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Abstract— Network models today are often derived from two
different methods. On one hand, detailed traffic models are
generated based on traces from a single tap into the network.
Alternatively, one can collect higher-level traffic-matrix data with
SNMP from many routers. However, inferring flow-level details
from such data is still an open research issue. Today it is
infeasible to collect a fine-grained, packet-level representation of
a complete, multi-router network. Even if it were economically
feasible to synchronize and monitor every router in a large
network, the amount of data generated would tax storage and
computation resources. In this work, we propose a methodology
to infer flow-level traffic across a network by exploiting the
correlations between user populations across different networks.
The contribution of this paper is twofold. First, based on
traces of web traffic collected from two different sources, we
observe that the user-behavior parameters of the traffic (such
as user “think” time in web traffic) are correlated across time,
while the application-specific parameters of the traffic (such as
object size) are correlated across “similar” networks. Second, by
utilizing the correlations between similar networks, we propose
a methodology for inferring traffic at places where continuously
taking measurements is infeasible. We evaluate the effectiveness
of our methodology via simulation.

I. INTRODUCTION

In order to get a complete picture of network-wide view
of the traffic, it is necessary to integrate data collected from
multiple points in a network. Recently, there is increasing
interest in using link load statistics to estimate point-to-
point traffic matrix via SNMP data collected from multiple
routers [13], [27], [28]. However, it is still an open research
problem to infer flow statistics using such coarse-grained
aggregated measurements. In today’s production IP network,
it is typically infeasible to collect fine-grained, packet-level
information at every single router in a large network due
to administrative and technical issues. For example, a single
direction of OC48 link can produce as much as 100GB of
packet headers per hour [14]. For large ISPs with many
links to monitor, such massive amounts of data would place
enormous demands on storage and computation resources.
To reduce the huge overhead from continuously monitoring
and collecting measurements on every single network, one
possible remedy is indirect measurement. The goal of indirect
measurement is to infer traffic of one part of the network based
on measurements taken from other parts of the network.

Network traffic can be correlated at different times and
at different places for various reasons. It is well-known that
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Fig. 1. Traffic inference using the similarity between networks

network traffic follows a diurnal pattern [17]. People tend to
work more actively and consume more network bandwidth
during normal office hours. Previous studies [15], [23] showed
that the organization membership has a significant impact on
the degree of local sharing. In other words, members of an
organization are more likely to request the same documents
than users from other organizations. Such an observation
suggests that users in the same organization might exhibit
similar user behavior and application usage pattern.

In this work, we propose a methodology to infer network
traffic by exploring correlations of user populations between
different networks. We develop an systematic approach to
model traffic on network n1 by utilizing measurements taken
from network n2, provided networks n1 and n2 have similar
user populations. Figure 1 illustrates this concept: colored
squares indicate data that is collected, while data in dotted
squares is inferred. Based on initial measurements at time
t1 confirming the similarity of n1 and n2, we use future
measurements of n2 to predict the traffic in n1 at times t2
and t3.

In this paper, we assume that one can model network
traffic with two types of parameters: user-behavior pa-
rameters and application-specific parameters. User-behavior
parameters characterize how users utilize the applications,
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while application-specific parameters are the traffic param-
eters corresponding to the structure of one particular appli-
cation. For example, user-behavior parameters could be the
distributions of user “think” time and the number of pages
requested by the users in web traffic, while application-specific
parameters could be the distributions of object size and the
number of objects in a web page. Based on measurements
from two different sources, we observe that the distributions
of user-behavior parameters tend to be correlated over time
on the same network. Additionally, our data suggests that
the distributions of application-specific parameters are likely
to be correlated between two networks with similar user
populations.

Based on the above observations, we propose the following
approaches to infer traffic on network n1 from measurements
collected on network n2, provided n1 and n2 have similar user
populations. The first step is to collect some period of traffic
on both networks n1 and n2. Such initial measurements are
used to derive the temporal and spatial correlations between
n1 and n2 (such as α and g() in Figure 1. Note that in
this paper we assume that such correlations do not vary over
time. In addition, due to the limitation of our data, we only
validate our methodology for its application at the time scale
of hours.) and confirm the similarity between n1 and n2. Once
the similarity between n1 and n2 is confirmed, we then can
utilize the derived correlations to model n1’s traffic at any
future time based on only measurements taken from n2.

