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Abstract

This paper identifies the structural properties of Real-
Audio traffic, develops an application-level model and val-
idates the model using multi-scale analytic techniques.
RealAudio traffic is quite different from web traffic and
constant bit rate traffic, models commonly used for Inter-
net and multimedia traffic respectively today. We demon-
strate that RealAudio has rich behavior across a range of
time scales, with regularity at large time scales, strong pe-
riodicities from RTT to a few seconds, and complex be-
havior at small time scales. A simulation model was de-
veloped which captures the main structural characteristics
of RealAudio, and demonstrates the importance of multi-
scale analysis in validating this model. We also demon-
strate via simulation that RealAudio loss rates can be no-
ticeably reduced by slightly changing its characteristics to
reduce burstiness. Although our results focus on Real Au-
dio traffic, this methodology may be useful for studies of
other types of real-time streaming media.

1 Introduction

The rising popularity of Internet has increased use of au-
dio and video applications, including streaming playback of
music, sports and news, as well as real-time voice telephony
and conferencing. With increasing deployment of new
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broadband technology like DSL and cable modem, contin-
uous improvement of PC performance, and better multime-
dia encoding protocols, we expect this type of traffic will
continue to grow. Unlike web traffic, most of the streaming
multimedia applications are sensitive to delay and jitter, and
transmitted at relatively large and constant bit rate. Multi-
media streams often have long duration compared to the
request/response nature of traditional HTTP traffic. They
typically employ UDP as their underlying transport proto-
col, and react slowly, if at all, to network congestion. Poten-
tially this class of traffic has a very different traffic profile
compared to web traffic and as the amount of such traffic
grows, the network performance might be affected signif-
icantly. It is important for network engineering to under-
stand the nature of multimedia traffic. Although there have
been several research efforts in characterizing audio [1, 2]
and video traffic [3, 4, 5, 6, 7] over the years, the study of
multimedia traffic is still in a preliminary state.

To evaluate protocols for scalability over large scale
topologies under varying network conditions, simulations
are necessary when real experiments may be too expensive
or impossible. Useful simulations require accurate models
that capture important characteristics of the network under
study. While a number of models have been proposed to
simulate web traffic [8, 9], there is little attention being paid
to modeling multimedia traffic like audio and video stream
applications. In this paper we emphasize the use of struc-
tural models, which is contrast to the traditional modeling
methodology from time series analysis that usually ignores
specific physical features of the underlying communication
network structure. We design a structural model that cap-
tures the characteristics of RealAudio traffic at three dif-
ferent levels (namely, user-, flow-, and packet-level), and



validate it with multi-scale analysis.

Examination of simple first-order statistics such as flow
duration and inter-arrival rate is commonly used for valida-
tion of simulation model. However, recent studies [10, 11]
have shown that wide-area network traffic (WAN) exhibits
complex scaling phenomena over a range of time scales, i.e.
multi-fractal at small time scales (a few hundreds of mil-
liseconds and below) and self-similar at large time scales (a
few hundreds of milliseconds and larger). Comparison of
simple statistics will not verify the presence of these more
complex phenomena. In this paper we demonstrate the use
of multi-scale analysis to debug and validate models of traf-
fic in simulation. This analysis identified synchronization
issues in traffic that eluded basic statistical analysis but are
crucial to understanding the queuing behavior of streaming
traffic.

In our work, we develop an empirical model for Real-
Audio traffic, which has become a significant audio traffic
source, thanks to increasingly widespread commercial use
of the Internet. Our approach is based on packet traces of
RealAudio traffic collected on audio servers. Through care-
ful traffic analysis, we determine statistics and distributions
for high-level parameters such as audio flow duration, flow
rate, pattern of burstiness, user behavior and other charac-
teristics. We use these quantities to build a model that can
be used by simulation to mimic the Real Audio application.
Our ultimate goal is to extend the existing knowledge of
proposed web models with a better understanding of how
to model streaming media. This will provide better insight
into modeling the global Internet, where the volume of mul-
timedia traffic is increasing [12].

