
USC/ISI Technical Report ISI-TR-565 1

A Flexible and Reliable Radio Communication Stack on Motes

Wei Ye, John Heidemann

Information Sciences Institute

University of Southern California

Deborah Estrin

Computer Science Department

University of California, Los Angeles

September, 2002

1 Introduction

This technical report describes the radio communication stack on the Mica Motes developed at USC/ISI
and UCLA. It includes the architecture design, stack implementation, interfaces, and some testing and
measurement results.

Our design and implementation of the communication stack are focused on the flexibility, reliability
and efficiency. Some features are listed as follows, which are desirable for building different protocols
and applications.

• Different layers/components are free to define their own packet formats. They can freely add their
own headers to packets from their upper layers without causing interference.

• Packets with dramatically different lengths in fast consecutive transmissions can be reliably re-
ceived. The current supported maximum packet length is 250 bytes.

• A full-featured MAC protocol for sensor networks, S-MAC [1], is implemented on the stack. It pro-
vides advanced features such as effective collision and overhearing avoidance, reliable and efficient
transmission of long messages (can be much longer than 250 bytes), and low duty-cycle operations
on radio.

2 Architecture Design

One of our design goals is to provide a flexible stack architecture that allows protocols at different levels
can be easily built and compared with other similar protocols.

Application Layer

Transport Layer

MAC/Link Layer

Physical Layer

Routing Layer

Figure 1: Generic layered model for sensor networks.



CRC check

Encoding/decoding
Byte spooling/buffering

Carrier sense control
Backoff and retry

Fragmentation
Radio duty cycle control

RTS/CTS/ACK

Tx_pkt_done

Pkt_received

Handle_pkt_done

Tx_pkt

Tx_pkt

Tx_pkt_done

Pkt_received

Tx_byte

Tx_bytet_done

Byte_received

Free_processing_buffer

PHY_RADIO.c

MAC Layer

Physical Layer

Radio control
Carrier sense
Start symbol detection

Application/Transport/Routing/Diffusion

CODEC_MANCHESTER.c

SMAC.c

RADIO_CONTROL.c

Figure 2: Stack structure and functions.

2.1 Layered Model

We adopt the layered model in traditional computer networks, and try to efficiently build it on Motes and
TinyOS. The layers are intended to provide standard interfaces and services, so that various protocols
can be developed in parallel. Figure 1 shows the generic layered model for sensor networks.

Our communication stack implemented the physical layer and the MAC/link layer. Figure 2 describes
the detailed stack structure and functions of each component.

At the bottom, it is the component that controls the radio hardware. It provides clean interfaces for
upper layers to put the radio into different states: idle, sleep, transmitting and receiving. This is essential
for protocols that need to control the duty cycle of the radio. Physical carrier sense is implemented in
this component. However, it gives full control to MAC layer about when to start carrier sense and its
duration. The last important function in this component is detecting start symbol, synchronizing with
the incoming packet and receiving each bit of it.

The component above the radio control provides physical layer interfaces to upper layers. For trans-
mission, it accepts a packet from the MAC layer, calculates CRC, encodes each byte and spools it to
the radio control component. The radio control component will then transmit the byte on the radio.
For reception, the physical layer accepts each byte received from the radio, decodes it and checks CRC
when the entire packet is received. It will pass the received packet to the MAC layer with the CRC error
information.

On top of the physical layer, it is the MAC layer, whose basic function is to control the medium access
for collision avoidance. We implemented S-MAC on the stack, which provides many advanced features

2



compared with a basic CSMA MAC. First, for unicast packets, it uses RTS/CTS to solve the hidden
terminal problem. They are also used for overhearing avoidance to prevent a node wasting its energy
to receive data destined to other nodes. Second, its message passing function provides fragmentation
support and enables efficient transmission of a long message. ACK and retransmission are used for each
data packet/fragment for fast error recovery. Finally, it can put nodes into low-duty-cycle operations. In
this mode, nodes perform periodic listen and sleep. The duty cycle is adjustable by user. The current
default setting is 10%, i.e., listening for 150ms, and sleeping for 1.35s. If S-MAC operates in fully active
mode by disabling the periodic sleep cycles (work in progress), S-MAC becomes a protocol similar to the
IEEE802.11 [2] in ad hoc mode.