The contribution of this paper is twofold. First, based
data collected from two different sources, we observe that
the user-behavior parameters of the traffic (such as user
“think” time in web traffic) are correlated across time on
the same network, while the application-specific parameters
of the traffic (such as object size) are correlated across similar
networks (Section III). By utilizing the correlations between
similar networks, we then propose a methodology to infer
traffic at places where continuously taking measurements is
not feasible. We also evaluate the effectiveness of approach
via simulations (Section IV).

II. RELATED WORK

Our work builds on prior work in traffic inference, traffic
correlation and bursty traffic.

A. Traffic inference

Several research efforts tried to infer traffic based on indirect
measurements. They can be basically categorized into two
different directions. One direction is to infer internal network
behavior based on results of active probing from end points.
Another form of indirect measurements focuses on using link
load statistics to estimate point-to-point traffic matrix.

The first type of traffic inference aims to to characterize
internal network behavior based on end-to-end performance
measurements, including MINI, IEPM, AMP, RIPE, Sur-
veyor [3] and TReno [12] etc. They utilize either unicast
probes (via tools such as traceroute and variants of ping)
or multicast probes, and correlate end-to-end traffic measure-
ments collected at different monitoring machines across the

Internet to infer statistical properties of the network such loss,
delay and topology.

Another form of indirect measurements, known as traffic
matrix estimation, emphasizes on estimating individual flow
characteristics based on aggregated traffic measurements [4],
[5], [20]. The idea is to infer traffic matrices (the set of traffic
between all pairs of sources and destinations) based on link
bytes counts which are readily available through SNMP that
is provided by most of the commercial routers.

Although our work also relies on utilizing passive mea-
surements to infer traffic, our problem domain is different
from previous work in traffic matrix estimation. While the
goal of traffic matrix estimation is to infer flow-level details
from coarse-grained aggregated measurements collected from
multiple routers, our work focuses on exploring the temporal
and spatial correlations across “similar” networks Our goal
is to avoid the overhead from continuously monitoring all
networks by projecting traffic from measurements taken at a
few, similar networks. We expect our work can complement
previous traffic inference infrastructures.

B. Traffic correlation

Prior work has shown that network traffic is often correlated
at different times and at different places. For example, web
caching work has shown that web access is more similar
between clients in the same organization than between random
clients. They would likely access the same set of documents
and each client tends to browse back and forth within a short
period of time. Web caching utilizes these temporal and spatial
correlations by caching documents which are very likely being
requested again in the future to save the network bandwidth
and lower access latency for the clients [21].

Another example that shows that traffic can be correlated
temporarily is the diurnal pattern. It is well-known that net-
work traffic follows a daily pattern. People tend to work more
actively and consume more network bandwidth during normal
office hours

Finally, traffic can be correlated due to the sharing of
common resources. For example, when several TCP flows
compete for bandwidth in a common gateway, it has been
observed experimentally that it will result in similar bandwidth
oscillation behavior due to the synchronization of window
increase/decrease cycles [25]. Traffic to multiple clients can
become synchronized as they wait for service from a busy
server [6].

Our work explores another form of traffic correlation: the
temporal and spatial correlations between two similar net-
works. We utilize such correlations to infer traffic at places
where continuously taking measurement is infeasible.

C. Bursty traffic

Previous studies of Internet traffic have shown that a very
small percentage of flows consume most of the network
bandwidth [7], [16], [26], Sarvotham et al. [18] show that
traffic bursts typically arise from just a few high-volume
connections, which is caused by large file transmissions over
high bandwidth links (a more recent study [7] also confirmed
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Trace RES UNI
Date Dec 2002 Oct 2003

Duration (hr) 168 168
Total Packets 79.7M 218M

Bytes 2.6G 8.4G
TCP Packets 58M (72%) 197M (90 %)

Bytes 1.8G (69%) 6.6G (78%)
UDP Packets 21.6M (27%) 13M (6 %)

Bytes 0.8G (30 %) 1.5GB (18 %)
HTTP Packets 32M (40 %) 101M (46 %)

Bytes 1.2G (46 %) 4.2G (50 %)

TABLE I

SUMMARY OF TRACES

User behavior
• The number of pages requested per user
• Page inter-arrival time (i.e. user “think” time)

Page
• Number of objects within each page
• Object inter-arrival time

Object
• Size of object

Fig. 2. Structural model of web traffic

their observation). In our work, we observe that, at a lower
level of traffic aggregation, traffic distributions between two
similar networks tend to be correlated in the body but vary sig-
nificantly in the tail. Furthermore, we show that the variations
in the tail might be contributed by such bursty connections.