Our study makes three contributions to understanding
and modeling RealAudio traffic. First, we find RealAudio
has richer behavior across a range of time scales, with regu-
larity at large time scales and complex behavior at small
time scales. We then provide explanations for these ob-
servations. (Section 3) Second, We design a simulation
model that captures the main structural characteristics of
RealAudio, and demonstrate the importance of using multi-
scale analysis to validate the model. (Section 4) Finally,
we demonstrate that we can noticeably improve the perfor-
mance of the RealAudio protocol by slightly changing its
characteristics. (Section 5)

2 Background

We use two traces in this paper. The primary audio traces
used in our analysis are the same set of data used in a previ-
ous study of RealAudio [2]. (We primarily use trace 3 from
that work, and check our results against traces 4 and 5. They
are summarized in Table 1.) They were captured from the
popular Internet audio service at Broadcast.com [13], and
obtained using tcpdump running on a separate host. The

Trace | 3 | 4 | 5

Date Jun99 | Jun99 | Jun 99
Start time, GMT | 16:02 | 13:32 | 13:38
Duration (hr) 55 10.5 18.2
Packets 5.5M 1.6M 5.9M
Bytes 1.3G 0.4G 1.3G

Table 1: Summary of RealAudio Traces

trace host was connected to the Switched Port Analyzer
(SPAN) port of a Cisco 2924 Fast Ethernet Switch. The
SPAN port mirrors the traffic from any port on the switch
and captures all of the traffic originating from or destined
to the audio server. The traces were obtained from different
audio servers at the main Broadcast.com site. The servers
analyzed use RealServer V5.0, which employs a proprietary
protocol called PNA [14] as its streaming transport pro-
tocol, from RealNetworks to provide audio streams. We
don’t know what is the specific OS used in audio servers of
Broadcast.com. But they typically utilized Intel Pentium 11
class hardware running Windows NT or Linux.

Besides utilizing the traces from Broadcast.com, we also
collected another week-long RealAudio trace from a cam-
pus web site, where the server runs RealServer G2 [15].
Although this new trace is not used for our primary conclu-
sion, we use it to validate and generalize our results.

Finally, to supplement our understanding from trace anal-
ysis, we perform several experiments, where eight clients
are connected to the server via a LAN. The server uses a
trial version RealServer G2, which only supports up to eight
concurrent audio sessions, and runs on a Pentium 111 Linux
box. (To insure that these results are not OS-dependent we
also repeated these experiments on a Pentium Il computer
running FreeBSD v3.3.) All clients use RealPlayer 8.0 Ba-
sic and utilize Intel Pentium 1I/111 class hardware running
Linux.

3 Characteristics of RealAudio

Based on a previous study in [2] and the results of our fur-
ther analysis of RealAudio trace, in this section we present
some structural properties of Real Audio traffic.

3.1 Existing work

Here we summarize some key characteristics of Real-
Audio traffic based on the results from [2], in terms of indi-
vidual flow and aggregated traffic respectively

If we look at a single RealAudio flow, we can see Real-
Audio data is sent at constant bit rates at medium time
scales (tens of seconds), as shown in Figure 1(a). However,
at small time scale (single seconds), it behaves like a bursty
on-off source with off period in approximately multiple of
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Figure 2: Synchronized Real Audio flows from the trace (y-axes have different scales)

1.8 seconds as shown in Figure 1(b).

If we look at the aggregated Real Audio traffic, the vast
majority of audio sessions have only employed one concur-
rent flow. All the audio sessions use either one or two flows.
Those employing two flows use a TCP flow for control and
a UDP flow for data. Those employing one flow use TCP
alone. Most of the data (60-80%) is sent by UDP, while
the rest by TCP. Our analysis focuses on these UDP flows.
More than 90% of flows have duration longer than 10 min-
utes. The packet size of RealAudio was found to concen-
trate on some particular length (244/254), which might be
useful to serve as a tool for identifying RealAudio flows
among different types of traffic. Finally, like web traffic,
the observed user arrivals of audio sessions also strongly
correlate to time of the day or start of events.

3.2 Bursty aggregate traffic

After further examining the trace, we were surprised to
find that aggregated RealAudio traffic also shows similar
bursty on-off behavior as the individual flow with off pe-
riod approximately 1.8 seconds, as shown in Figure 2(a).
Put in another way, RealAudio flows to different users ap-
pear to be synchronized, transmitting together at about the
same time. This synchronization can be seen in Figure 2(b)
where two randomly chosen flows show bursty transmis-
sion in phase with each other. A previous study [16] showed
the synchronization phenomenon is also observed in rout-
ing traffic. Note that Floyd and Jacobson showed that mul-
tiple routers can become synchronized while we will show
that multiple streams from a single server can be system-
atically synchronized due to timeliness issue (playback or
stored or live content).



