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Abstract

In large sensor networks nodes must self-configure their
communication, location, and other characteristics. GPS
and similar systems determine location today, but they re-
quire substantial infrastructure in the environment or on
sensor nodes to locate nodes in a physical coordinate sys-
tem. For many applications,logical location—the relation-
ship of nodes with each other and their environment—
can be more important than physical location. For exam-
ple, distance along a road and presence of intersections
may be more relevant than Euclidean coordinates for ap-
plications that track or guide drivers. In this paper we
present a novel algorithm,deployment order, for logical lo-
cation determination. Deployment order exploits node de-
ployment patterns and simple user interactions to define
logical topologies in a completely distributed manner. With
minimal user interaction it can establish arbitrarily com-
plex logical topologies. We illustrate the algorithm through
the “follow-me” application, which is an easy-to-deploy
sensornet guidance system suitable for use in office build-
ings as well as inhospitable environments (underground, in
damaged buildings, etc.). Finally, we demonstrate how the
addition of landmarks allows the conversion from logical
locations to approximate physical locations.

1. Introduction

Sensor networks use numerous small, inexpensive nodes
that can sense, compute, and communicate with each other
to interact with the physical world. Sensors must be small
and inexpensive to make it reasonable so that there can be
many of them; many are needed to allow them to be physi-
cally present throughout the environment.

This combination of small, inexpensive, numerous de-
vices deployed in the physical world leads to the focus
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of this paper. Deployment andconfigurationof these de-
vices pose major challenges. Unlike carefully engineered
traditional networks, the large number of devices implies
that deployment of a sensor network is not necessarily well
planned. Nodes can be deployed rapidly in an ad hoc fash-
ion, forming large scale sensor networks with relatively
short life times. In addition, sensor network configuration
may require consideration of aspects of the physical envi-
ronment. For these reasons, automatic configuration of a
sensor network is both essential and challenging.

Nodes in sensor networks interact closely with their sur-
rounding environment, and one of the most important pa-
rameters in many sensor network applications is location.
Two different kinds of location are often required: both
physicallocation, coordinates in some frame of reference,
and logical location, often application-specific knowledge
such as which sensors are adjacent to others, or which are
in a room or hallway. In some sensor applications, logical
location can be more important and more difficult to deter-
mine than physical location.

In this paper we describe a novel approach to determine
the logical location of sensors. We use thefollow-meap-
plication to illustrate “walkable connectivity”, one typeof
logical location. We describedeployment order, a novel ap-
proach to capture this logical location. A unique character-
istic of deployment order is that it requires no fixed infras-
tructure such as GPS receivers or other localization-specific
hardware, thus it is applicable to very small, inexpensive
nodes. We have implemented a sensor-network-based guid-
ance system for visitors, and we studied our configuration
approach on the real system.

2. Problem Description

To motivate the challenges of deployment order we
first introduce thefollow-meapplication. We then give an
overview of our approach to configuration.

2.1. The Follow-Me Application

We use a sensor network based visitor guidance system
to illustrate the problem of automatic configuration with



logical location. For a visitor stepping into an office build-
ing for the first time, navigating unknown places can be
difficult and unpleasant. While signs may guide the way,
and computer kiosks may provide room numbers and maps,
neither provides active assistance to visitors as they move
through a building. The follow-me application is an active
visitor guidance system designed to address this problem.
Sensor nodes are deployed around a building, on walls, one
at each office doorway. Nodes blink their lights to indicate a
path, guiding a visitor with a “breadcrumb trail” to the des-
tination.

Although we describe a specific application and a con-
figuration approach for logical location, both generalize to
other scenarios. In its basic form follow-me can be consid-
ered as a technology demonstration. However it represents
a class of applications where sensors are deployed to assist
navigation. Other examples include marking paths in build-
ings damaged by earthquake or fire, or underground explo-
ration. Sensor nodes can guide people and sense the envi-
ronmental hazards at the same time.

The need for logical location also extends beyond just
these applications. In many applications, both indoors and
outside, logical position information is not immediately ap-
parent from physical node deployment.