III. TRAFFIC CORRELATIONS BETWEEN SIMILAR

NETWORKS

In this section, we consider web traffic as an example to
demonstrate the traffic correlation between different networks.
We characterize web traffic as a three-level application level
model as shown in Figure 2. For web traffic, the user-
behavior parameters include number of page per user and
user think time, while the application-specific parameters
consist of number of objects per page, object inter-arrival
and object size. We derive the distributions of user-behavior
and application-specific parameters of web traffic using an
existing tool RAMP [10]. Based on data from two different
sources, we first observe that the distributions of user-behavior
parameters of web traffic are correlated over time. Next,
we show that distributions of application-specific parameters
of web traffic can be correlated between similar networks.
Finally, we discuss the effect of “dominant” flows on the tail
of the distributions.

A. Traces

The datasets used in our study are from two sources. One
was collected from two subnets of a large research institute.
There are several research divisions under this institute. One
of these two subnets is used by the networking division while
the other carries traffic from the AI division. The users of these
two subnets are mainly researchers. The number of users (we

consider an unique IP address as an “user”) for both subnets
are about the same (around 60). For the rest of the paper,
we refer this institute as RES and these two subnets as RES-
a and RES-b. The second data set was collected from two
subnets of a large university (we refer this university as UNI
and the two subnets as UNI-a and UNI-b). Each subnet serves
a different computing center whose users are mainly students
from CS and EE departments. The number of users in UNI-
a and UNI-b are also very close (around 150). Both traces
captured all inbound and outbound traffic but only TCP/IP
header information was recorded. Both RES and UNI traces
were collected during a seven-day period. The details of traces
are given in Table I. Note that a significant portion of UDP
traffic in RES trace is contributed by NFS (Network File
System) traffic. The traffic volume of UNI traces is about three
times of that of RES’s.

B. Temporal correlations of the traffic on the same network

Previous studies have shown that the same group of users
tend to exhibit certain navigation behavior patterns when
they surf on the web [2], [24]. Our data suggests that the
distributions of user-behavior parameters derived from mea-
surements on the same network tend to be correlated over
time. Specifically, we examine the distributions of user-think
time and the number of pages per user in web traffic. We
find that both distributions are strongly correlated across time
for both RES and UNI data. As shown in Figure 31, the
distributions of user think time are strongly correlated across
three 3-hour periods for both RES-a and UNI-a data. Note
that although the distributions of user-behavior parameters are
strong correlated across time on the same network, they vary
significantly between different group of users as shown in
Figure 3.

C. Spatial correlations of the traffic between similar networks

Prior work [15], [23] has shown that members of the same
organization are likely to request similar documents from the
web. For example, researchers rely strongly on search engines
such as Google to search for existing literatures, and students
tend to spend significant amount of time on browsing class
web pages and related web sites. Based on our traces, we
observe that the distributions of application-specific param-
eters tend to be correlated between two “similar” networks.
Specifically, we examine the distributions of object size, the
number of objects per page and object inter-arrival time in
web traffic. We find that all three distributions show strong
spatial correlation in RES and UNI data. For brevity, we only
show the results for the distributions of object size here. As
shown in Figure 4, although there is some variation in the
tails, the distributions of object size are strongly correlated in
the body of the distribution between two similar subnets for a
3-hour period of traffic, Note that, although the distributions
of application-specific parameters between RES-a and RES-b
are similar, their aggregated traffic can still vary significantly,
as shown in Figure 5.

1Due to the space limitation, we do not show the same plots for the
distribution of number of pages per user here, although the results are similar
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Fig. 3. Comparison of distribution of user think time at the same subnet across time
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Fig. 4. Comparison of distribution of object size across similar subnets
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Fig. 5. Aggregated traffic of RES-a and RES-b across a day
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Furthermore, the spatial correlation is stronger in UNI
data than in RES data in both the body and the tail of the
distribution. We hypothesize that such an observation is due
to different levels of traffic aggregation, which is discussed in
next section.

D. Effect of the level of traffic aggregation

Previous studies have shown that a very small percentage of
flows consume most of the network bandwidth [1], [8], [19].
We hypothesize that the variation in the tails, as described
in Section III-C, might be due to such “dominant” flows. In
addition, we hypothesize that the effect of such flows on the
tail might be less significant when traffic is highly aggregated.