3.3 Is RealAudio Traffic Self-similar?

One interesting issue discussed in recent literature is the
statistical self-similarity and long-range dependence behav-
ior in both local and wide area networks. Previous stud-
ies [17, 18, 11] showed that self-similarity in data networks
can be rooted from higher layer protocols and user-related
variability. However, while there have been numerous stud-
ies of the cause and characteristics of self-similarity in web
traffic [17, 10, 11, 19, 20], there has been relatively little
effort in examining this aspect for streaming media traffic
in the Internet. Although intuitively the periodic bursty na-
ture of RealAudio traffic, as described in Section 3.2, does
not suggest it is self-similar, we still want to see if the
user-related variability induced by RealAudio clients will
affect the traffic in some unexpected way. For example,
Garrett and Willinger [4] showed that self-similarity can
be resulted from the dependence of bandwidth variation on
scene changes for VBR video traffic. In this paper, we use
two methods to test for self-similarity of RealAudio traf-
fic. Details of these methods are described fully in [11, 21].
In addition, we use them to gain insight into the structure
of RealAudio itself. Here we present a summary of these
techniques.

The degree of self-similarity of a time series can be ex-
pressed using a single parameter known as Hurst parameter
(H). For self-similar series with long-range dependence,
1/2 <H< 1. As H — 1, the degree of both self-similarity
and long-range dependence increases.

The first method, the time-variance plot, relies on the
slowly decaying variance of a self-similar series. The vari-
ance of X (™ is plotted against m on a log-log plot (where
X (m) is the m-aggregated time series by summing the orig-
inal series X over non-overlapping blocks of size m); a
straight line with a slope(—g) greater than —1 is indica-
tive of self-similarity. The Hurst parameter H is given by
H=1-5/2

The second method, the global scaling plot, is a wavelet-
based analysis [22] that uses wavelet transform of a time se-
ries to study its global scaling property, by which we mean
the statistics of the time series viewed at each resolution
level or scale, taken as a function of scale. To determine
the global scaling property of data, we plot log(E;), where
E; is the average energy at scale j, as a function of scale
Jj. The energy level E; is corresponding to the level of ir-
regularity or burstiness of sampled data. The higher E; is,
the more bursty the traffic is on time scale j. By inspect-
ing qualitatively over what range of scales there exists a
linear relationship between log(£;) and scale j, we can de-
termine what range of time scales there exists self-similar
scaling. [11] gives a more detailed description of this tech-
nique.

By applying the methods described above to our traces,

the results indicate that Real Audio traffic does not have sig-
nificant long-range dependence as web traffic does.

In the time-variance plot, as shown in Figure 3(a), we
see some bumps appearing at time scale corresponding to
1s ~ 10s, which we believe is related to the off-period of
RealAudio traffic. At time scale larger than 10s, the curve
appears almost as a flat line. Since there is no indication
of a straight line with slope greater than —1 in the plot, we
conclude Real Audio does not have self-similarity.

In the global scaling plot, * as shown in Figure 3(b), we
do not see a linear relationship between log(E ;) and scale j.
Instead, we observe some fluctuation of E; at smaller time
scales (12-17). We believe the cause of this phenomenon
is due to that data sampling rate is smaller than the pe-
riod of burst (1.8 sec) at small time scales. At larger time
scales (4-8) it appears asymptotically as a flat line because,
as described in Section 3.1, RealAudio flows behave like
constant bit rate streams at larger time scale.

Although the result is not surprising, we will show later
the multi-scale analysis we perform here is still very useful
for our model debugging and validation.

3.4 Why is RealAudio bursty?

We next present several hypotheses as to why RealAudio
exhibits different behavior at different time scales (i.e. it is
bursty at small time scales and roughly constant bite rate at
medium time scales). Several factors might affect bursti-
ness, including data content, timeliness (stored or live play-
back), and playback-time systems factors such as CPU load.
Our goal is to show which of these factors is correlated with
burstiness in individual flows and synchronization of mul-
tiple flows in aggregate traffic. We also suggest underlying
reasons that may cause these problems. Because the source
code to RealAudio server is not available, we verify these
hypotheses with experiments on a RealAudio server with
eight concurrent clients as described in Section 2.

A single RealAudio flow is sent at roughly constant bit
rates at mediumand large time scales (Figure 1(a)). We be-
lieve this is because that streaming media protocols inher-
ently target steady rate due to encoder and network issues.
Some continuous traffic is inherent in streaming media by
definition—streaming media sends data incrementally and
gradually. Many encoders also target fixed bit rate because
some networks such as telephone and ISDN only provide
small, fixed bandwidth channel. VBR codecs are less de-
sirable for fixed bandwidth links because they are generally
more complex.