MAC layer accepts a packet transmission request from its upper layer. If its carrier sense and backoff
procedure successfully indicates that the medium is free it will pass the packet to the physical layer to
start transmission immediately. Otherwise, it will go to sleep, wait until next available time and retry
again. When the MAC layer receives a data packet from the physical layer without any errors, it delivers
the packet to its upper layer.

2.2 Packet Format and Buffer Management

This section describes some techniques for efficiently building the layered architecture on the resource-
constrained tiny nodes.

One of the advantages of the layered architecture is that each layer does not need to care about the
implementation details in other layers. In traditional computer networks, each layer maintains its own
buffers for packets to be transmitted and received. When a layer gets a packet to transmit from its
upper layer, it copies the packet into its own buffer, fills in its header fields and passes the new packet
to its lower layer. When it receives a packet from its lower layer, memory copy is also used and only the
payload is passed to its upper layer.

On the highly resource-constrained tiny nodes like Motes, it is too costly for each layer to maintain
its own buffers. Memory copy at each layer is also very inefficient. The TinyOS group at UC Berkeley
proposed an efficient solution [3], in which a common packet format is defined in a centralized place.
All components in the stack use the same fixed packet format, which includes header fields from all of
them. This way, if different components maintain their own packet buffers, the buffer size will be exactly
the same. It actually indicates that there is no need to maintain separate buffers. A common buffer
can be shared by all layers. The downside of the solution is that all layers have to stick to the same
packet format, which prevents them form defining their own packets and freely adding header fields in
the common packet. But this flexibility is essential for various protocols to co-exist.

We propose a new solution that provides the desired flexibility. Meanwhile, it maintains the same
efficiency with buffer sharing and without memory copy. The key idea is to use a nested header structure.

Each layer defines its own header structure, which is going to be added into packets coming from its
upper layer. The first field of its header is the header of its immediate lower layer. This way, the header
includes headers of all layers below it.

Let’s look at an example about how the nested header works. We assume that there are three layers
in the example: application, MAC and physical layer. The header of the physical layer only has one
field, packet length, which is the length of the entire packet. It uses a trailer field, the CRC, at the end
of each packet. The physical layer defines it header as

typedef struct{

unsigned char pktLength;

} PhyHeader;

Suppose the MAC layer has two fields in its header: the receiver’s address and transmitter’s address.
It will define its header as

3



phyHdr toAddr fromAddr

pktLength

macHdr seqNo payload CRCtype

AppHdr

AppPkt

PhyHeader

MACHeader

Figure 3: Application layer allocates a buffer for a packet using nested header structure.

typedef struct{

PhyHeader phyHdr;

short toAddr;

short fromAddr;

} MACHeader;

Suppose the application layer has two fields in its header: packet type and sequence number. It
defines its header as

typedef struct{

MACHeader macHdr;

char type;

char seqNo;

} AppHeader;

When the application layer defines a packet format, it includes its header first, and then the payload,
and then CRC as the last field.

typedef struct{

AppHeader appHdr;

char payload[length];

short crc;

} AppPkt;

For an outgoing packet, the application layer allocates a buffer for it. The buffer has reserved space
for headers of all lower layers. Figure 3 shows the allocated buffer in the above example. When the
buffer is passed down to each lower layer, the lower layer only needs to process its own header fields.

For an incoming packet, the physical layer provides a buffer. When an entire packet is received, it
passes the buffer to its upper layers. Similarly, each of them only needs to process the fields that belong
to itself.

Using the nested header structure, each layer is free to define its own packet types. For example, if a
protocol needs two types of control packets that have different header fields, it simply defines two packet
types for each of them. The only thing it needs to conform with is to put the header of its immediate
lower layer as the first field of its packets and put CRC as the last field.

3 Stack Implementation and Interfaces

This section describes the APIs that each layer provides to its upper layers and some features of imple-
mentation behind these APIs.

4



Code Code Rate Error Detection Error Correction
4B/6B 2/3 1 bit of 6 bits None

Manchester 1/2 1 bit of 2 bits None
SEC/DED 1/3 2 bits 1 bit

Table 1: Comparison of different coding schemes that have been implemented in TinyOS. They are all DC
balanced.