To understand the effect of “dominant” flows, we first
look at only flows with a size larger than 1MB. We find
that the distribution of number of objects per page for these
flows is almost bi-modal, as shown Figure 6. Around 25%
of such connections contain only one single big object. We
then remove these domain flows from the trace and compare
the distributions of object size before and after removing such
connections. As shown in Figure 7, the difference in the tail
become less significant once such connections are removed.
Note that, as shown in Figure 7, the probability of small
objects (with a size less than 1KB) also decreases once the
dominant flows are filtered out.

We hypothesize that the effect of such “dominant” flows can
be reduced by increasing the level of traffic aggregation. One
can model the level of aggregation (G) as the product of the
amount of traffic generated by the sources (S) and the length
of measurement period (T ). That is, G = S×T . Furthermore,
S can be described as a function of the number of users and the
amount of traffic generated by each user. Such a model implies
that one might expect that the effect of dominant flows is less
significant when traffic data is collected either from a larger
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Fig. 7. Effect of dominant flows on the distributions of object size
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Fig. 8. The effect of traffic aggregation over time

user population or over a longer period of time.
To verify this hypothesis, we first look look at the effect

of the size of user population. As described previously, the
number of users in UNI data is about 2.5 times of that in
RES data. Hence, one might expect that there is less variation
in the tail in UNI data in RES data, provided that each user
generates similar amount of traffic. As shown in Figure 4,
there is a stronger match in the tail in UNI data than in RES
data. We next look at the distributions of object size between
RES-a and RES-b for different length of measurement period.
As shown in Figure 8, we find that the differences in the tail
become less significant as the sampling period becomes longer.
Additionally, the probability of having more smaller objects
increases as a result of a longer sampling period.

While our study is mainly based datasets obtained from uni-
versity subnets, the above observation suggests the possibility
of applying our methodology to larger networks such as POPs
of an ISP. Although it is not obvious that two different POPs
will have “similar” user populations, it might be possible that
two different POPs with large aggregations of different user
populations could still exhibit “similar” traffic statistics.

IV. TRAFFIC INFERENCE

The observation in Section III suggests a possibility to infer
traffic by utilizing the “similarity” between two networks. In
this section, we first define and quantify the “similarity” be-
tween two networks. By exploring traffic correlations between

similar networks, we next propose a methodology to infer
traffic at places where continuously taking measurement is
infeasible.

A. Tests for similarity

Intuitively we can describe two networks as “similar” if
they have user populations with similar characteristics. For
example, traffic generated by the CS department and by the EE
department in an university could be similar because students
from both departments might have similar application usage
patterns. Traffic generated by the finance division and by the
accounting division in a big corporate could be similar because
users of these two divisions might share some common tasks
and applications. In other words, we consider two networks to
be similar as long as there exist correlations in the application-
level view of the traffic.

While this intuitive definition of similarity is appealing, a
more formal procedure is required to determine similarity for
traffic inference. We propose the following procedure to test
the similarity. First, we derive distributions of user-behavior
and application-specific parameters of the traffic (for example,
distributions of user “think” time and object size in web traffic)
from measurements. We then compare the traffic statistics
of two networks qualitatively and quantitatively to determine
if they are similar. By qualitatively, we visually inspect the
CDF plots of the derived distributions between two networks.
By quantitatively, we first normalize the derived distributions.
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We then perform statistical tests to determine if two distribu-
tions are significantly different in mean, variance and shape.
Specifically we utilize Student’s t-Test to test mean, the F-
Test to evaluate variance and Kolmogorov-Smirnov Goodness
of Fit Test to test shape [11]. We consider two distributions
are strictly similar if they pass all three tests at 99% confidence
level.

The similarity tests mentioned above are very strict. One
can imagine some networks with similar user populations
might not be able to pass all three tests. Furthermore, in
some situation one might consider that the difference in
one particular metric (such as mean) is more important. By
relaxing the above testing procedure, we define a simple
“similarity” function s as a linear combination of differences
in mean, variance and shape as the following:

s = w1 × m + w2 × v + w3 × D

where

m = |µ(N1) − µ(N2)|/MAX(µ(N1), µ(N2))

v = |σ(N1) − σ(N2)|/MAX(σ(N1), σ(N2))

µ is the mean and σ is variance of the data, and D is
the Kolmogorov-Smirnov D value (Kolmogorov-Smirnov D
value is the largest absolute difference between the cumulative
distributions of two sets of data). N1 and N2 are the data
samples taken from two different networks, and w1, w2 and w3

are positive user-defined weights that allow user to prioritize
different metrics (i.e. mean or variance or shape). The above
definitions also imply that the range of possible values for m,
v and D can vary from 0 to 1. Intuitively, two networks are
more “similar” if the computed s is closer to 0.