INon-stationarity can invalidate this approach to identifying self-
similarity. To avoid this problem this analysis is based on a 3000s portion
of the trace where it is stationary. Here we define a time series is stationary
if the mean and variance of data remains relatively constant, verified with
the run test [23].
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Figure 1(b) shows that RealAudio is bursty at small time
scales. This behavior can be plausibly explained by oper-
ating systems issues. Operating systems will schedule the
process or thread serving a flow periodically. The frequency
at which this scheduling required is a function of packet size
and target rate. With 200B packets and 15Kb/s flow rates
this corresponds to about 10 packets/s. At low CPU loads,
this sending rate can easily be achieved since CPU time can
be smoothly allocated, but at higher loads or higher rates
such frequent context switches will become impossible.

To evaluate the overhead of context switch on real sys-
tem, we ran Imbench[24] on a Pentium Il 266MHz Linux
box (which is similar to that used by Broadcast.com). For
a process with size of 1MB, the context switch time will
take about 3ms. In other words, with 200B packets and
15Kb/s flow rates, a server of size 1MB can only support 33
flows concurrently if it does context switch for every packet.
This context switch time is not just an artifact of the oper-
ating system’s process or thread model (in fact, Linux has
one of the better context switch times [24]). The cost of a
context switch is inherent in supporting multiple processes
with separate CPU resources (registers, memory protection,
etc.).

Although there must be a context switch cost, this cost
does not need to be incurred on every packet exchange. A
simple solution is to send multiple packets each time when
the thread is scheduled, possibly dynamically adjusting the
number of packets sent to the frequency of context switches.
To verify this hypothesis, we examined burstiness in a sin-
gle flow as a function of CPU load. At low CPU loads we
do not observe much burstiness (the average burst length 1
packet, the average inter-burst time 0.23 second). Here we
define packets in the same burst as those which have inter-
arrival time less than 1ms.

When we artificially increase server CPU load by run-
ning four concurrent SETlathome? programs [25], we see
burstiness similar to that observed in Figure 1(b) (the aver-
age burst length 5 packets, the average inter-burst time 1.14
second). This burstiness appears independent of content or
timeliness.

Flow synchronization magnifies the small-time-scale
burstiness of individual flows in aggregate traffic. Two fac-
tors are correlated with flow synchronization: timeliness
(playback of stored or live content) and CPU load. Flows
of live content show a large amount of synchronization. We
believe this synchronization occurs because multiple clients
are listening to the same live event. When the server re-
ceives new data, it immediately sends copies of this data to
each client. This synchronization is less likely when replay-

2The reason we choose SETlathome for driving up the load is because
it is by nature computation-intensive. To avoid the daemons de-prioritize
themselves, we invoke them with the lowest nice value

ing stored content because each client would be at different
places in the data stream. This reasoning is consistent with
the live content of the broadcast.com traces. To verify this
hypothesis we examined eight concurrent clients listening
to stored and live data at low CPU load (Figure 4(a)). The
additional burstiness of the live data appears as much larger
stair-steps than replay of stored content. Quantitatively, the
live flow has the average burst length 9 packets and the aver-
age inter-burst time 0.25 second, while the stored data has
the average burst length 2 packets and the average inter-
burst time 0.12 second.

A secondary factor affecting flow burstiness is CPU load.
Repeating this experiment at high CPU load shows bursti-
ness for both stored and live content (Figure 4(b)). Syn-
chronization of live content occurs for the same reasons just
described. In addition, stored content is bursty because in-
dividual flows are bursty caused by the operating system
scheduler. The magnitude of burstiness for live event is
seen to be several times higher than that of stored content
(the live flow has the average burst length 28 packets and
the average inter-burst time 1.05 second, while the stored
data has the average burst length 7 packets and the average
inter-burst time 0.49 second), which is possibly due to the
added synchronization among different streams.

4 Modeling RealAudio

We have analyzed RealAudio traffic (Section 3), but to
really understand how this traffic affects the network we
would like to be able to reproduce RealAudio-like traffic
in a network simulator where it can be part of controlled
experiments of RealAudio. This section describes how we
created and validated a simulator model of this traffic.

We chose to model this traffic in ns-2 [26, 27] because
of our familiarity with it and its support for a wide range
of protocols, thus allowing us to evaluate audio traffic in
competition with other traffic.

4.1 A structural model of RealAudio

Based on the description of RealAudio traffic from Sec-
tion 3, we designed a three-level simulation model to char-
acterize Real Audio traffic as shown in Table 2. Two aspects
of the model are unusual: first, flows are artificially syn-
chronized by delaying the start of each ON-period until a
multiple of 1.8 seconds. Second, the number of packets
sent in each ON-period is calculated based on the randomly
selected duration of the OFF-period to match the flow rate.

