature in Section 6.2. Then, we describe the two phases
of the overall scheme, the training phase and the detection
phase, in Section 6.3.

6.2. Maximum Likelihood Test Rule

Assuming we know the PDFs for both hypotheses Hy and
Hp, we can determine which hypothesis is more likely to be
true for a given aggregate trace segment, i.e. if the aggregate
trace segment contains bottleneck traffic of a given type or
not, by comparing the values of the two PDF's at X, where
X is the value of the selected feature in the aggregate trace
segment. The test rule is defined as follows:

if p(X|Hg) > p(X|Hyp), select Hp
if p(X|Hp) < p(X|Hy), select Hy

()

We do not consider the prior probabilities of the two
hypotheses Hy and Hp in our test rule because they are
hard to obtain. If the prior information were available, we
could improve the accuracy of the test by forming Maxi-
mum a Posteriori test, which compares P[Hy|p(X|Hp) and
P[Hg]p(X|Hp), where P[Hy] and P[Hg] are the prior
probability for hypothesis Hy and Hp.

6.3. Two Phases in Mazximum Likelihood Detection

In order to apply Maximum Likelihood Testing in Sec-
tion 6.2, we need to know the PDFs of the designated
feature for each of the two hypotheses. Thus, our overall
scheme has two phases: training and detection. We describe
each of them in detail below.

Hy: no bottleneck

Hg: type B bottleneck

Fig. 8. Steps in the training phase

In the training phase, we estimate the probability den-
sity functions for the designated feature for each hypothe-
sis. The steps are illustrated in Figure 8. In the first step,
T1, we capture a training trace that we know contains no
bottleneck traffic and another trace that contains bottle-
neck traffic of a given type using existing trace capturing
techniques. Then, in step T2, we segment both traces and
calculate the spectrum for each segment according to the
equations in Section 4. Next, we extract the value of the
designated feature from the spectrum of each segment in
step T3. Our preferred feature is the peak amplitude in a
frequency window. We present it formally in the next sub-
section, and explore alternatives in Section 6.5. In step T4,
we estimate the PDF's of the designated feature based on its
values across all segments for each of the two hypotheses.
As a result, we get the PDF for Hy and the PDF for Hp.
We then register this pair of PDFs into a database together
with the associated bottleneck traffic type in step T5. We
repeat the same steps T1 - T5 to get the pairs of PDFs for
other types of bottleneck traffic and register them in the
database. Note that we always form a binary-hypothesis-
testing problem for each type of bottleneck traffic, and we
may use different features, e.g., peak amplitude in different
frequency windows, for different types of bottleneck traffic.

In the detection phase, the algorithm uses the PDF's ob-
tained in the training phase to determine if an unknown
trace segment contains bottleneck traffic or not. The de-
tailed steps are illustrated in Figure 9. We first obtain a
trace segment in step D1. Then, we calculate the spectrum
for the trace segment in step D2 using the equations in Sec-
tion 4. In step D3, we extract the value of the feature from
the spectrum of the trace segment. Then, in step D4, we
match the feature value against a pair of PDFs registered
in the database by applying the Maximum Likelihood Test
Rule developed in Section 6.2 to determine which hypoth-

Unknown segment

3_X|%4><G<HB)
® A

If P(X|Hg) > P(X|H,). then
declare the presence of type
B bottlenecked traffic.

Fig. 9. Steps in the detection phase

esis is more likely. If Hpg is more likely, then we declare the
presence of bottleneck traffic of the given type in the trace
segment. In step D5, we repeat step D3 and D4 to test the
trace segment with other pairs of PDF's registered in the
database to see if it contains other types of bottleneck traf-
fic.

It is important to note that, theoretically, the detection
space for different types of bottleneck traffic can be infinite.
In practice, however, there are a few common discrete val-
ues that variables such as bandwidth and packet size can
take. For example, link bandwidth is typically discrete with
very few possible values (e.g., 10Mbps, 100Mbps, 1Gbps,
etc.). Common packet sizes include 64B, 576B, or 1500B.
Transport protocols are mostly limited to TCP and UDP,
although other protocols such as SCTP are beginning to
emerge. This means that the search space can be greatly
reduced by only looking at combinations of common values.

6.4. Top-Frequency Detection Algorithm

As alluded to previously, there are a number of possible
features upon which to base our detection algorithm. Here
we describe an algorithm that uses the peak amplitude in a
given frequency window as the detection feature. We review
alternative features briefly in the following subsection.

Figures 3 to 5 suggest that in the absence of background
traffic, the periodicity exhibited by a bottleneck reveals
itself by a strong peak near the key frequency determined
by the bottleneck traffic bandwidth and packet size. Even
when obscured by background traffic, we can still see a
modestly sized peak in Figure 7(a). Thus, we conjecture
that the peak amplitude near the associated key frequency
is a feature of interest. In addition, due to the impact of
background traffic, the exact location of the peak amplitude
varies slightly from time to time, suggesting that we should

105 11 115 12
Log of Peak Amplitude

Fig. 10. PDFs of the peak amplitude (after log) in [780Hz, 800Hz]
for Ho (left dashed line) and Hp (right dashed line)

search in a window near the key frequency to catch the
bottleneck signal.

To take advantage of these observations, we design the
Top-Frequency Detection Algorithm, which uses the peak
amplitude within a frequency window as the feature to dis-
tinguish between Hy and Hpg. The frequency window is se-
lected according to a number of factors, most importantly
the bottleneck bandwidth and packet size. For example, we
would check the window around 800Hz for a 10Mbps link
saturated by 1500-byte packets as opposed to the 8kHz for
the 100Mbps link by the same 1500-byte packets. The win-
dow size should not be too small or we will miss the strong
energy associated with the bottleneck for some instances.
Neither should it be too wide as this may include strong
energy caused by other network phenomena. We will dis-
cuss the proper selection of window location and size in
Section 7.3 and 7.4 using real Internet traffic.

Rather than directly compare empirical probability den-
sity functions, we simplify the operation by first fitting a
mathematical distribution to the data. This approach al-
lows us to estimate the observed behavior parsimoniously
and simplifies the hypothesis testing. As we do not have
concrete intuition for a particular distribution model, we
have tested a number of distribution models to fit them to
the actual data. The log-normal distribution is selected for
a balance between simple description and goodness of fit
with the data.

