Broadening DNS Research: beyond just DNS anonymization
(work in progress)

John Heidemann
joint work with Liang Zhu
USC/ISI and USC/CS Dept.
22 October 2012
Copyright © 2012 by John Heidemann
Release terms: CC-BY-NC 3.0 unported

Our Goal

• broaden field of DNS researchers
• with sharable DNS data
 – combine technical and legal methods
 – address privacy questions
 – support IRB (Institutional Review Board)
 oversight ⇒ clean for academic use
• ultimately, accelerate DNS evolution

Challenge: Privacy Concerns

• what if data shows
 (important figure) is browsing (embarrassing site)
 – Sergey Brin … Google for dummies
 – Larry Ellison … 99only.com
 – Felix Baumgartner … Jolt Cola
 – (your example goes here)
• general privacy concerns
 – given enough data and effort, often something pops out
 – ex: 2006 AOL search data and searcher #4417749
• DNS-specific concerns
 – database-like use of DNS, ex: RBHL

Context: Growing Interest in Careful Sharing

• data sharing efforts
 – CRAWDAD.cs.dartmouth.edu: wireless datasets, NSF-supported
 – www.PREDICT.org: Protected Repository for the Defense
 of Infrastructure Against Cyber Threats, DHS-supported
 – SIR.isc.org: Security Information Exchange
• scrutiny of and guidelines for sharing
 – interest in sharing guidelines and more open data in academia
 (ACM Internet Measurement Conference)
 – role of IRB oversight in network research
 – The Media Report, Ethical Principles Guiding Information
 and Communication Technology Research (Dittrich and Kennedy, eds.)
• can we bring these together?

Our Approach: Combined Technical and Policy

• technical
 – aggregation
 – anonymization
 – separation
• policy
 – legal agreements
 – researcher-to-data
 – best practices

how can students do research on DNS?

instrument a small, local server?
 data not necessarily representative

intern at (large company or operator)?
 challenging to continue work when summer’s over;
 difficult for others to build on results

talk to the right folks?
 perhaps in 1990s, but much tougher today
Aggregation for Anonymity

- built-in aggregation via recursive resolvers
 - replace end-user IP addresses
 - aggregate data from many users
- part of anonymization
- effects depend on observer’s place in hierarchy
- open questions
 - can we estimate degree of aggregation?
 - can we identify (and filter when necessary) streams with insufficient aggregation?
 - what is the hierarchy, in practice?

Anonymization

- lots of collection tools
tcpdump, dnssnap, nmng, LANNER, etc.
- fewer anonymization
tcpdump (ISCI), U. Md. extensions for DNS
- our approach
 - building on ISCI/U. Md. approach
 - anonymize each DNS label (+salt) via hash
 - prefix-preserving anonymization of IPs (cryptopun)
 - hash ID field
 - hashes don’t fit in pcap => output to simple text format
 - applies to queries and replies (examine each reply)

Attacks on Anonymity

- statistical attacks
 - stream with mix of frequent and infrequent labels
 - adversary can identify frequent labels
 - .com
 - very powerful attack, *but* probably doesn’t show much that is a surprise

- injection attacks
 - assume an adversary
 - can inject arbitrary queries
 - can observe anonymized results
 - very powerful attack if part of injection is not anonymized
 - unusual query, special time, etc.
 - effectively creates a side-channel

Controlling Access

- control access to traces to manage side-channel attacks
- legal agreement to access data
 - cannot attempt to de-anonymize
 - cannot redistribute data
- researcher-to-data
 - have researcher do analysis on provider’s computers
 - provider has better control over local security and can audit analysis

Separating Access

- risk comes from saying “A asked for B”
- much less sensitive
 - “A asked for something”
 - “someone asked for B”
 - “reply for B is C”
- idea: separate streams
 - separate request and reply streams
 - remove linkage information (timing and IDs)
 - prohibit external linkage
 - separate streams answer some research questions
 - (work-in-progress)

Benefits

- enable new research
 - broader set of groups
 - new questions
- supported by publically available datasets
- perhaps sharing between commercial groups?
- open question: what questions can be done…
 - …with anonymized data only?
 - …started with anonymized, then moved?
 - what can definitely not be done
Alternatives

- many existing tools do DNS capture
 - our anonymization as optional back-end?
- some existing anonymization tools
 - tcpmkpub + U. Md. extensions
- regardless of choice of tool, sharing policy and IRB approaches benefit all

Broadening DNS Research

- work-in-progress
- combining
 - complete anonymization
 - stream separation
 - policy and access control
- …to enable access to DNS data
- http://www.isi.edu/ant/