2.2. Our Approach

Node DeploymentNode deployment in the follow-me ap-
plication is based on two general guidelines: There should
be one node at each office doorway, and the distance be-
tween two adjacent nodes should not be too large. The later
means we need to place additional nodes along hallways
with few doors, such that visitor can follow lights easily.
We show several possible node deployment examples later
(see Figure 8).

Path Finding and Logical LocationThe follow-me appli-
cation must guide visitors along appropriate paths. While
network routing algorithms specialize in path finding, they
are not directly applicable for guiding humans, who are
constrained by physical walls and prefer to follow adja-
cent nodes. Traditional routing algorithms select the short-
est path based on radio connectivity, selecting paths through
physical walls and skipping physically intermediate nodes
when possible. Even a strictly geographic routing algorithm
will cut corners and pass through walls if it shortens the
physical path.

Thus the main technical challenge in follow-me is deter-
mining thelogical topologythat connects nodes as a human
would walk, as opposed to the radio or physical topologies.
Figure 1 compares radio and logical topologies for the same
follow-me deployment in Figure 8(a).

Figure 1. Comparison between radio connectiv-
ity graph (left) and logical topology (right)

The location of a node is represented by its neighbors in
the logical topology, we call this thelogical locationof a
node.

2.3. Configuring Logical Location

Each node in the follow-me application needs to be con-
figured properly with its logical location, which is a set of
physical neighbors. Identifying correct physical neighbors
for each node is an important configuration problem.

We would like nodes to configure themselves automat-
ically. With localization techniques, it is possible to esti-
mate logical locations from physical coordinates; we re-
view a number of systems in Section 7. However exist-
ing techniques do not directly apply to applications that re-
quire logical location for several reasons. First, logicallo-
cation is defined by human constraints such as walls and
doors; these constrains are not easily visible to typical lo-
calization techniques based on RF or ultrasound. Second,
follow-me requires building-like topologies: long, linear
segments, parallel hallways with moderate density nodes.
These topologies are especially unfriendly for distance-
triangulation based localization techniques. Finally, wede-
sire a system that is easy to deploy and has low cost. Pre-
deployment of substantial infrastructure or extensive mea-
surements (for example, as with RADAR [1]) greatly raise
the cost of a system and preclude ad hoc deployments.

For these reasons we chose to develop a new method for
logical location configuration. In Section 3 we will describe
deployment order, our algorithm that captures logical topol-
ogy. It is present when a network is first configured, allow-
ing construction of complex topologies with minimal hu-
man interaction.

2.4. Interacting with Users

A common and effective approach of designing sensor
network applications is to keep sensor nodes simple, and
rely on the collaborative behavior of the whole network to
achieve complex functions. Unlike systems with a keyboard
and a screen, simple components such as LEDs and buttons
are more frequently used, and sensor nodes are spatially dis-
tributed in the target environment. The user interface partof
the follow-me application shares the same idea.
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Figure 2. Initial state diagram for deployment or-
der

There are three kinds of user interactions involved: visi-
tors need to tell network their destinations; network needsto
show path to visitors; and during deployment network ad-
ministrators need to interact with individual sensor nodes
for configuration.

3. Deployment Order for Logical Location
Configuration

In many instances sensor nodes are deployed sequen-
tially, perhaps being dropped one by one by a single per-
son or vehicle. Deployment order takes advantage of this
information by assuming that when two nodes are de-
ployed (switched on) one after the other within a short
time, we can assume that they are closest neighbors to
each other. Links between these closest neighbors can cre-
ate a path corresponding to connectivity of an individual
walking through a building. If nodes can detect and re-
member this path, it can be used later to guide visitors.
Some other mechanisms are needed to handle non-linear
topologies such asintersections. One method is to man-
ually interact with sensor nodes to add and remove links.
We will discuss both linear paths and intersections be-
low.

3.1. Linear Paths

To create a linear path, a newly deployed node commu-
nicates with previously deployed nodes to determine which
one was deployed immediately prior to the deployment of
itself. If such a node is found, these two nodes should link
to each other. We realize this with the following simple state
machine on each node (see Figure 2):

Active This is the state after a node is switched on. Nodes
in this state send out connection request packets to look
for neighbors.

Receptive Nodes in this state will reply to connection re-
quest packets (from active nodes). A reply establishes
a link between the two nodes.