The log-normal distribution means the log of the peak
amplitude follows a Gaussian distribution. Thus, in the log-
domain, the parameters which completely characterize the
two distributions are the means and standard deviations,
i.e.(pg, 00) for Hy and (pp,op) for Hp. Formally, the two
distributions are given by,

1

ooV 2T
1

oV 2T

e—(fﬂ—lto)z/?ffg

p(z|Ho) = (6)

pla|Hp) = e ()2 (7)
where x is the log of the peak amplitude in the selected
frequency window. The mean and standard deviation under
each hypothesis are determined from the training data.
Although the log-normal distribution does not always of-
fer the best fit to the data, it provides an excellent trade-
off between fit and a parsimonious modeling of the feature.
Figure 10 shows the distributions of the peak amplitude in
the frequency window [780Hz, 800Hz] for the training data

1N

associated with the two hypotheses, Hy and Hpg, in one ex-
perimental trace set involving a 10Mbps TCP bottleneck
flow. All data is presented in the log domain. The dashed
lines are the empirical PDFs for Hy and Hp, while the solid
lines are the normal distributions with the mean and stan-
dard deviation derived from the experimental set for Hy
and Hp. We can see the two empirical PDF's can be closely
approximated by normal distributions in the log domain
represented by the solid lines. We have also verified that
these two distributions follow normal distributions at the
5% significance level through the Lilliefors test (Lilliefors,
1967).

With the log-normal distribution, we can simplify the
Maximum Likelihood Test Rule in Section 6.2 by solving
the equation p(x|Hp) = p(x|Hp) first (recall that x here
is the log of the data). This equation yields a quadratic
function which has two roots if oy # op, and one root if
oo = op. In general, we expect trace segments in Hp to
have higher peak amplitudes than trace segments in Hy as
we have seen in Figure 10. Thus, if the quadratic equation
has two roots, we discard the root which contradicts this
expectation, i.e. classifies segments with lower peak ampli-
tudes into Hp and segments with higher peak amplitudes
into Hy. We select the root that agrees with the expecta-
tion as the cut-off threshold. If there is only one root for
the quadratic function, then this root should agree with the
expectation and it will be selected as the cut-off threshold.

In both cases, the detection rule can be simplified to a
direct comparison between the cut-off threshold and the
peak amplitude of the input trace in the selected window.
If the latter is larger, then the input trace will be classified
as Hp, having the associated bottleneck traffic. Otherwise,
we select Hy and declare that there is no such bottleneck
traffic. The cut-off threshold can be visually seen in Fig-
ure 10 as the point where the two PDF's cross.

The computational cost for the Top Frequency Algo-
rithm can be calculated as follows. Assuming that we build
a database of N types of bottleneck traffic, for each type
we gather M trace segments with the bottleneck traffic and
M trace segments without the bottleneck traffic, the size
of the frequency window used in the Top Frequency Algo-
rithm is W, then the complexity in the training step would
be O(N+(O(M«PSD)+O(M«W))) = O(N«M«PSD),
where PSD is the cost to calculate the PSD of a trace
segment which is greater than O(W). The computational
cost for detecting bottleneck in a trace segment would be
O(N % (PSD+O(W))) = O(N « PSD,).

6.5. Detection Using Other Features

We have designed and investigated the performance of
a suite of detection algorithms using different kinds of fea-
tures selected from the trace spectra. Table 1 summarizes
their differences. In the Single-Frequency Algorithm, we
examine the amplitude at a particular frequency (e.g. 800
Hz). We also use log-normal distribution to model the PDFs

Table 1
Comparison of detection features

Algorithm Feature PDF Model

Top-Frequency peak amplitude in a|normal distribu-
frequency window (after|tion
log)

Single-Frequency |amplitude at a single fre-lnormal distribu-
quency (after log) tion

multi-variate nor-
mal distribution

Top-M-Frequencies|M peak amplitudes in a
frequency window (after

log)
all amplitudes in a fre-
quency window (after
log)

multi-variate nor-
mal distribution

All-Frequencies

of Hy and Hp and calculate a cut-off threshold for classi-
fying new unknown traces in the same way as in the Top-
Frequency Algorithm. The Top-M-Frequencies Algorithm
is a generalized variation of the Top-Frequency Algorithm.
It considers the M highest amplitudes in a frequency win-
dow. The method assumes that the vector comprised of the
log of these amplitudes follow a multi-variate Gaussian dis-
tribution. Finally, we consider all amplitudes within a fre-
quency window in the All-Frequencies Algorithm. It also
assumes a multi-variate Gaussian distribution of the log of
these amplitudes.

Our experimental results show that the Top-Frequency
Algorithm performs much better than the Single-Frequency
Algorithm, since it accommodates the possible shift of the
peak amplitude associated with the bottleneck traffic in
a small frequency window. Its performance is also compa-
rable to the two multi-variate detection algorithms while
having much lower computational overhead since it only
models the distribution of a single random variable. Due to
space limitations we only present the results for the Top-
Frequency Algorithm in this paper. Details of other meth-
ods can be found in (He et al., 2005).

7. Evaluation with Real Internet Traffic

To systematically evaluate the performance of our de-
tection algorithm we artificially introduce bottleneck traf-
fic into a wide-area network and observe it in packet traces
gathered at the Internet-2 access link at our university.
Overall, our primary goal is to understand the performance
of our detection algorithms under different network con-
ditions and with different algorithm parameters. We first
study the impact of algorithm parameters in Section 7.3,
7.4, and 7.5. We then consider the stability of the results
with different transport protocols in Section 7.6 and the se-
lection of a proper frequency window in Section 7.7. Finally,
we investigate the effect of using different training data in
Section 7.8 and how the signal-to-noise ratio (defined as
the ratio of bottleneck traffic volume to background traffic
volume) affects algorithm performance in Section 7.9.

11

Table 2
Experiment Scenarios

Scenario|Bottleneck Traffic Type |Background Traffic Vol-
ume

T10L an Iperf TCP flow through|low (24Mbps to 59Mbps)
a 10Mbps bottleneck

T10H an Iperf TCP flow through|high (94Mbps to 186Mbps)
a 10Mbps bottleneck

U10L an Iperf UDP flow through|low (19Mbps to 57Mbps)
a 10Mbps bottleneck

T100H |an Iperf TCP flow through|high (112Mbps to
a 100Mbps bottleneck 204Mbps)

7.1. Ezxperiment Setup

In our experiments, we use the same wide-area net-
work experiment setup as in Section 5.2. The actual load
measured during our experiments varies from 19Mbps to
204Mbps.

We create bottleneck traffic from an outside source to a
destination inside the university. The source is nine hops
away from the destination. The link between the source and
the first hop is the bottleneck link and is over 90% utilized.
No other flow shares this link during the experiment. The
bottleneck flow traverses the Internet-2 link and is observed
by the capture machine together with the other background
traffic.