3.1 Physical Layer

The physical layer provides the following three groups of functions and APIs to its upper layer:

• Packet transmission and reception.
• Radio state control.
• Carrier sense and start symbol detection.

The APIs for packet transmission and reception are as follows.

char PHY_TX_PACKET(void* packet, unsigned char length);

void* PHY_RX_PACKET_DONE(void* packet, char error);

The first function is called by the upper layer when it wants to start a packet transmission. The
physical layer accepts any types of packets with arbitrary packet length up to the limit defined by
MAX_PKT_LEN. The default value of MAX_PKT_LEN is specified in phy_radio_msg.h, which can be overrid-
den by each application in its Makefile. The maximum allowed packet length by the physical layer is
250 bytes. Our measurement results show that the physical layer can very reliably transmit and receive
packets at this length.

When a packet is received, it signals its upper layer and passes the packet by calling the second
function listed above. CRC check is perform by default for each received packet. The packet and its
error information is passed to the upper layer. Passing an erroneous packet is necessary if the upper
layer tries to recover the error using techniques like packet-level forward error correction (FEC).

The channel coding scheme used in our stack is the Manchester code [4, 5, 6]. The radio transceiver
requires DC-balanced code for proper operation [7]. Manchester code is DC balanced — 0 is encoded to
01, and 1 is encoded to 10. It has the capability to detect 1 bit error in every 2 bits, since 00 and 11 are
invalid codes. We use this feature in the physical layer to detection errors in the ”length” field to avoid
receiving incorrect number of bytes in a packet.

Other codes that have been used in TinyOS are the SEC/DED (single error correction/double error
detection) code [8] and the 4B/6B code [7]. Table 1 compares these different codes. The code rate is
defined as the ratio of data bits to total bits after encoding. A high code rate indicates that information
content is high and coding overhead is low. The SEC/DED code is widely used in high-speed computer
memory systems. Its implementation in TinyOS makes sure that the output is DC-balanced. The 4B/6B
code encodes every 4 bits into 6 bits. It guarantees that the output is DC-balanced. It has the capability
to detect 1 bit error in every 6 bits.

The physical layer maintains two buffers. When a packet is received and passed to upper layers for
processing, it immediately switches to use the second buffer for receiving the next packet. It reduces the
chance of packet loss in the case that the second packet arrives immediately after the first packet. If only
one buffer is used, The physical layer cannot receive the next packet before upper layers finish handling
the current packet.

The radio has four different states: idle, sleep, transmitting and receiving. The APIs for radio state
control are as follows.

char PHY_RADIO_IDLE(void);

char PHY_RADIO_SLEEP(void);

5



The first function sets the radio into idle state, in which the radio tries to detect a start symbol.
Carrier sense can be started in this state. The second function sets the radio into sleep state. The radio
is turned off in this state and it cannot receive anything.

The function PHY_TX_PACKET that we described previously sets the radio into transmitting state. The
radio will automatically go to receiving state from the idle state when a start symbol is detected.

The APIs for carrier sense and start symbol detection are as follows.

char PHY_START_CARR_SEN(unsigned short numBits);

char PHY_CHANNEL_BUSY(void);

char PHY_CHANNEL_IDLE(void);

char PHY_START_SYM_DETECTED(void);

The upper layer can start carrier sense by calling the first function, in which it specifies how long
(in terms of number of sampled bits at a fixed sampling rate of 20Kbps) to monitor the channel. If the
radio detects a busy channel during the carrier sense, it signals the upper layer about it immediately by
calling the second function. The third function is called if the channel is sensed as idle for the entire
carrier sense time. The last function is called to signal the upper layer about the detection of a start
symbol. This group of functions helps the MAC layer to properly perform backoff procedures for collision
avoidance. They provide necessary support for any contention based MAC protocols.

3.2 MAC Layer

The MAC layer that we have implemented on the stack is S-MAC [1]. Most of the APIs and implemen-
tations described here are only applicable to S-MAC. However, our stack architecture is flexible enough
for people to build their own MAC protocol on top of the physical layer if they want.