PassiveNodes in this state will not be involved in link op-
erations. This is the state for normal operation.

Nodes begin in active state where they find their previous
neighbor, wait in receptive state to pick up the next neigh-
bor, and then transition to passive state. Figure 3 is an exam-

(a)

(b)

(c)

(d)

(f)

(g)

(h)

(e)

Figure 3. Linear topology example for deploy-
ment order handling intersections. States - gray:
active, white: receptive, black: passive

ple of a linear path. After the first node is switched on (a),
it won’t find any neighbor and will go to receptive state (b).
When the second node is switched on (c) it begins in active
state and will search for neighbors. The first node (currently
receptive) will reply, establishing a link between these two
nodes (c). The first node will move to passive state after cre-
ating the link, and the second will go to receptive state (d).
Similarly, the third node will link to the second node, and
so on (e)-(h).

This simple state machine is sufficient to create linear
topologies. The user does not need to know the details of
the state machine, merely that the last node in the line is
“hot” (receptive) and will connect to the next node that is
turned on. To provide confirmation about the network state
we provide both visual and audio feedback about the net-
work as it is deployed. Nodes in active state have all LEDs
lit up. When an active node detects its neighbor, the active
node transitions to just a red LED to indicate it is now re-
ceptive, and the neighbor beeps and transitions to a green
LED (indicating it is now passive). For linear deployments
the person deploying the network can be completely oblivi-
ous to the state machine, simply listening for beeps to con-
firm that each step of the configuration is complete.

3.2. Intersection Handling

Linear paths are automatically configured while nodes
are being deployed without external infrastructure or any
explicit user involvement. For richer topologies, we must
consider intersectionswhere nodes have more than two
neighbors. Assuming the majority of links belong to lin-
ear paths, we can still use the basic process for linear path
on most nodes. We add a very simple interaction process to
handle intersections.

The key observation on handling intersections is that if
we give users a little bit of control over the state machine,
they can then connect nodes to make arbitrary topologies.

In our implementation, we use a button on sensor node
to toggle node states. When a node is in passive state, press-
ing the button will bring the node to active state. When a
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Figure 5. Intersection handling for deployment
order

node is in receptive state, pressing the button will bring the
node to passive state. The updated state diagram is shown
in Figure 4.

With the ability to change state, we can add arbitrary
connections by making one node active and another node
receptive. An example for intersections is shown in Fig-
ure 5. In this figure, the logical topology consists of two
linear segments joined at a shared central node. To create
this topology, we first deploy one linear segment with the
basic deployment order procedure described earlier. Then
we deploy the second segment until it meets the first seg-
ment. By pressing a button, the central node of the first seg-
ment is put into active state. It will link with the newly de-
ployed node of the second segment and become an inter-
section node. After this step, the central node is in receptive
state and we can continue the deployment of the second seg-
ment until the whole topology is created. We can see there
is only one button press needed for an intersection.

3.3. Manual Link Repairs and Automatic Fault
Handling

A sensor network must tolerate deployment errors and
node failures. We have described how to connect two arbi-
trary nodes by pressing a button. To fix other errors we may
also need to remove links. Link removal is supported by ex-
panding the configuration user interface with an additional
“link remove” button. Similar to link creation, pressing the
link remove button places a node inlink-removestate. A

node in this state will broadcast link-remove packets. Nodes
in receptive state that hear this packet and have links to the
link-remove node reply to this message, removing their link
to this node. The link-remove node tears down its links to
any replying nodes as well. Combined with link addition,
this extension supports arbitrary topology changes to cor-
rect errors.

In addition to accidental topology misconfigura-
tions, we must also handle node failures. Ultimately, node
failures can be handled by manually patching in new sen-
sors using link creation and removal mechanisms. Besides
manual link repairs, we also would like a mechanism to au-
tomatically handle single node failures. Nodes can mon-
itor their neighbors and detect failure by a repeated lack
of response. Once a failed neighbor is identified, the de-
tecting node will skip this neighbor and link to the neigh-
bor’s neighbors directly. This is done by broadcasting a
“link fix” packet containing the ID of the failed neigh-
bor. Neighbors of the failed node will respond with
their own IDs, allowing the detecting node to estab-
lish links and fill in any gaps. This process assumes that ra-
dio range is at least twice the distance between neighbors,
a typical configuration since radios in sensor networks eas-
ily reach 20m indoors or more and node placement is typi-
cally 3-5m apart.