During our experiments there are three variables: the
transport protocol of the bottleneck traffic (TCP or UDP),
the bandwidth of the bottleneck link (10Mbps or 100Mbps),
and the amount of background traffic at the monitored link.
Among all possible permutations, we have investigated four
specific scenarios as shown in Table 2. These four scenar-
ios are selected because they capture key differences. For
example, UL0L differs from T10L in the transport protocol
of the bottleneck traffic; T10L differ from T10H in back-
ground traffic volume; and T10H differs from T100H in the
bandwidth of the bottleneck link.

For each of the four scenarios we gather a pair of packet
traces at the monitored link every two hours for 24 hours.
Each pair consists of a 5-minute long trace gathered when
there is no intentionally introduced bottleneck flow (Hy)
and another 5-minute long trace gathered when we inten-
tionally introduce a bottleneck Iperf flow (Hg). In all cases
we use a default segment length ¢ of 1 second and a de-
fault sampling rate p of 200kHz. Thus, each trace pair has
300 trace segments without a bottleneck flow and 300 trace
segments with the bottleneck flow.

There are many other variations to the above four sce-
narios we could try, to evaluate the performance of our de-
tection algorithm. For example, we could vary the traffic
through the bottleneck by using multiple flows with differ-
ent packet size distributions. We could also vary the portion
of bottleneck traffic seen at the observation point. Prelimi-
nary results show that varying the observed portion of bot-
tleneck traffic has a greater effect than varying the number
of flows through the bottleneck. We plan to explore these
scenarios in future work.

7.2. Detection Accuracy

We use detection accuracy to measure the performance
of our detection algorithm, defined as the probability that
the algorithm gives the correct answer about the existence
of bottleneck traffic in the trace. To calculate detection
accuracy, we adopt the following procedure.

First, we select a pair of traces with and without bottle-
neck flow as the training data set and train the algorithm
on it. Next, we use the training result to classify the trace
segments in the training data and other trace pairs under
the same scenario. We compare the answer by the algo-
rithm with the ground truth to obtain detection accuracy.
In our experiments, the detection accuracy is equal to the
average value of the true positive rate and the true neg-
ative rate, since we have equal number of trace segments
with and without the bottleneck flow.

We use two types of detection accuracies to better cap-
ture the performance of the algorithm on the training data
and on other traces under the same scenario. The first is the
accuracy on the training data, which we call training accu-
racy. It measures the ability of the algorithm to distinguish
trace segments in the training data, where the algorithm
knows the truth whether the segment has bottleneck traf-
fic or not. The second is the average accuracy on all other
trace pairs gathered under the same scenario as the train-
ing set, which we call average accuracy in short. The aver-
age accuracy represents the performance of the algorithm
on traces where it has no prior knowledge if the segment
has bottleneck traffic or not.

In this paper, we use training accuracy to tune the al-
gorithm parameters, such as selecting the proper detec-
tion window. We present the corresponding average accu-
racy to show the expected performance of the algorithm on
unknown traces (traces where the algorithm has no prior
knowledge if the segment has bottleneck traffic or not). As
observed in Section 7.3 and 7.4, there is a strong correla-
tion between these two types of accuracies in their response
to the changes in the algorithm parameters. This strong
correlation gives credence to our methods for parameter
tuning based on examining the training accuracy.

7.3. Frequency Window Location

The first question we consider is where the frequency win-
dow should be located to detect specific bottleneck traffic.
We expect the algorithm to perform best with the window
located around the base frequency calculated according to
the Equation 4. For example, it should be around 813Hz
for 10Mbps bottlenecks congested with 1500-byte packets.
For 100Mbps bottlenecks with 1500-byte packets it should
be around 8130Hz. To validate our hypothesis, we run the
detection algorithm with the center of the frequency win-
dow W, varying from near OHz to near 10kHz. Here, we fo-
cus on the results under two scenarios: T10L, which targets
detecting a 10Mbps bottleneck; and T100H, which targets

1)

o o o
2 e »
: T T

Detection Accuracy

)
N
T

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

‘ ‘ ‘
00 1000 2000 3000
(a) Training Accuracy with 7am trace pair as the training

data

1

I
@
T

o
>

o
b

Average Detection Accuracy

o
N

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

0 L L L
[1000 2000 3000

(b) Average Accuracy on other traces

Fig. 11. Accuracy in detecting the 10Mbps bottleneck (T10L) as a
function of window location, Wy = 20Hz

4

PSD

ok N ®w A O o
T
I

i 1 L
500 600 700
Frequency (Hz)

L L
300 400 800

(a) Spectrum

Probability
°
2
T

25 3 35 4 4.5 5 55 6
Inter-arrival times (ms)

0 L L L L L L L L L
1 15 2 25 3 35 4 4.5 5 55 6

Inter-arrival times (ms)

(b) PDF and CDF of packet interarrival times

Fig. 12. Spectrum and packet interarrival time distribution of the
isolated Iperf TCP flow (T10L)

detecting a 100Mbps bottleneck.

Figure 11 shows the impact of window location on de-
tecting a 10Mbps bottleneck under the T10L scenario. The
top subgraph 11(a) shows the training accuracy using the
Tam trace pair as the training data, while the bottom sub-
graph 11(b) depicts the corresponding average accuracy on
other trace pairs. In both subgraphs, we use a fixed win-
dow size of 20Hz and vary the window center from 10Hz to
9990Hz. We can see that the center of the frequency window
has a strong effect on both types of detection accuracies.
Both types of accuracies reach peak values with windows
around 790Hz (close to the predicted 813Hz frequency) and
its harmonics. For example, training accuracy can reach as

-

o
@
T

o
>

Detection Probability
°
2
-
.

)
N
T
L

L L L L L L
4000 5000 6000 7000 8000 9000

Frequency (Hz)

o A ‘ ‘
[1000 2000 3000
(a) Training Accuracy with 7am trace pair as the training

data

1

o
@
L

o
>
L

Detection Probability
°
g

: - { T T
.

o
N
L

L L L L L L
4000 5000 6000 7000 8000 9000

Frequency (Hz)

0 L L L
[1000 2000 3000

(b) Average Accuracy on other traces

Fig. 13. Accuracy in detecting the 100Mbps bottleneck (T100H) as
a function of window location, W5 = 200Hz

high as 93% when the window is around 790Hz, but it drops
to 50% when the window is around 100Hz.

Furthermore, there is a strong correlation of the two
types of accuracies in terms of their response to the changes
in window location. As the window location changes, the
average accuracy on other trace pairs will increase as train-
ing accuracy increases, and decrease as the latter decreases.
However, in general the former is lower than the latter. For
example, average accuracy is only 71% while training accu-
racy reaches 93% with the window around 790Hz. This in-
dicates some mismatch between the statistics of the train-
ing trace pair and other trace pairs.