The definition of “similarity” we describe above is based
on the differences in first-order statistics. An area of future
work would be to explore more sophisticated definitions of
similarity that also consider higher-order statistics of the
traffic, such as scaling properties.

B. Methodology

Our approach is based on the source-level modeling ap-
proach [9], [22]. At its simplest form, we assume that network
traffic (T ) can be modeled as a function of three sets of param-
eters: number of user (N ), user behavior (U ) and application-
specific (A) parameters. In other words, T = f(N,U,A). For
example, the user-behavior parameter could be the distribution
of user “think” time while the application-specific parameter
could be the distribution of object size in web traffic. For
the rest of discussion, we assume that U consists of a set
of parameters u1, u2, u3 etc., while A consists of a set of
parameters a1, a2, a3 etc..

In the previous section, we observe that the distributions of
user behavior is correlated over time on the same network.
The reasoning for this observation could be that a user might
follow similar patterns in using an application (e.g. similar
web browsing patterns). By utilizing such an observation, one
can model distributions of user behavior at time t2 based
on measurements taken at a previous time t1 on the same
network n1 (i.e. Un1

t1 ≈ Un1

t2 ). Additionally, we observe

that distributions of application-specific parameters between
two similar networks are likely to be correlated when traffic
is highly aggregated ( but only correlated in the body of
the distributions at a lower level of traffic aggregations). The
intuition behind such an observation could be that similar user
populations tend to result in similar application usage patterns,
such as the downloading of similar web pages. That is,
if (traffic aggregation == high)

A(t1, n1) = Abody(t1, n1) + Atail(t1, n1)

≈ A(t1, n2)

= Abody(t1, n2) + Atail(t1, n2)

else

Abody(t1, n1) ≈ Abody(t1, n2)

provided n1 and n2 are two similar networks.

By utilizing the above observations, we propose the fol-
lowing procedure to infer traffic on network n1 using mea-
surements obtained from network n2, provided n1 and n2

have similar user population. The first step is to collect some
period of traffic (say, at time t0) on both networks n1 and n2.
Such initial measurements are used to derive the three sets
of traffic parameters (i.e. N , U and A) of n1 and n2. We
then compare the derived statistics to determine if there is any
spatial correlation between n1 and n2 (i.e. decide if n1 and
n2 are “similar”) by employing similarity tests described in
Section IV-A.

Once the similarity between n1 and n2 is confirmed, one
can then derive the spatial correlations between n1 and n2. For
example, the similarity between n1 and n2 might suggest that
the number of users in network n1 is a function of the number
of users in network n2 at any given time (i.e. Nn1

= α×Nn2
,

where α is a function of time or some constant). By utilizing
traces collected at time t0, one can compute this scaling factor
α. Similarly, there might exist some functions g1, g2, etc. so
that a1n1

=g1(a1n2
), a2n1

=g2(a2n2
).... These functions (i.e. g1,

g2, etc) can also be identified by comparing the measurements
taken at time t0. At its simplest form, such a function can be
as simple as g(x) = y.

Once the spatial correlations between n1 and n2 are derived
from the initial measurements, we can infer traffic of n1

at any future time using only the measurements from n2.
Specifically, we can infer the number of active users of n1

since Nn1
= α × Nn2

. We can infer the distributions of
application-specific parameters of n1 based on traces collected
on n2 because
An1

=(a1n1
, a2n1

, ...)=(g1(a1n2
), g2(a2n2

), ...)=g(An2
).

Finally, since the user-behavior parameters are correlated over
time on the same network (i.e. u1

t1
n1

= u1
t2
n1

and u2
t1
n1

=
u2

t2
n1

), the user-behavior parameters of n1 traffic at any given
time can be inferred based on the statistics derived previously
at t0. In other words,
Tn1

t=f(Nn1

t, Un1

t, An1

t) ≈ f(α × Nn2

t, Un1

t0 , g(An2

t)).
Note that here we assume that the spatial correlation functions
do not vary over time, which might not be true for some
networks.
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C. Evaluation

To evaluate our methodology, we utilize two 2-hour traces
(one from 10am to 12am and the other from 3pm to 5pm)
from RES-a and RES-b respectively. We refer these traces as
RES-a-am, RES-a-pm, RES-b-am and RES-b-pm for the rest
of this section. The goal is to infer the traffic of RES-a-pm
based on measurements of RES-a-am, RES-b-am and RES-b-
pm. We evaluate our results by comparing the RES-a-pm trace
with simulation results generated using our methodology.