We expected that the particular mechanisms described
above differ from a real implementation of Real Audio. For
example, in a real server, all these parameters might be
dynamically changing because of user selection, feedback
control [28] and reaction to the congestion. The arrival of



User behavior
1. User arrival is modeled as a Poisson process.

2. The number of flows per user is randomly picked from the CDF(Cumulative Distribution Function) of trace.

3. Each user flow is sequentially generated as described below.

Flow data
1. Flow duration is chosen from a CDF
2. We chose a fixed duration for the ON period T,,,

3. We chose a fixed rate Ry for each flow based on the CDF of flow rate from the trace

4. We chose a fixed length Pg;.. for every packet of the flow

5. To reproduce the periodic burst of aggregated traffic as shown in Figure 2(a), flows are artificially synchronized by
delaying the sending of every burst in each individual flow until the time is a multiple of 1.8 seconds.

Packet data
1. Each packet is sent as part of a UDP flow
2. Packets are repeatedly generated until flow stops

3. The duration of OFF period T is also randomly chosen from a CDF
4. The number of packets being sent during each ON/OFF period for the flow is Ry x (T,p, + Toﬁ)/PSize

Table 2: Structural model of Real Audio

users and how long the sessions will last might depend on
the content that server provides. However, we will show
that these parameters can correctly reproduce traffic corre-
sponding to our traces. We also expect that they can match
other classes of RealAudio traffic, although the particular
parameters used may require change.

4.2 Validating the Model

To validate if our model accurately captures key compo-
nents of RealAudio protocol, we compared the traffic gen-
erated from our model and real trace for both individual
flows and aggregated traffic and examined if they are simi-
lar to some extents.

To evaluate individual flows we look at time-sequence
number plots at two time-scales. Although the graphs are
not shown here due to space limitation, we found the flows
generated from our model exhibit the characteristics of
RealAudio at different time scale (i.e. it appears as constant
rate traffic at medium time scales, and behaves like a burst
on-off source at small time scales. We also found that the
CDFs of packet inter-arrival times for the model and trace
are basically identical.

For aggregated traffic, we compare our model with real
trace both qualitatively and quantitatively. First, we con-
sider first order statistical comparisons of our model to the
trace data. We examined CDF plots of the packet inter-
arrival times, flow rates, and user durations. In all cases the
model and trace traffic matched within a few percent. This
is not surprising given that the models are driven off of these
statistics as taken from the trace data. We then compare two
multi-scale plots, as described in Section 3.3, between our
model and trace. They also matched closely.

The two multi-scale plots generated from our model are
shown in Figure 5. First we consider the time-variance plot,

as shown in Figure 5(a). Comparing Figure 5(a) to Fig-
ure 3(a), we see both exhibit similar bumps at the time scale
around 1.8s, 3.6s, corresponding to the duration of flow off-
periods. We can see, from time 0.1 to 1s, both show bigger
variance since the traffic is more bursty at small time scales.
From 10s to 1000s, both show small (and almost constant)
variance which is probably because aggregated flows be-
have as constant rate traffic at large time scales.

Second, we examine the global scaling plot generated
from our model. Comparing Figure 5(b) to Figure 3(b), we
see that they both have similar overall shape with lower en-
ergy at coarser time-scales and higher energy at finer scales.
One feature of this plot are particularly relevant in com-
parison: the dividing point between these areas where en-
ergy sharply rises as time scales become finer (at scale 10
in the model and scale 9 in the trace, both at 2s). We be-
lieve this sudden increase in energy corresponds to the du-
ration of off-period of the traffic. To validate this hypothesis
we experimentally increased this period to 18 second in our
model, seeing a corresponding shift in this turning point to
coarser time scales, as shown in Figure 6.

Finally, we compare five metrics quantitatively between
trace and model as shown in Table 3. Again, it’s not surpris-
ing that our model matches the trace closely, given the fact
that the models are driven off of the statistics taken from
the trace data. Nevertheless, this still provides us confi-
dence that our structural model does capture the behavior
of Real Audio protocol to some extent.

The comparisons here are between our model and the
data from trace 3 from [2]. Although not presented here,
we found a similar level of consistency with trace data sets
4 and 5 from [2]. We later evaluate the sensitivity of these
results to newer version of Real Audio in Section 6.
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metrics trace  model
Mean user duration (min) 63.9 64.4
Mean user inter-arrival (sec) 5.67 5.45
Mean flow rate (Kbps) 4.2 3.8
Mean flow duration (min) 58.1 59.0

Mean packet inter-arrival time (sec) | 0.0047 0.0051

Table 3: Comparison of first-order statistics for trace and
model.