We have similar observations when we train the algo-
rithm with different trace pairs under the T10L scenario.
The correlation between these two types of accuracies
demonstrates that a window with a high training accuracy
will generally lead to a high accuracy on other trace pairs.

To find out why the detection accuracies peak near 790Hz
instead of 813Hz as we have expected, we isolate the Iperf
bottleneck flow from the aggregate and plot its spectrum
in Figure 12(a) for one trace segment. We can see that the
spectrum suggests the existence of significant cross traffic
which triggers the TCP congestion control for the bottle-
neck flow resulting in less periodic packet transmissions. In
the spectrum the peak amplitude appears around 790Hz,
a frequency lower than 813Hz for the case without cross
traffic in Figure 4. In addition, the peak amplitude is only
55,000, much weaker than the peak amplitude of 510,000
for the case without cross traffic. The weaker amplitude
makes it hard to detect the bottleneck flow. The CDF and
PDF of packet interarrival times for the isolated Iperf flow
in Figure 12(b) show a spike bump pattern, also suggesting
that the bottleneck experiences significant cross traffic in a
downstream link according to the findings in (Katabi and
Blake, 2001).

D)

Detection Accuracy

—— Detection Accuracy on the 7am training set
0.2 —— Average Detection Accuracy on other traces

0 I I I I I I I I I |
0 10 20 30 70 80 90 100

40 50 60
Window Size (Hz)

Fig. 14. Detecting the 10Mbps bottleneck (T10L) with varying win-
dow sizes, W, = 790Hz

1 s

P

o o
o ®

Detection Accuracy
I
~

—o— Detection Accuracy on the 7am training set
—— Average Detection Accuracy on other traces

o
N

0 i i i i i i i i i
[100 200 300 400 500 600 700 800 900 1000
Window Size (Hz)

Fig. 15. Detecting the 100Mbps bottleneck (T100H) with varying
window sizes, W, = 8100Hz

[Idetection accuracy on other trace pairs
[l best detection accuracy on the training set

Detection Accuracy

f i i
1 2

Segment Length (seconds)

Fig. 16. Detection accuracy as a function of segment length

Figure 13 reveals the impact of frequency window loca-
tion on the accuracies of detecting a 100Mbps bottleneck
under the T100H scenario. We fix the window size to 200Hz
here, as the predicted base frequency for a 100Mbps bottle-
neck link is ten times of the value for a 10Mbps bottleneck
link. Again we see a strong correlation of the two types of
accuracies in terms of their response to the changes in win-
dow location. Both types of accuracies peak around 8100Hz,
close the predicted 8130Hz base frequency. For example,
when the window is around 8100Hz, training accuracy with
the 7am training trace pair can reach 100%, while the cor-
responding average accuracy on other trace pairs reaches
97%. These values are significantly higher than the accura-
cies for detecting the 10Mbps bottleneck in Figure 11, be-
cause we have much higher signal-to-noise ratios. We will
discuss the impact of signal-to-noise ratio in more detail in
Section 7.9. Both experiments agree with our expectation
of the location of the frequency window for the best detec-
tion accuracy.

7.4. Frequency Window Size

In the previous section, we considered the impact of win-
dow location with fixed window sizes. In this section, we
consider the impact of window size while fixing the win-
dow location. Our intuition behind the choice of window

size is that the window should be neither too narrow nor
too wide, since narrow windows might fail to capture the
strong signal for the bottleneck that is shifted to another
location due to noise, and wide windows might result in in-
creasing false positives due to noise from unrelated events.
Another reason against choosing a large window is due to
the increase in the processing overhead as a larger window
means more frequencies to be examined.

To systematically study the impact of window size, we
run the Top-Frequency algorithm using the trace pair gath-
ered at 7am in scenario T10L as the training set while vary-
ing the window size from 1Hz to 100Hz with fixed window
center location W, at 790Hz. Figure 14 shows the detection
results. The upper line is the training accuracy on the 7am
training set while the bottom line is the corresponding av-
erage accuracy on other trace pairs under Scenario T10L.
We see that the two types of accuracies react in a similar
way to the changes in window size. For both types of accu-
racies, we observe that window sizes between 20Hz to 30Hz
(about 2.5% to 4% of the predicted 813Hz base frequency)
give the best result. In addition, smaller sizes show much
lower accuracies because with smaller windows, it becomes
possible to miss a signal that is shifted outside the window
due to noise. On the other hand, larger sizes also result
in lower accuracies but the penalty is not as dramatic as
smaller sizes.

We have also conducted a similar investigation for de-
tecting the 100Mbps bottleneck in the T100H scenario with
windows centered at 8100Hz. Figure 15 shows the detection
results using the trace pair gathered at 7am as training set
while varying the window size from 1Hz to 1000Hz. Again
we observe a strong correlation of the two types of accu-
racies in terms of their response to the changes in window
size. Both types of accuracies reach their peak values with
the window size in the range of 100Hz to 200Hz (about 1.2%
to 2.5% of the predicted 8133Hz base frequency). In addi-
tion, smaller sizes show much lower accuracies than larger
window sizes.

7.5. Sampling Rate and Segment Length

Segment length and sampling frequency are also impor-
tant parameters of the algorithm. A sampling frequency
that is too low will result into aliasing; one that is too high
increases processing overhead. In future work, we will in-
vestigate the optimum balance between the two. For this
work we choose a conservative frequency of 200kHz. As-
suming 1500-byte packet size, 200kHz sampling frequency
is sufficiently high to capture the signatures of bottleneck
links with bandwidth up to 100Mbps.

We desire a relatively short segment length to allow rapid
detection of bottleneck traffic. However, as discussed in Sec-
tion 4.1, segment length cannot be too short or we cannot
compute an accurate spectrum. In addition, the algorithm
may become too sensitive to transient flows.

To study the impact of segment length, we vary it from

4

A

1 second to 5 seconds. Again we use the trace pair gath-
ered at 7am in scenario T10L as the training set. Here, we
use a fixed window size of 20Hz and a fixed window loca-
tion at 7T90Hz since results in Section 7.3 and 7.4 show
they are good choices for detecting the 10Mbps bottleneck
in the T10L scenario. Figure 16 shows that training accu-
racy and average accuracy with different segment length.
We only see small changes for both types of detection accu-
racies when we vary the segment length from 1 second to 5
seconds. In future work we will explore other trace lengths.
One practical constraint for using longer trace segment is
that we need longer traces so that we have enough number
of segments to form a distribution and estimate its param-
eters.

7.6. Transport Protocol

From the controlled experiments in Section 5.1, we see
that UDP flows are more regular and provide stronger sig-
nals than TCP flows. Here we evaluate how that translates
into the detection accuracy.