4. Design and Implementation of Follow-Me

With the deployment order method, logical location in-
formation is available to applications. In this section more
topics about the design and implementation of the follow-
me application are presented. Important design issues in-
clude path finding algorithm and user interaction processes.
Most implementation issues are related to interactions with
lower layers.

As the background of this section, the follow-me appli-
cation has been implemented on Mica-2 sensor nodes with
TinyOS operating system. We are in the process of complet-
ing the deployment shown in Figure 8(a) at ISI. As of April
2004, our current deployment (see Figure 6) is smaller,
with eight nodes covering one long hallway at half the de-
sired density, and with two nodes with labeled buttons sub-
stituting for the touch-screen display. All features covered
in Section 3 and this section, except route caching, auto-
matic link repair and destination configuration, have been
implemented and tested. Although current deployment is
linear, the implementation supports configuration of arbi-
trary topologies.

4.1. Path Finding

Given the logical topology it is relatively easy to find a
path. We can use a simple minimum-distance routing algo-
rithm over the logical topology to determine the best path



Figure 6. Follow-me deployment at ISI

between two points for a visitor. Our current implementa-
tion uses flooding to find forward paths and gradient style
routing for reverse paths. This routing combination is very
similar to directed diffusion [14]. Other routing algorithms
could also be used, provided they operate on logical topol-
ogy.

When a visitor arrives at the lobby and selects a destina-
tion from a touch screen, the network finds the path as de-
scribed above, flooding and establishing previous-hop gra-
dients. The destination node gathers routes and selects the
best one based on the desired metric. A good metric would
be physical distance traveled. Our current implementation
assumes all nodes are equidistant and so hop count is equiv-
alent to physical distance. Using the method to infer physi-
cal position described later in Section 6, one could compute
approximate physical distances to improve routing of visi-
tors.

While we use routing in the logical topology for follow-
me, a general routing service is available to many tasks. For
example, we monitor our network from a central point us-
ing this same routing algorithm. In this case our routing al-
gorithm uses radio connectivity rather than logical topol-
ogy.

4.2. User Interactions with the Network

There are two types of users in the follow-me applica-
tion: visitors and network administrators. We first discuss
user interactions for visitors and then cover network admin-
istration issues.

4.2.1. Network/Visitor Interactions Communication
between visitors and network is two way: visitors need to
tell network about their destinations, and network needs to
show path to visitors. In our design a touch screen is used
for visitors to choose their destinations, and synchronized
blinking patterns across the network are used for showing
paths to visitors.

For network to visitor communication, blinking patterns
should create a visual effect of moving light dots or lines,
conveying both path and direction information to visitors
in an intuitive way. Alternatively, synchronized beeping can
also be used.

To produce blinking patterns, timing parameters includ-
ing phase and interval are used. We use a command packet
to carry these parameters and trigger the sequence. The
source node at entrance sends out the command packet at
the beginning of a blinking sequence. There is no packet
transmission needed afterward.

Before we trigger a blinking sequence using tim-
ing parameters, nodes need to be time-synchronized. Sev-
eral sensor-network specific time synchronization protocols
have recently been proposed [7, 9]. However the timing pre-
cision requirement of this application is not very high, so
we implement very simple time synchronization by us-
ing the command packet to define a time base without
correcting for clock drift or transmission delay. We do ex-
ploit MAC-level support for time synchronization as de-
scribed in Section 4.3.2.

4.2.2. Interactions During Configuration and Node
Locking User interaction about network configura-
tion is usually the first type of user interactions acti-
vated for a sensor network. During the configuration
process of the follow-me application, network adminis-
trators switch on nodes to create linear paths and press
buttons to create intersections for the deployment or-
der method.

After a network is configured, inadvertent configuration
changes could occur if someone accidentally pressed but-
tons on sensor nodes during normal operation. To prevent
this situation, buttons need to be locked after the node con-
figuration process is complete. On the other hand network
administrators may still want to change configurations pe-
riodically for network maintenance. We designed a locking
mechanism that utilizes akeynode to fulfill these goals.