4.3 Observation about the model and validation

The model we just described was developed through a
process of trial and error. Although much of the process
is typical of interpreting new data, we next highlight two
aspects of this process that we found to be very helpful and
perhaps deserve to be more widely used. First we consider
the use of structural modeling, second, multi-scale analysis.

Structural modeling, as discussed in [10, 29], proposes
that we should implicitly take into account the complex hi-

erarchical structure of application and intertwined network-
ing mechanisms in order to accurately reproduce the traf-
fic. Inspired by their work, we structured our model with
a clear user-, flow-, and packet-level components, as op-
posed to trace-replay. There are several advantages for this
approach:

e Some protocols must be modeled as end-to-end enti-
ties in order to capture the feedback effect such as TCP
congestion control

¢ Internet protocols present very rich, multi-fractal be-
havior across a range of time scales. Network-level
approach will fail to capture this richness.

e By capturing the details of data transfer in an algo-
rithm we can reproduce that traffic with much less stor-
age requirements than trace-replay.

Without referencing RealServer source code, this
application-level approach also gives us an opportunity to
develop and apply multi-scale modeling techniques, since
we can not cheat to obtain an accurate model. On the other
hand, more insights in the server code might give us deeper
understanding of protocol behavior.

Second, we stress the importance of utilizing multi-scale
analysis in model validation. Our early models quickly
reproduced similar first-order statistics such as flow rates,
inter-arrival distributions, and other per-user and per-flow
statistics. But it is the interpretation and comparison of the
time-variance and global scaling plots detected several er-
rors in our first models. For example, we initially did not
synchronize different flows as described in Section 3.2. The
time-variance plot of flows without this synchronization is
shown in Figure 7. Comparing this figure to Figure 5(a),
although basic shapes look similar, the details (1.8s bumps)
are all missing. This demonstrates that multi-scale analysis
is useful not only to identify structural properties of traffic,
but also to serve as a debugging tool when constructing the
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model.

5 Protocol improvements

In this section we will demonstrate how can we improve
performance of RealAudio by changing some key compo-
nents of how data is sent. The performance metric we use
here is the loss rate of traffic. We have observed that Real-
Audio synchronizes separate flows of live content, and that
stored content becomes bursty at high CPU load. This be-
havior increases the burstiness of traffic, stressing router
buffering capabilities. We suggest three approaches to re-
duce this loss rate:

1. We change the model by removing the explicit syn-
chronization of flows as described in section 4 and
modeling flow arrival as a purely Poisson distribution.
In an implementation of Real Audio, this change would
correspond to adjusting the operating system scheduler
and server code, or employing faster CPUs, to ensure
that CPU time is smoothly allocated at high load.

2. Instead of completely de-synchronizing the flows, we
add a small gap between the start time of ON-period
in different flows to reduce the synchronization of ag-
gregated traffic. In the RealAudio implementation this
would correspond to adding a small explicit delay to
the flow servicing procedures.

3. As an alternative of making changes to the server, one
could evaluate the buffering requirements of an un-
modified server and size buffering in nearby routers
appropriately.

To evaluate the effects of these variations on loss rates
and buffer requirements, we simulate them using a simple
network topology, as shown in Figure 8, where a number
of clients listening the same live event broadcast from one
single server via the same router. The bottleneck lies be-
tween the intermediate routers which implement RED as

Buffer requirement

Implementation Mean(KB) Max(KB)
Unmodified RealAudio (0ms gap) 6.98 74.17
Poisson arrival (Variation 1) 1.04 9.95
5ms gap (Variation 2) 1.91 13.21

Table 4: Comparison of queuing requirement for unmodi-
fied RealAudio and the variants

10M 5ms

Server IM 50ms

Clients

Figure 8: A simple network topology

their queuing discipline. Each router has a buffer size of
10 packets. Through the simulation, the average network
utilization is about 54%.

Table 4 shows mean and peak queuing requirements of
server’s first-hop router for an unmodified server and our
two variants, for the simple topology (with 100 clients) de-
scribed above. The results show the router will need a much
bigger buffer for an unmodified server than our variants.

As shown by comparing the line 5ms gap against Oms
gap (unmodified RealAudio) in Figure 9, we are able to
reduce the loss rate by half by adding a small 5ms gap be-
tween individual flows. We also show the constant bit rate
traffic as a lower bound for comparison. (Although CBR
provides much lower loss rates, the CPU overhead of very
frequent interrupts makes it impractical for actual imple-
mentation.) If we completely remove the synchronization
factor in our model, the performance of aggregated traffic
would be almost as good as constant bit rate traffic.