Figure 17 compares the accuracy for detecting a 10Mbps
link saturated by a TCP flow (scenario T10L) and the ac-
curacy for detecting the same 10Mbps link saturated by a
UDP flow (scenario U10L). Again we vary the window cen-
ter from 10Hz to 9990Hz with fixed window size of 20Hz.
The two top subgraphs 17(a) and 17(b) compare training
accuracy on the 7am training trace between TCP and UDP.
We can see that the spikes for TCP are around 790Hz and
its harmonics, and the spikes for UDP are around 810Hz
and its harmonics. The 810Hz base frequency for UDP is
closer to the predicted 813Hz base frequency for 10Mbps
bottleneck links than the 790Hz base frequency for TCP.
In addition, UDP has higher detection accuracies (up to
98%) around its base frequency than TCP (up to 93%).
UDP also maintains high detection accuracies around the
harmonics, while TCP has a decay of detection accuracies
among harmonics as they move further away from the base
frequency.

The two bottom subgraphs 17(c) and 17(d) compare the
corresponding average accuracy on other traces between
TCP and UDP. Again we see that UDP has spikes around
810Hz and its multiples, while TCP has spikes around
790Hz and its multiples. In addition, UDP has higher aver-
age accuracies (up to 75%) around its base frequency than
TCP (up to 71%). UDP also maintains high detection ac-
curacies around the harmonics while TCP has a decay of
detection accuracies among harmonics.

The differences for the detection accuracies between TCP
and UDP are due to the fact that TCP adjusts packet trans-
missions by considering feedback from the network while
UDP does not in our experiments. This results in less pe-
riodic packet transmissions for the TCP flow, which trans-
lates in lower detection accuracies and a decay of detection
accuracies among harmonics.

To affirm that UDP has more regular packet transmis-

,_.

o o o
2 5 8

Detection Accuracy

o
N

o o o
5 > » e

Detection Accuracy

o
N

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

0 L L L
0 1000 2000 3000

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

0 L L L
0 1000 2000 3000

(a) Training Accuracy on 7am training set with the bot- (b) Training Accuracy on 7am training set with the bot-
tleneck saturated by UDP, Wy = 20Hz

tleneck saturated by TCP, W, = 20Hz

1

o o o
kS > ®

Average Detection Accuracy

o
N

1

Q o od
= @ ®

Average Detection Accuracy

Q
N

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

0 L L L
0 1000 2000 3000

L L L L L L
4000 5000 6000 7000 8000 9000

Window Location (Hz)

0 L L L
0 1000 2000 3000

(c) Average Accuracy on other trace pairs with the bot- (d) Average Accuracy on other trace pairs with the bot-
tleneck saturated by UDP, Wy = 20Hz

tleneck saturated by TCP, W5 = 20Hz

Fig. 17. Detecting the 10Mbps bottleneck saturated with different transport protocols

x 10

I I | .
500 600 700 900
Frequency (Hz)

L L L L
100 200 300 400 800 1000

(a) Spectrum

0.08 T T T T

"

1 15
Inter-arrival times (ms)

1 T T

|
15
Inter-arrival times (ms)

(b) PDF and CDF of packet interarrival times

0.5

Fig. 18. Spectrum and packet interarrival time distribution of the
isolated Iperf UDP flow (U10L)

sions than TCP, we isolate the UDP bottleneck flow from
the aggregate and plot its spectrum in Figure 18(a) and the
distribution of its packet interarrival times in Figure 18(b).
We can see that the UDP flow exhibits much less impact
from cross traffic compared with the Iperf TCP flow as
shown in Figure 12(a) and 12(b). For example, the peak
amplitude for the UDP flow is 170,000, more than 2 times
stronger than the TCP flow, and it appears around 810Hz
instead of the 790Hz for the TCP flow. The PDF and CDF
of packet interarrival times for UDP show a single spike at
1.23ms, while for TCP the interarrival times has a spike
bump pattern. These figures demonstrate that the UDP
flow has more periodic packet transmissions than the TCP

1M

1 T T T T
——— Difference in the accuracy on the training set
— 8 — Difference in the average accuracy on other traces

_o- -O
_

Accuracy Difference

10 15
Gathering Time of the Training Set

20

Fig. 19. Differences between using the fixed [780Hz, 800Hz] window
and the best training windows in T10L scenario

flow, which makes it easier to detect UDP flows than to
detect TCP flows.

7.7. Guidelines for Selection of Frequency Windows

Based on our investigation on the window location, win-
dow size, and transport protocol, we opt to use the follow-
ing fixed detection windows for the four scenarios rather
than using the window that yields the best training accu-
racy by exhaustively searching all possible window loca-
tions and sizes. We call the latter the best training window.
For scenario T10H and T10L we use the 20Hz wide win-
dow centered at 790Hz. For scenario U10L we select the
same size 20Hz wide window but centered at 810Hz. For
scenario T100H we choose the 200Hz wide window centered
at 8100Hz.

Results show that the detection accuracies with these
fixed windows are comparable to the detection accuracies
achieved by the best training window, and in some cases
the fixed windows can even yield better average accuracy
on other traces than the best training window, because the
latter only guarantees the best accuracy on the training
set, but not the best average accuracy on other traces.

For example, Figure 19 shows the differences between
using the fixed [780Hz, 800Hz] window and using the best
training window in the T10L scenario. The x axis repre-
sents the time of the day when the training trace pair was
gathered. For each training trace pair, we find the best
training window that yields the best training accuracy by
exhaustively searching all possible window locations and
sizes. Then we calculate training accuracy and average ac-
curacy on other traces using this window. In comparison, we
also calculate the corresponding detection accuracies using
the fixed [780Hz, 800Hz] window. The differences plotted
in Figure 19 are obtained by deducting the accuracies for
the best training windows from the accuracies for the fixed
window. We can see that for most training traces, the differ-
ences between using the fixed window and the best training
windows are small. The largest difference happens with the
training trace pair gathered at 11pm. With the best train-
ing window, training accuracy is 8.7% higher than the value
using the fixed window, but the average accuracy on other
traces is 18% lower than the value using the fixed window.

In general, we should follow the following principles in se-
lecting the detection window. First, we should use a detec-
tion window whose center is located near the predicted base
frequency for the bottleneck link (e.g. 813Hz for 10Mbps
links and 8133Hz for 100Mbps links). Second, the detection
window size should be around 1% to 5% of the predicted
base frequency. Third, the exact location and size of the
detection window to be used in real operation should be ad-
justed slightly according to the specific network. Network
operators should do some training to select the proper de-
tection window.

7.8. Training Data Variation

The accuracy of any training-based detection algorithm
is influenced by the quality of the training data. In this sec-
tion we investigate the impact of using different training
data on the two types of detection accuracies, training ac-
curacy and average accuracy on other trace pairs. We select
the T10L scenario for illustration.