After a node is in passive state for three minutes, the
node switches to locked state. It will not respond to but-
ton presses. To re-enable buttons on the node, the key node
is used. This node will send out activation packets periodi-
cally. Nodes receiving this packet will unlock their buttons.
A person who wishes to reconfigure the follow-me system
can simply switch on a key node and carry it with him/her.
The state diagram with this update is shown in Figure 7.

4.2.3. Configuring Destinations Deployment or-
der method can configure nodes’ logical locations. To guide
visitors directly to someone’s office, we still need to match
nodes’ logical locations with offices, which is also a config-
uration problem. This configuration information can be rep-
resented by a table of node ID associated with room num-
bers and people’s names.
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We propose an interactive way to simplify the configu-
ration process. A user who wishes to configure a node can
approach the node with a PDA capable of communicating
with the sensor network. By pressing a button on the node,
the node’s ID will be shown on the PDA’s screen and infor-
mation about the office can be entered.

4.3. Implementation and Lower Layer
Interactions

Nodes in sensor networks usually belong to deeply em-
bedded systems, where algorithms interact closely with
lower level software and underlying hardware. In the fol-
lowing paragraphs we discuss issues and solutions for our
implementation of follow-me.

4.3.1. Energy ConservationSensor nodes in the follow-
me application run on battery power. As we want to put sen-
sor nodes beside office doorways, power outlets are rarely
available. Adding many power outlets in a building is gen-
erally a rather expensive task, easily exceeding the cost of
sensor nodes. Thus even in an indoor environment we would
like the follow-me application to be completely wireless
without power cords.

Our goal is to have the system run on a single set of
batteries for months. We use S-MAC [18] as a low-energy
MAC protocol to allow radios and potentially the node CPU
sleep most of the time. Currently CPU deep-sleep is not sup-
ported by S-MAC, thus there is an extra current drain dur-
ing sleep period. With current S-MAC at 10% duty cycle,
each follow-me node runs for 14 days on two AAA alka-
line batteries. In our tests MICA2DOT nodes worked till
the battery voltage dropped to 2.2v, which corresponds to
battery capacity of about 1200mAh according to manufac-
turer’s manual. We plan to enable deep sleep mode and use
lower duty cycles to further extend battery life.

4.3.2. Time Synchronization The user interface of the
follow-me application needs time synchronization to pro-
duce blinking patterns. During implementation, we encoun-
tered latency problems caused by the MAC layer. There are
two kinds of latencies from S-MAC: latency caused by col-
lision avoidance and latency caused by sleep cycles. These
delays can severely affect time synchronization as they are
rather long and higher layers do not have information about
them.

Although there are time synchronization mecha-
nisms dealing with various delays, letting MAC layer
inform higher layers about these delays is a much more ef-
ficient way. At our request, Wei Ye added an optional times-
tamp that marks when a packet is transmitted by the physi-
cal layer. This mechanism is similar to that used by Ganeri-
wal et al. [9].

4.3.3. Latency and Route CachingPacket forward la-
tency increases when the MAC layer has sleep cycles. As
the shortest MAC active period is limited by timing and en-
ergy consumption constrains, sleep period must be longer
for lower duty cycle modes. This means energy saving goals
may conflict with network reaction time goals.

While follow-me does not have strict real-time require-
ments, it needs to be “fast enough” that users don’t notice
excessive delay. Ideally, routes should be discovered in a
second or two. When routes are based on walking distance,
they often will span dozens of hops and latencies exceed
this limit.

To meet this latency goal while conserving energy we
plan to cache paths in our application. Each node will have a
table that associates source-destination pairs with theirpo-
sition in the path from source to destination. If a source-
destination pair is found in the table, we only need to do
a multihop broadcast to all nodes, and each node can de-
rive information about whether it is in the path and what are
the timing parameters for blinking. Packets only need to go
through all radio hops, which is usually much less than the
hops in the logical topology. Thus the latency can be signif-
icantly reduced.