We first employ the similarity tests described in Section IV-
A to confirm the similarity between RES-a-am and RES-b-am.
Here we only show results for the distributions of object size.
The results for other distributions are similar. We use student’s
t Test, F Test and Kolmogorov-Smirnov Goodness of Fit Test
to test the differences of mean, variance and shape between
RES-a-am and RES-b-am. The first two tests passed, but KS-
test fails at 99% confidence level (corresponding to a critical
value of 0.00874). Additionally, we also compute the m, v
and D values as described in in Section IV-A. The m, v and
D values between RES-a-am and RES-b-am are 0.01, 0.009
and 0.011 respectively.

Next, we derive the spatial correlations between RES-a and
RES-b by comparing RES-a-am with RES-b-am data 2. We
then utilize the derived statistics to project a model of RES-a-
pm based on RES-b-pm trace. Finally, we input the projected
RES-a-pm model into the ns-2 simulator and compare the
generated synthetic traffic with real RES-a-pm traffic.

To evaluate the results of our model, we compare the CDF
plots of some first-order statistics (such as flow size and flow
duration) and the wavelet scaling plots [10] between the RES-
a-pm trace and the simulation results. As shown in Figure 9,
all plots match closely.

Furthermore, to evaluate the effectiveness of the similarity
test described in Section IV-A, we took another two 2-hour
traces during the same period from another subnet of RES.
This subnet serves mainly the users from the business office
of RES. We refer this subnet as RES-x and the corresponding
traces as RES-x-am and RES-x-pm for the rest of this section.
Intuitively, one might expect that the user population of RES-x
is “different” from RES-a’s and RES-b’s.

We first perform similarity tests on RES-x-am and RES-b-
am. As expected, all three tests fail. Additionally, the computed
m, v and D values are 0.16, 0.9 and 0.049, which are
significantly larger than the results from the comparison of
RES-a-am and RES-b-am. Nevertheless, to understand that
if it is still possible to infer RES-x traffic from RES-b, we
construct a model of RES-x-pm which is projected from RES-
b-pm trace. As shown in Figure 10, the projected model of
RES-x-pm has significant deviations from the real traffic in
the flow statistics, and higher energy in the wavelet scaling
plot.

2We set the scaling factor α to 1 and choose a simple linear function
g(x) = y to model the correlation function since that the number of users
and distributions of application-specific parameters between RES-a-am and
RES-b-am are very similar

V. FUTURE WORK AND CONCLUSION

The similarity tests described in Section IV-A are based
on the comparison of some first-order statistics of the traffic
between two networks. Another possible direction to evaluate
the level of similarity is to compare the higher order statistics
of the traffic. We plan to study this issue as future work.

Our initial results indicate that our methodology performs
well for inferring traffic at the time scale of hours for small
networks such as university subnets. Due to the limitation of
our data, we are not able to evaluate the applicability of our
approach for larger time scales (such as month or year) and for
larger networks. Additionally, due to the nature of our traces,
we employ a simple correlation function in our simulation
study for projecting traffic. It might be non-trivial to compute
such a function for other networks. To further validate our
approach, we plan to collect more traces from other places. We
are particularly interested in looking at places where traffic is
highly aggregated such as the POPs of a large ISP. Specifically,
we’d like to investigate if the aggregation of different user
populations could still introduce similarity in the traffic.

Obtaining a network-wide view of traffic requires data col-
lection from multiple points of the network. Unfortunately, it is
economically and technically infeasible to continuously collect
packet-level information at all routers in a large network. In
this work, we propose a methodology to infer network traffic
by exploring the correlations of user populations between
different networks. The main contributions of this paper are
the following: first, based on traces of web traffic collected
from two different sources, we observe that the user-behavior
parameters of the traffic (such as user “think” time in web traf-
fic) are correlated across time, while the application-specific
parameters of the traffic (such as object size) are correlated
across “similar” networks. Our data also suggests that, at a
lower level of traffic aggregation, the distributions of traffic
between two similar networks tend to be correlated in the body
but vary significantly in the tail. Furthermore, we show that
the variations in the tail might be due to bursty connections.
Second, by utilizing the correlations between similar networks,
we present a methodology for inferring traffic at places where
continuously taking measurements is infeasible. We then eval-
uate the effectiveness of our methodology via simulations.
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