Figure 20 shows the impact of using different training
data on the two types of detection accuracies. The top sub-
graph shows training accuracy as we vary the trace pair us-
ing for training algorithm. The x axis is the average aggre-
gate traffic volume of the training trace pair. The number
beside each point in the graph indicates the time of the day
when the training trace pair was gathered. For example, the
point denoted by “9” shows the training accuracy on the
9am training trace pair. In the bottom subgraph, each point
represents the average accuracy on all other trace pairs us-
ing the cut-off threshold learned from the corresponding
training trace pair. For example, the point denoted by “9”
reflects the average accuracy on all other trace pairs using
the cut-off threshold learned from the training trace pair
gathered at 9am. The x axis for the bottom subgraph is also
the average aggregate traffic volume of the training trace

1~

o . *15

508 [P, Y4 1
5 *23%21

8 06 23 1
<

§

£ 04l i
L

@

Qg2 i

o

2 4 6 8 10 12 14 16 18 20
Traffic Volume (kilo—packets per second)

o

(a) Training Accuracy with 7am training set under T10L

1

4
©
I

*FPL
* #1371
*15

o o
» (=2}
;

. .

Average Detection Accuracy
o
N
.

o

2 4 6 8 10 12 14 16 18 20
Traffic Volume (kilo—packets per second)

o

(b) Average Accuracy on other traces under T10L
Fig. 20. Impact of training data on detection accuracies.

1 T

&

*9
*1 b

21 "4 4
A

Detection Accuracy
I o o
~ o [o<]

T
.

o
)
I

.
2 4 6 8 10 12 14 16 18 20
Traffic Volume (kilo—packets per second)

o

(=}

(a) training with low traffic volume trace (7am)

1

o
©

*1 g
ST
*19
*23%21 7

o
o

Detection Accuracy
I
IS
T
.

o
N
I

.
0 2 4 6 8 10 12 14 16 18 20
Traffic Volume (kilo—packets per second)

o

(b) training with medium traffic volume trace (11lam)

1

*15 B

o
©

>

g *1 A

3

3 *#¥ g 1
g 08 #5 w23

<

o

g 0.4 4
i)

j)

0 02 |

0
0 2 4 6 8 10 12 14 16 18 20
Traffic Volume (kilo—packets per second)

(c) training with high traffic volume trace (3pm)

Fig. 21. Training with different traffic volume traces

pair.

We see that, in general, training on trace pairs with lower
aggregate traffic volume yields higher accuracies on the
training set itself, with the exception of the points denoted
by “197, “21” and “23” (flow-based analysis suggests that

PR Oh ¥
* %y o+ O%

0.8 R * 9
> *t o ¥
5061 4
§°° 2%
<
8
T 04r b
g
8 O 10Mbps bottleneck with TCP and high background traffic

021 + 10Mbps bottleneck with TCP and low background traffic <

* 10Mbps bottleneck with UDP and low background traffic
& 100Mbps bottleneck with TCP and high background traffic
o . h | h
0 0.05 0.1 0.15 0.2 0.25
Signal to Noise Ratio
(a) Training Accuracy
o T 5 Q00 S0 o ®
oM
08| o % 4
A *
+ U
06 * ,
[al==)

0.4 b

10Mbps bottleneck with TCP and high background traffic
10Mbps bottleneck with TCP and low background traffic
10Mbps bottleneck with UDP and low background traffic
100Mbps bottleneck with TCP and high background trafic

h
0.1 0.15
Signal to Noise Ratio

Average Detection Accuracy

o%*+ 0

L
0 0.05 0.2 0.25

(b) Average Accuracy on other traces

Fig. 22. Detection accuracy as a function of signal-to-noise ratio
using fixed frequency windows specified in Section 7.7

three points have been tainted with presence of other bot-
tleneck traffic when we believe there is no bottleneck traf-
fic). An intuition behind the general trend is that lower
aggregate traffic means less interference to the bottleneck
traffic by the background traffic on the monitored link, and
this translates into clearer signal for the bottleneck traffic
making it easier to detect the presence of the bottleneck
flow. On the other hand, the average accuracy on other
trace pairs has high values when we train on trace pairs
with medium aggregate traffic volume. This agrees with the
intuition that it is better to train with the common cases
(middle traffic volume) instead of extreme cases (either low
or high traffic volume).

As the average accuracy reported in Figure 20(b) may
hide the variation among the accuracy on individual trace
pairs used for evaluation, we dissect it into individual
graphs, each representing the result with one training set.
Figure 21 shows the detection accuracy when training with
three different trace pairs corresponding to low, medium,
and high aggregate traffic volume at different periods of
the day. In each graph, a point represents the accuracy on
the indicated trace pair using the cut-off threshold learned
through the training trace pair.

We see a strong correlation between the accuracy on a
trace pair and its distance to the training trace pair in terms
of traffic volume. For example, in Figure 21(a), trace pairs
at 3am and 5am have very close traffic volume to the train-
ing trace pair gathered at 7am. Both have accuracies very
close to the accuracy on the training set at 7am. As the dis-
tance to the training set increases in terms of packet rate,
the detection accuracy on the corresponding trace pair de-
creases. This observation suggests that we could take ad-
vantage of the similarity in terms of traffic volume between
the trace pair used for training and the unknown trace to
get high accuracies on the unknown trace. We could use
the cut-off threshold learned through a training set that

q ™~

has similar traffic volume to the unknown trace for detect-
ing bottleneck traffic in the unknown trace. Further explo-
ration along this direction is part of our future work.

7.9. Effect of Signal-to-noise Ratio

Detection theory tells us that the detection accuracy is
related to the signal-to-noise ratio (SNR). When detecting
bottleneck traffic in aggregate network traffic, the signal is
the intensity of the bottleneck traffic, and the noise is the
level of background traffic. Since the spectral representa-
tion is obtained through the processing of packet arrivals,
we define signal-to-noise ratio as the ratio of bottleneck
traffic packet rate to background traffic packet rate. Al-
though it is hard to quantify how SNR affects the detection
accuracy as their relationship is non-linear, in general, we
expect to see better detection accuracy with higher SNR.

Figure 22 shows how the detection accuracy varies as a
function of signal-to-noise ratio using fixed frequency win-
dows specified in Section 7.7. The top subgraph shows the
detection accuracy on the training trace pair, while the bot-
tom subgraph shows the detection accuracy on all other
trace pairs using the cut-off learned from the corresponding
training trace pair. The x axis is the signal-to-noise ratio
for the training trace pair. Both subgraphs include all trace
pairs under the four experiment scenarios listed in Table 2
(different scenarios are indicated with different symbols).