5. Evaluation of Deployment Order

Manual configuration (pressing buttons) is needed for
creating intersections with the deployment order method.
We can consider the deployment order an efficient method
if only a small portion of nodes require manual configu-
ration. Therefore we use the number of manual configura-
tions as a performance metric to evaluate the deployment
order method in this section.

We used maps of three buildings shown in Figure 8 to
simulate and evaluate the deployment order method. The
numbers in these maps indicate where nodes are placed.

These maps are chosen based on topology diversity and
availability. We want to use real building maps with differ-
ent types of topologies for the evaluation. ISI is the 11th
floor of the Information Sciences Institute, SAL and OHE
are from two buildings in the University of Southern Cali-
fornia.

Table 1 shows the number of manual configurations
needed for creating logical topologies of these buildings.
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Figure 8. Node deployment scheme for three building maps

Building Nodes Manual Configurations Ratio
ISI 85 7 8.2%
SAL 44 3 6.8%
OHE 72 17 24%

Table 1. Number of manual configurations

The effectiveness of the deployment order method de-
pends on topology. Relatively simple topologies of ISI and
SAL lead to small numbers of manual configurations. With
many branches, the more complex topology of OHE leads
to more manual configurations, however the majority of
nodes can still configure their logical locations automati-
cally. While the cost of deployment order grows in complex
topologies, simple topologies require very little effort,and
even the 17 manual configurations required for the OHE de-
ployment require relatively little time compared to placing
72 nodes.

6. Physical Location Estimation

The primary goal of deployment order is to provide logi-
cal location information (“walkable connectivity”), because
such information is impossible to get from traditional local-
ization techniques. However, applications such as network
visualization benefit from the addition of physical coordi-
nates. In this section we show how the addition oflandmark
nodes with known positions enables us to estimate the phys-
ical coordinates from their logical locations for these appli-
cations.

6.1. Using landmarks to infer physical location

Landmarks are a few nodes with known locations. These
known locations are combined with logical locations to give
physical location estimations. On the assumption that the
network topology consists of mostly linear segments with
reasonably homogeneous node density, we infer the loca-
tions of nodes placed logically between landmarks by as-

suming they are evenly spaced. This assumption is appropri-
ate for the buildings that we consider as potential follow-me
deployments provided landmarks are chosen at the building
corners.

Inspired by previous work in network topology visual-
ization, we adapt a spring-embedder system [8] to approx-
imate physical locations between landmarks. In such algo-
rithms, simulated forces between nodes drive them to posi-
tions where attractive and repulsive forces are balanced, in
effect the system converges to a state with lowest spring-
embedder energy.

We hold landmarks as fixed and allow other nodes to
move using the spring-embedder model. Parameters are set
such that forces between nodes are mostly attractive. Com-
bined with landmark nodes, this setting results in nearly
straight lines as are typical in office buildings.

We expect this algorithm to run as an off-line process-
ing task on a host system because it requires high process-
ing power and runs infrequently. To connect the location
estimation task with sensor nodes, the host system needs
to collect logical location information from individual sen-
sor nodes first. Our general-purpose routing service based
on flooding and gradient style routing can be used for this
task. Next, coordinates of landmark nodes need to be sent to
the host system. Depending on the application, this informa-
tion can either come from outside the network (perhaps en-
coded from the touch-screen host), or it could be deployed
within the system, perhaps using a PDA as described in Sec-
tion 4.2.3. The estimation algorithm then combines these
two pieces of information and runs the spring-embedder
model to derive physical coordinate estimations. Finally,
derived coordinates may need to be sent back to sensor
nodes for some applications. Again, gradient style routing
(through the reverse path) can be used here as a simple so-
lution.
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Figure 9. Location estimation of three buildings

Currently our location estimation algorithm runs on a
PC and is not directly connected to the follow-me network.
Since our current deployment is rather small, we simulate
the results presented below to evaluate this approach.

6.2. Accuracy of inferred physical locations

We evaluate the accuracy of this algorithm for inferring
physical location with our three sample buildings.

Figure 9 shows the result of the location estimation algo-
rithm, corresponding to maps in Figure 8, with two possi-
ble anchor sets for OHE. In these figures, circled dots indi-
cate landmark nodes with known locations. Dots show esti-
mated positions. Crosses indicate true physical locationsas
references. Figure 10 shows location error distributions of
these examples, which are the results of comparing nodes’
true physical locations with locations obtained from the es-
timation algorithm.

