Anycast Latency: How Many Sites are Enough?

Ricardo de O. Schmidt¹, Jan Harm Kuipers¹, and John Heidemann²

¹University of Twente ²USC/ISI

DNS-OARC, Dallas, 2016-10-16

Copyright © 2016 by John Heidemann and Ricardo de. O. Schmidt Release terms: CC-BY-NC 4.0 international

IP Anycast: Why?

Does Anycast Work?

561 root DNS locations for **13 services** (in 2016-01) large capex and opx

UNIVERSITY

OF TWENTE

USCViterbi

School of Engineering

but does it work?
what does "work" mean?

What does "Anycast Works" Mean?

- here: latency from user to service
 - (other reasons: DDoS defense, collaboration)
- questions

/iterbi

- does anycast give good *absolute* latency?
- does *instance location* matter?
- does BGP routing policy interfere?
- what about *the tail*?
- *how many instances* do you need?
- contribution: answering these with measurement

The Anycast Ideal

Anycast's Reality

latency is often high (red: >200ms)

(Data: Ray Bellis, mid-2015 F-Root, from <u>https://labs.ripe.net/Members/ray_bellis/researching-f-root-</u> <u>anycast-placement-using-ripe-atlas</u>)

because routing is hard (*correct* is easy, but *performance* bugs are obscure and easy to overlook)

What We Measure

Sources:

USCViterbi

~7000 RIPE Atlas instances sending pings and traceroutes to estimate latency

UNIVERSI

OF TWEN

Destinations: 4 DNS Root Letters

	letter	sites (local)	date	
	С	8 (0)	2015-09	
	F	58 (53)	2015-12	
	Κ	33 (14)	2015-11	
Latency & Anycast:	NK*	36 (1)	2016-04	
	L	144 (0)	2015-12	7

Measurement Step 1: Your *Current* Site

syd1.x.root-servers.org

Measurement Step 2: Distance to *All Possible* Sites

Measurement Step 2: Distance to *All Possible* Sites

Measurement Step 2: Distance to *All Possible* Sites

Measurement Outcome

OF TWEN

Is Absolute Latency Good?

Is Absolute Latency Optimal?

yes (nearly)

actual latency within 2-10ms of *best possible* (at median)

(compare solid vs. dotted lines of same color)

Does Routing Policy Interfere?

local policy sites only serve *their* AS

not much penalty

(compare pink: K in 2015, with half local nodes vs. blue: NK in 2016 with all but one global)

Does Location Matter?

yes (a lot!)

School of Engineering

simulate 1-4-node anycast services experimental measurements from C-Root measure from RIPE Atlas (bias to Europe)

OF TWENTE

optimal locations (geographically dispersed) \Rightarrow 1 is good \Rightarrow 2-4 help "pull in tail"

What About the Tail?

USCViterbi

School of Engineering

UNIVERSIT

OF TWENTE

Routing in the Tail?

routing shows *large* variation (compare median vs. 25%ile)

reason: site in country doesn't reach all country ISPs

USCViterbi

UNIVERSI

OF TWEN

Phillipines (PH):20 VPsonly 7 reach site in PH13 to US and Australia

What Matters Most?

So How Many Instances?

not very many! 12 would be good

for *an* anycast service where caching works well (not a CDN w/5 min TTL)

and only about **latency** *not DDoS resilience nor policy concerns*

and *location matters! and more help the tail*

Conclusions

- first systematic study of anycast optimality
 - detailed paper: <u>http://www.isi.edu/~johnh/Schmidt16a</u>
- considerations for anycast design?
- data is available: <u>https://ant.isi.edu/datasets/anycast/</u> and <u>http://traces.simpleweb.org/</u>
- thanks to RIPE Atlas and U. Twente

USCViterbi

bi UNIVERSI gineering Sciences Institute OF TWENT