As expected, we see a general trend that a higher SNR
leads to a better detection accuracy. The T100H scenario
for 100Mbps TCP bottleneck traffic with high background
traffic shows the highest detection accuracies because the
bottleneck traffic (around 7.5kpps)is quite large relative to
background traffic (32 - 74 kpps) for SNRs of (0.1 - 0.23).
Both training accuracy and average accuracy on other
traces can reach over 94% in the T100H scenario. The
U10L scenario for 10Mbps UDP bottleneck traffic with
low background traffic (denoted by “*”) also has pretty
good detection accuracies even though the SNRs are lower
(0.053 - 0.125). Training detection accuracy ranges from
75% to 99%, while the average accuracy on other traces
ranges from 76% to 86%. The T10L scenario for 10Mbps
TCP bottleneck traffic with low background traffic shows
generally lower detection accuracies (around 63% to 94%)
than the U10L scenario with similar SNRs for the reason
that we have discussed in Section 7.6. Finally, the T10H
scenario for 10Mbps TCP bottleneck traffic with high back-
ground traffic gets the lowest detection accuracies (around
53% to 61%) as the SNRs are the lowest (0.01 - 0.02).

8. Related Work

Recently, a number of researchers have used spectral
techniques to analyze network traffic for various pur-
poses. Hussain et al. apply spectral techniques to packet
arrival time series to distinguish single-source and multi-
source DDoS attacks (Hussain et al., 2003). More recently,

they have proposed a spectral approach for attack re-
identification (Hussain et al., 2006), after detecting and
isolating attack packets from background traffic. Barford
et al. use wavelets to analyze IP flow-level and SNMP
information to detect DoS attacks and other network
anomalies (Barford et al., 2002). Cheng et al. also apply
spectral analysis to separate normal TCP traffic from
DDoS traffic as the former exhibits strong periodicities
around its round-trip time (Cheng et al., 2002). Magnaghi
et al. propose a wavelet-based framework to proactively
detect network misconfigurations. It utilizes the TCP re-
transmission timeout events during the opening phase of
the TCP connection (Magnaghi et al., 2004). Partridge et
al. apply Lomb periodograms to retrieve periodicities in
wireless communication, including CBR traffic and FTP
traffic (Partridge et al., 2002). Kim et al. apply wavelet
denoising to improve the accuracy of detecting congestion
among different flows (Kim et al., 2004). It requires active
probing to measure the one-way-delay.

There are also a number of non-spectral techniques for
detecting congestion sharing and estimating link capac-
ity and available bandwidth. Katabi et al. propose to use
packet inter-arrival times to infer the path characteris-
tics such as bottleneck capacity and bottleneck sharing
among flows based on entropy (Katabi and Blake, 2001).
Hu et al. (Hu et al., 2004) presented a tool to detect the
location of a bottleneck in a path using active probing.
This tool, however, would be too costly for routine bot-
tleneck monitoring. Examples of non-spectral techniques
for estimating link capacity and available bandwidth in-
clude Pathchar (Jacobson, 1997), Pchar (Mah, 1999), Cap-
Probe (Kapoor et al., 2004), Cprobe (Carter and Crovella,
1996), Pathload (Jain and Dovrolis, 2002, 2003), IGI and
PTR (Hu and Steenkiste, 2003), and Spruce (Strauss et al.,
2003).

Unlike the above techniques, our approach is passive (i.e.,
does not require probing packets), operates on aggregate
traffic (so that individual traffic flows do not have to be sep-
arated), transforms traffic into a suitable spectral domain
representation (which is powerful to reveal periodic pat-
terns), and makes use of more rigorous statistical methods
rather than relying on qualitative visual evidence.

9. Conclusions and Future Work

Given the size and complexity of the Internet today, tools
that can help understand and diagnose problems with the
network are very important. Spectral techniques have great
potential in creating powerful tools to extract hidden pat-
terns in the network to understand phenomena ranging
from network anomalies to application and protocol behav-
ior, and detection theory provides the background to trans-
late these “pretty pictures” into quantitative algorithms.

In this work, we presented a methodology to apply these
techniques to the detection of bottleneck traffic. Appli-
cations include troubleshooting, capacity planning, traffic

10

estimation, DDoS detection, application monitoring, etc.
While we cannot pinpoint the exact location of the bottle-
neck, our techniques can be used to determine if the bottle-
neck is inside or outside the network. In addition to visually
demonstrating the spectral signature imposed by bottle-
neck links, we proposed an algorithm based on the Maxi-
mum Likelihood Detection to automatically detect the bot-
tleneck signature embedded in aggregate traffic, and eval-
uated its performance using real-world Internet traces.

Our results show that we can detect the presence of a bot-
tleneck link several hops away from the monitoring point
without flow separation, even if the traffic through the bot-
tleneck link accounts for less than 10% of the aggregate
traffic observed at the monitoring point. Our techniques
are completely passive, suitable for routine network mon-
itoring, and can detect bottlenecks remotely without the
need for direct observation, which is useful when bottle-
necks are outside our administrative domain. Our analysis
investigated the effects of several factors on detection per-
formance, including the effect of Signal-to-Noise ratio, the
selection of the detection window, and the variation using
different training data.

In the future we plan to strengthen our methodology as
follows. First, we want to model the underlying processes
that govern the generation of bottleneck traffic signature
and how it is shaped by competing traffic, and use the model
to design more sophisticated detection algorithms that take
traffic load and other time-varying factors into considera-
tion. For example, we can adjust the cut-off threshold ac-
cording to the traffic volume to improve the detection accu-
racy since higher traffic volume will generally increase the
peak amplitude in a window. Future work includes deter-
mining the relationship between traffic load and the cut-
off threshold and use this relationship to improve detection
accuracy.

Second, we want to apply the detection methods in more
diversified environments, including different monitoring
points, different bottleneck locations, different types of
traffic composition (e.g., different packet size distribution
and single flow versus multiple flows), and different types
of cross traffic, to gain a more thorough understanding of
performance.

Finally, we would like to extend our techniques into a
framework that can be applied to study other periodic traf-
fic patterns, such as protocol behavior and network anoma-
lies. This will expand the applicability of our methodology
and help gain insight into other network phenomena.

10. Acknowledgments

This paper has benefited greatly from the valuable feed-
back from Dr. Antonio Ortega and Dr. Alefiya Hussain.

References

Barford, P., Crovella, M., June 1998. Generating Repre-
sentative Web Workloads for Network and Server Per-
formance Evaluation. In: Proceedings of the ACM SIG-
METRICS’98. Madison, Wisconsin, USA.

Barford, P., Kline, J., Plonka, D., Ron, A., November 2002.
A Signal Analysis of Network Traffic Anomalies. In: Pro-
ceedings of the ACM SIGCOMM Internet Measurement
Workshop. Marseilles, France.