As expected, we can see that the quality of result de-
pends on the building topology and landmark placement.
For these three maps, ISI and SAL have more accurate re-
sults than OHE. Placements for ISI and SAL are quite good
in general, with 80% of estimated node locations within 1m
of their true locations. As our earlier evaluation on num-
ber of manual configurations, the large number of branches
in the OHE topology also makes the location estimation al-
gorithm less accurate.

Accuracy could be improved by adding more landmark
points. In Figure 9(d), we add five more landmarks to the
OHE topology. This change results in noticeable improve-
ment on precision: In Figure 9(d) about 80% of nodes are
now within two meters away from their true locations, while
in Figure 9(c) they can be as far as three meters away. Hence
this location estimation approach has some flexibility in bal-
ancing precision and the number of landmarks.

Table 2 shows a comparison between our method and
several existing localization systems [13, 16] based on pre-
cision and density of special nodes. Due to the different na-
ture of our method, making a “fair” comparison with other
localization system is difficult. For example, our system as-
sumes near uniform node density between landmarks, and
it only locates nodes that belong to the network. Thus it
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Figure 10. Error distribution of location estima-
tion results

should be considered as a limited comparison based on this
paper’s point of view.

In addition to location error we present “Precision Ratio”
in the table, which is the average distance between special
nodes divided by location error. Many systems, including
ours, use landmarks, base-stations, or becons to anchor lo-
calization. Although the mechanisms differ greatly, denser
special nodes usually provide higher precision. On the other
hand, more special nodes increase the effort required to de-
ploy a system, so we want to limit their number. In the
table, higher Precision Ratio numbers indicate more effi-
cient localization systems. This comparision does not al-
ways capture all aspects of the system; examples of other
costs include extensive measurements in RADAR, special-
ized hardware in cricket, and limitations on deployment in
our system.

From the table we can see the typical location error of
our method is lower than RADAR and higher than other
systems, and the precision ratio of our method is higher than
Cricket v1 and lower than other systems.

Applications that require highly accurate node locations
may justify the addition of dedicated node hardware or in-
frastructure to allow extremely accurate node placement.
However, we are encouraged that the combination of logical
location from deployment order with a few landmark nodes



Localization Method Location Error Density of

Special Nodes

Precision

Ratio

Cricket v1 [13] 4*4 ft. regions (100%) 1 beacon / 1.5m
2

2.0

Cricket v2 [16] 1~3cm ?

Active Bats [13] 9cm (95%) 1 base / 10m
2

35

RADAR [13, 1]

(if on ISI floor – 50m*25m)

3-4.3m (50%) 3 bases / floor 96

Inferred Location

ISI 1.6m (95%) 1 landmark / 156m
2

7.8

SAL 1.4m (95%) 1 landmark / 94m
2

6.9

OHE (14 Landmakrs) 4.2m (95%) 1 landmark / 98m
2

2.4

OHE (19 Landmarks) 3.2m (95%) 1 landmark / 72m
2

2.7

Table 2. Comparison with localization systems

allows approximation of physical location with reasonable
accuracy and no additional hardware. This approach should
be appropriate for applications that do not require very pre-
cise locations.

7. Related Work

There are three areas that are closely related to this pa-
per. First, this paper belongs to the general area of location
aware computing. Second, other researchers have related
deployment and configuration for different applications. Fi-
nally, physical coordinate based localization is a different
but connected area.

Location aware computing is an active topic in both sen-
sor networks and pervasive computing [2, 12]. It is closely
related to context-aware computing [4].

For location aware applications, location information is
essential. Physical coordinates are rarely used directly as a
source of location information because they are raw data
without apparent meaning. Logical location [11] and sym-
bolic location [13] are similar concepts and they can be a
good source of location information. The deployment order
method presented in this paper is designed to provide logi-
cal location directly and efficiently to sensor network appli-
cations.