Ideally the artificial gap introduced in variation 2 should
be sized to allow the queue to drain one burst worth of pack-
ets. We can analytically compute the required gap to drain
a single flow as

gap= (n*p)/b 1)

where n is the average number of packets sent in the ON-
period, p is the packet size and b is the minimum link band-
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Figure 9: Different approaches to improve performance of
RealAudio protocol

width of first few hops from the server.® Using the above
formula, the ideal gap is 8ms for our sample network. Fig-
ure 9 shows the effects of varying this gap. With a 10ms
gap RealAudio performs as well as CBR. The cost of this
approach is that clients might suffer some latency delay.
However, we expect a small delay like 5ms will not affect
end-user latency significantly since the latency of streamed
audio is already high due to the delay introduced by the
buffering at the client side.

Another solution to reduce the burstiness of traffic is
through the use of multicast. For live flows multicast should
eliminate synchronization by replacing transmissions of the
same data to multiple clients with a single transmission
to the multicast group. Techniques such as stream merg-
ing [30] and caching [1] may be helpful for stored content.
Although promising and standardized, multicast is not yet
widely available in commercial ISPs today despite the fact
it was already supported in RealAudio software since 1997.

Finally, we observe that this type of protocol study is very
easy with simulation model, while experimentally it would
be much more difficult.

6 Sensitivity of results

We have analyzed RealAudio traces and demonstrated
that our model can correctly reproduce them. Since these
results are based on a particular set of traces, we next ex-

SMore precisely we should identify the bottleneck link that will have
the most queuing due to synchronized traffic from the server. Distant links
are unlikely to be queuing bottlenecks (even if they are very low band-
width) if the clients are dispersed throughout the Internet. For the common
case of server connected to a LAN and then over a bandwidth-limited to
the ISP, that link is likely the bottleneck.
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amine how they generalize to other versions of real audio
and other types of traffic.

Our traces are based on a currently old version of the
RealAudio protocol, PNA, and from a heavily loaded
server. Changing either of these characteristics will change
the traffic. We took a week long trace from USC ICT’s
RealAudio G2 server. In that trace we did not observe
bursty traffic, although we did observe fixed packet size,
long flow durations, and constant bit rates at medium-time
scales. This server was very lightly loaded (274 flows over
the week) and had no concurrent flows. Current server soft-
ware is not very bursty at low CPU loads we expect that we
would see burstiness in a busier server.

To understand if these differences were because of server
load or protocol version we set up a real audio server and ar-
tificially increased server CPU as described in Section 3.4.
We found the existence of burstiness, but with a period
about 1.1 seconds. We therefore conclude that our obser-
vation that burstiness is caused by CPU load holds for both
old and current RealAudio server versions, although with
different periodicities. Another factor that contributes to the
periodic nature of traffic is the synchronization of multiple
flows listening to the same live event. As shown in Fig-
ure 4(a), the traffic is bursty ( at a relatively smaller scale)
even at low CPU load.

We also have begun examining to what extent our con-
clusions are affected by traffic content. We strongly suspect
that gross characteristics such as flow duration are affected
heavily by content. For example, a server supplying 30-
second music clips would have a very different mean flow
duration from a server providing full classical music sym-
phonies or from one providing 24-hour content from a live
radio station. As described in Section 3.4, live data and
stored content will behave differently in the aggregated traf-
fic, and eventually determine how we structure the model.

7 Redated Work

Some of the key parameters we use to construct the
model are directly derived from the results of a previous
study of RealAudio [2]. However, one of our goals in this
study is to understand the aggregate behavior of streaming
multimedia traffic across a range of time scales. Unlike pre-
vious studies for Ethernet [21] and web traffic [17], which
have been found to be self-similar at large time scales and to
have a much richer behavior at small time scales, our anal-
ysis suggests that Real Audio streams exhibit regular behav-
ior across different time scales, which is more like constant
bit rate traffic in general. Moreover, we are surprised to
discover the burstiness of RealAudio not only exists in in-
dividual flow, but also appears in aggregated traffic. Addi-
tionally, we discuss several solutions to reduce this bursti-
ness.