Box, G., Jenkins, G., Reinsel, G., 1994. Time series analysis:
forecasting and control. Prentice-Hall.

Bracewell, R., 1986. The Fourier Transform and Its Appli-
cations. McGraw-Hill.

Carter, R., Crovella, M., 1996. Measuring bottleneck link
speed in packet-switched networks. Tech. Rep. 1996-006.

Case, J., Fedor, M., Schoffstall, M., Davin, J., May 1990.
A Simple Network Management Protocol (SNMP). Re-
quest For Comments (RFC) 1157.

Cheng, C.-M., Kung, H., Tan, K.-S., Nov. 2002. Use of spec-
tral analysis in defense against DoS attacks. In: Proceed-
ings of the IEEE GLOBECOM. Taipei, China, pp. 2143
— 2148.

Claffy, K., Miller, G., Thompson, K., July 1998. The na-
ture of the beast: Recent traffic measurements from an
internet backbone. In: Proceedings of International Net-
working Conference (INET)’98. Geneva, Switzerland.

Endace, 2005. Endace DAG network capture cards,
http://www.endace.com/.

He, X., 2006. Detecting periodic patterns in Internet traf-
fic with spectral and statistical methods. Ph.D. thesis,
University of of Southern California.

He, X., Papadopoulos, C., Heidemann, J., Mitra, U., Riaz,
U., Hussain, A., June 2005. Spectral analysis of bottle-
neck traffic. Tech. Rep. USC/CS-TR-2005-853, Univer-
sity of Southern California Computer Science Depart-
ment.

Hu, N., Li, L. E., Mao, Z. M., Steenkiste, P., Wang, J.,
August 2004. Locating Internet Bottlenecks: Algorithms,
Measurements and Implications. In: Proceedings of the
ACM SIGCOMM 2004. Oregon, USA, pp. 41-54.

Hu, N., Steenkiste, P., Aug. 2003. Evaluation and char-
acterization of available bandwidth probing techniques.
IEEE JSAC Special Issue in Internet and WWW Mea-
surement, Mapping, and Modeling 21 (6), 879 — 894.

Hussain, A., Heidemann, J., Papadopoulos, C., August
2003. A Framework for Classifying Denial of Service At-
tacks. In: Proceedings of the ACM SIGCOMM’2003.
Karlsruhe, Germany, pp. 99-110.

Hussain, A., Heidemann, J., Papadopoulos, C., April 2006.
Identification of Repeated Denial of Service Attacks.
In: Proceedings of the IEEE Infocom 2006. Barcelona,
Spain.

IEEE, March 2002. IEEE 802.3-2002 standard.

Jacobson, V., April 1997. Pathchar: A Tool to Infer Char-
acteristics of Internet Paths.

10

Jain, M., Dovrolis, C., March 2002. Pathload: A measure-
ment tool for end-to-end available bandwidth. In: Pro-
ceedings of Passive and Active Measurements (PAM)
Workshop 2002. Fort Collins, CO, USA.

Jain, M., Dovrolis, C., August 2003. End-to-end available
bandwidth: measurement methodology, dynamics, and
relation with tcp throughput. ACM/IEEE Transactions
on Networking 11 (4), 537 — 549.

Kapoor, R., Chen, L.-J., Lao, L., Gerla, M., Sanadidi,
M. Y., August 2004. CapProbe: A Simple and Accurate
Capacity Estimation Technique. In: Proceedings of the
ACM SIGCOMM’2004. Oregon, USA, pp. 67 — 78.

Katabi, D., Blake, C., 2001. Inferring congestion sharing
and path characteristics from packet interarrival times.
Tech. Rep. MIT-LCS-TR-828, Massachusetts Institute
of Technology, Laboratory for Computer Science.

Kim, M. S., Kim, T., Shin, Y., Lam, S. S., Powers, E. J., Au-
gust 2004. A Wavelet-Based Approach to Detect Shared
Congestion. In: Proceedings of the ACM SIGCOMM
2004. Portland, Oregon, USA, pp. 293 — 306.

Kuzmanovié, A., Knightly, E. W., Aug. 2003. Low-rate tcp-
targeted denial of service attacks (the shrew vs. the mice
and elephants). In: Proceedings of the ACM SIGCOMM
Conference. Karlsruhe, Germany.

Lakhina, A., Crovella, M., Diot, C., 2005. Mining anoma-
lies using traffic feature distributions. In: In Proceedings
of ACM SIGCOMM’2005. Philadelphia, Pennsylvania,
USA, pp. 217-228.

Lilliefors, H., 1967. On the Kolmogorov-Smirnov test for
normality with mean and variance unknown. Journal of
the American Statistical Association 62, 399-402.

Magnaghi, A., Hamada, T., Katsuyama, T., August 2004.
A Wavelet-Based Framework for Proactive Detection
of Network Misconfigurations. In: Proceedings of ACM
workshop on Network Troubleshooting: Research, The-
ory and Operations Practice Meet Malfunctioning Real-
ity. Portland, Oregon, USA, pp. 253 — 258.

Mah, B. A., Feb 1999. Pchar: A tool for measuring internet
path characteristics.

Partridge, C., Cousins, D., Jackson, A., Krishnan, R., Sax-
ena, T., Strayer, W. T., Sep. 2002. Using Signal Process-
ing to Analyze Wireless data Traffic. In: Proceedings of
ACM workshop on Wireless Security. Atlanta, GA, pp.
67-76.

Sinha, R., Papadopoulos, C., Heidemann, J., 2006. Fin-
gerprinting internet paths using packet pair dispersion.
Tech. Rep. USC/CS-TR~2006-876, University of South-
ern California Computer Science Department.

Strauss, J., Katabi, D., Kaashoek, F., 2003. A measure-
ment study of available bandwidth estimation tools. In:
Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement. ACM Press, Miami Beach, FL,
USA, pp. 39-44.

Thompson, K., Miller, G. J., Wilder, R., Nov/Dec 1997.
Wide-area internet traffic patterns and characteristics
(extended version). IEEE Network Magazine 11 (6),
10-23.

URLhttp://www.vbns.net/presentations/papers/MCItraffic.pdf
Tirumala, A., Qin, F., Dugan, J., Fer-
guson, J., Gibbs, K., 2003. Iperf.
http://dast.nlanr.net/Projects/Iperf/.
Trees, H. L. V., 1968. Detection, Estimation and Modula-
tion Theory. John Wiley & Sons Inc.
Zhang, Y., Roughan, M., Lund, C., Donoho, D., August
2003. An information-theoretic approach to traffic ma-
trix estimation.

N