Other researchers have used physical deployment to in-
fer information about system configuration. Researchers at
Berkeley have previous used a linear deployment order to
infer node locations at a demonstration at Twentynine Palms
in 2001 [15]. An unmanned aerial vehicle dropped six sen-
sor nodes (Berkeley Rene motes) in a line. Sensors inferred
their positions through recomputed knowledge of drop or-
der assuming an initial fixed distance of deployment. With
deployment order we instead allow an arbitrary number of
identical nodes to determine their relative locations, andwe
identify how to build non-linear topologies with simple user
interaction.

In this paper our approach is different from localization
techniques as logical location is used instead of physical lo-
cation, yet localization is still a closely related topic. Here
we have a limited review about related localization tech-

niques [13] based on the requirements of the follow-me ap-
plication.

GPS [6] or other time-of-flight localization tech-
niques [10] need support from specialized hardware,
while some other techniques require little additional hard-
ware, such as connectivity [5, 3] or RF signal strength
based techniques.

Some form of infrastructure is frequently required for lo-
calization. Infrastructures can be GPS satellites, a groupof
sensor nodes with known locations [5, 3] or detailed maps
of environmental features, such as multi-source RF signal
strength information used in RADAR [1].

Finally, outdoor and indoor environments can make a
significant difference for localization. The interior of a
building (the scale here is larger than a single room) can be
challenging. In such an environment, GPS signal is blocked
by walls, multi-path effects are common for local radio
signals, and acoustic waves are constrained to individual
rooms.

Because of these difficulties, logical location informa-
tion from deployment order is especially valuable for in-
door applications.

The “resurrecting duckling” model is an analogy about
security mechanisms for small wireless devices [17]. In the
paper authors suggested using direct physical contact as
a method of authentication. Their method provides a very
simple solution compared to typical public-key-based au-
thentication or third-party servers. In some ways our use of
deployment order is similar, also using physical proximity
during deployment to infer logical connectivity, with both
avoiding the need for centralized infrastructure. The appli-
cation domains are quite different, however.

8. Future Work

Several extensions are possible for the follow-me appli-
cation. We describe two below that are related to concurrent
deployment and use as would be expected in a large deploy-
ment.

Guiding Concurrent VisitorsIn a large deployment it is
likely that multiple visitors will require guidance at the
same time. Disambiguation of separate paths will then be-
come an issue.

One approach to differentiate paths is to use different
light colors or blinking patterns for each visitor. Our current
hardware supports red and green lights and allows software-
controlled blink rates, so implementation of this approachis
straightforward. Another approach to reduce confusion of
concurrent paths would be to limit blinking to nodes within
visible ranges of each visitor. This approach would require
knowledge of visitor location, perhaps enabled by infrared
sensors or visitor carried radio beacons. Other approaches
might integrate visitor carried sensor nodes or PDAs more



completely, although such approaches reduce the simplicity
of our current approach. Exploration of these approaches is
an area of future work.

Concurrent DeploymentA different kind of concurrency
can occur at deployment time. For a large network we may
want to have multiple people deploy nodes at the same
time. If concurrent deployment happens at physically dif-
ferent locations that are out of radio range of each other,
then our current approach works unchanged. Each deploy-
ment can proceed in parallel and they can be manually con-
nected when completed. If deployments happen within ra-
dio range of each other we must have some way to assocate
nodes with each concurrent “trail”. Signal strength might
be a useful indication of trail affinity, providing a rough but
sufficient estimate of spatial distance. Alternatively, nodes
could be pre-programmed in the factory or just before de-
ployment to prefer associating with a designated group of
nodes.

9. Conclusion

We developed and evaluated deployment order, a new
method for configuration of logical locations of nodes. To
demonstrate the deployment order method, we implemented
and deployed follow-me, an application that can guide users
around buildings. We also evaluated the addition of land-
marks to compute estimated physical node locations from
logical locations.

These techniques are not appropriate for all sensor net-
work applications. We expect applications that require exact
physical location to warrant deployment and use of special-
ized hardware or infrastructure such as per-node GPS re-
ceivers, ultrasound, or other approaches. However, deploy-
ment order fills two roles not possible by these approaches:
a very small, light-weight approach for approximate loca-
tion when simpler software and minimal hardware is re-
quired; and the consideration of logical connectivity such
as “walkable connectivity” required by applications such as
follow-me.
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