Chesire et al. [1] analyzed streaming-media traffic using
traces collected from the border routers serving the Uni-
versity of Washington. The focus of their work was to char-
acterize a client-based streaming-media workload and com-
pare it to well-studied web workloads in terms of bandwidth
utilization, server and object popularity, session statistics,
and sharing pattern. They also studied the effectiveness of
caching and multicast for reducing streaming media band-
width. In contrast to our analysis, most of their streaming
sessions were short-lived. We attribute this difference to the
fact that they studied client-based trace of both audio and
video streams to a large number of Internet servers, while
we study a server-based audio traces from a single site with
live content. Also, our protocol-level optimizations are de-
signed to reduce loss rates while theirs are focused on re-
ducing bandwidth requirements.

A large body of Internet traffic capture and analysis soft-
ware has been developed over the years. Among them,
mmdump [28] was designed for examination of multime-
dia traffic growth and characteristics. Multimedia appli-
cations typically use dynamically assigned UDP ports for
exchanging media data. These ports are negotiated using
a control protocol such as RTSP [31]. Mmdump extends
the popular tcpdump utility and employs protocol-specific
parsers that allow it to determine the dynamic port number
that are selected for media transport by streaming media
and other session control protocols. Currently it supports
RTSP and H.323. Although their work focused on building
the multimedia monitoring tool, they also reported prelim-
inary results from traces collected from AT&T WorldNet
IP network. Their observations such as packet length dis-
tribution and the time of day usage pattern are consistent
with ours. Their techniques for examining and tracking in-
dividual flows are more sophisticated than ours, but they do
not apply multi-scale analysis to their analysis of aggregate
data.

There are several similar studies for modeling web traffic
based on empirical measurement. SURGE [8] described
web workload based on analytical models of web use,
which has the advantage of being compact and perhaps easy
to manipulate. While in Mah’s work [9], he simulated traf-
fic based on CDFs of real data rather than mathematical
model, which has the advantage of being able to represent
arbitrary distribution. Based on the same reason, we follow
Mah’s approach to construct our model.

The work presented in this paper complements earlier
work in modeling web traffic and is the first attempt at de-
veloping a structural model for multimedia traffic, which is
a significant component of Internet traffic these days.
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8 FutureWork

How to identify streaming traffic such as RealAudio
among different types of traffic is an interesting issue, par-
ticularly if we want to detect non-TCP friendly flows. [2]
suggests that regularity in packet size and bit-rate of Real-
Audio might be able to partially serve this purpose. Another
alternative which might be also useful to detect different
types of flows is to examine and compare their aggregated
behavior across a range of time scales.

In Figure 1(a), we can see some evidence of conges-
tion/feedback control. (For example, the data rate seems
to slightly change between 34000 and 34100.) Our cur-
rent model does not include protocol feedback mecha-
nism. Recent version realserver provides a sophisticated
client/server mechanism called SureStream [32] for dynam-
ically adjusting the bit-rate based on changing network con-
dition. A detailed study of this mechanism is important
to complete our model and to understand the behavior of
aggregate traffic. Additionally, it would help us to under-
stand if Real Audio congestion control is compliant to TCP-
friendly [33], and how it compares to other proposed con-
gestion control mechanisms such as CM [34] and RAP [35].

Feldmann et al. [11] introduced another wavelet-based
technique called local scaling analysis in order to gather in-
formation about the local features (e.g. burst of packets)
of the traffic. We would like to apply this technique to the
traces* and models in the future to understand if RealAudio
shows multi-fractal behavior at small time scales.

Frequently the best available traffic models are years old
because current approaches to collect traces, analyze the
data, and implement model take far too long. We plan to
develop tools and approaches supporting rapid model gen-
eration, by combining parameterized model and live net-
work measurements. Challenges we are beginning to study
include which parameters to control and how to integrate
network measurements from multiple sources.

Finally, we would like to understand how to apply the
methodology developed in this paper to other types of traffic
(such as Microsoft Media player and IP telephony etc.) to
generate compact application-level models that are accurate
across a wide range of time scales.

9 Conclusions

This paper has presented a systematic way of modeling
RealAudio traffic via careful analysis of real world traces.
We showed some key characteristics of RealAudio in terms
of individual flow and aggregated traffic, and demonstrated
how we use them to construct an structural model for sim-
ulation. We used multi-scaling analysis to show that Real-

4To be able to study multi-fractal behavior of RealAudio, it will require
us to further collect new set of traces which contain higher bit-rate traffic



Audio is not self-similar, but instead exhibits more complex
structure. These tools were crucial to reproduce this struc-
ture in our simulation model. Finally, we showed via simu-
lation that the loss rate of traffic can be significantly reduced
by slightly changing the behavior of Real Audio server.
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