The major APIs that S-MAC provides to its upper layer for sending and receiving a message are
listed as follows.

char MAC_BCAST_MSG(void* msg, unsigned char length);

char MAC_UCAST_MSG(void* msg, unsigned char length, short toAddr, unsigned char numFrags);

char MAC_TX_NEXT_FRAG(void* fragment);

void* MAC_RX_MSG_DONE(void* packet);

S-MAC uses different mechanisms to send broadcast and unicast messages. For broadcasting, only the
CSMA protocol is used. The first function listed above is called by the upper layer to send a broadcast
message. Before sending the message, the MAC performs carrier sense with randomized duration. If
carrier sense indicates that the channel is idle, the MAC will pass the message to the physical layer to
send it out immediately.

The CSMA protocol does not address the hidden terminal problem. Even if the channel is idle at
the time when the first node starts sending, a hidden node cannot detect the transmission by just doing
carrier sense, and thus may start sending in the middle of the first transmission, which results in collision.

The exchange of RTS/CTS is an effective way to solve hidden terminal problem, and is adopted
in S-MAC for unicasting. (Broadcasting cannot directly use this mechanism because of multiple CTS
replies.) Collisions can also happen on RTS packets. But since they are very short (10 bytes in current
implementation), the cost is much lower than the collision on a long data packet. However, if the data
packet is indeed very short, it is not worth to use the RTS/CTS. For this reason, S-MAC defines a
variable RTSThreshold that is used to turn off RTS/CTS if the length of a data packet is smaller than
it (work in progress).

Message passing is another feature for unicasting in S-MAC. It allows the upper layer to efficiently
transmit a long message, which can be much longer than the MAX_PKT_LEN set by the physical layer.
To use message passing, the upper layer needs to divided a long message into multiple fragments. The
length of each fragment should be smaller than MAX_PKT_LEN.

6



Functionality and features ISI stack Berkeley stack
Effective throughput 10kbps 13.3kbps
Radio bandwidth 20kbps 40kbps
Code rate of channel coding 1/2 (Manchester) 1/3 (SEC/DED)
Packet format Nested headers Fixed
- Layer-specific packets Supported Not Supported
- Layer-specific headers Supported Not Supported
- Variable length packets Supported Supported
- Memory copy across layers No No

Clear separation of MAC and PHY Yes No
Code size 8KB 4KB
Old & nesC formats Old only Old and nesC

Table 2: Functionality comparison of ISI stack with Berkeley stack: overall features.

Functionality and features ISI stack Berkeley stack
File names of components PHY RADIO CRC PACKET

STACK MANAGER
CODEC MANCHESTER SEC DED ENCODING

RADIO CONTROL NETWORK LISTENER
SPI BYTE FIFO
RADIO TIMING

SLAVE PIN SLAVE PIN
Buffers provided 1 for Rx/1 for processing 1 for Rx & processing
CRC check on Rx Progressive Check after Rx
Packet processing delay Fixed Varies w/ packet length
Coding scheme Manchester SEC/DED
Simple commands to turn radio on/off Yes No
Time stamping work w/ other components Integrated
Carrier sense interface for different MACs Yes No

Table 3: Functionality comparison of ISI stack with Berkeley stack: the physical layer.

To start a unicast transmission, the function MAC_UCAST_MSG is called. The arguments include the
receiver’s address, the length of each fragment and the number of fragments in this message. If there is
no fragmentation in the message, simply set the number of fragments to 1.

For each transmitted fragment, the transmitter expects an ACK packet from the receiver. If it receives
the ACK, S-MAC signals its upper layer. If there are more fragments, the upper layer calls the function
MAC_TX_NEXT_FRAG to transmit the next fragment. If the ACK packet is not received by the transmitter,
S-MAC will retransmit the current fragment for fast error recovery.

S-MAC calls the function MAC_RX_MSG_DONE to pass a received packet to its upper layer. Only packets
that are received without any errors will be passed for further processing.

4 Functionality Comparison with Berkeley’s Stack

This section gives a detailed functionality comparison of our stack with Berkeley’s stack in the standard
TinyOS release. The comparison is divided into three parts: overall features, the physical layer and the
MAC layer.

Table 2 compares the overall features currently provided by the two stacks. The main advantages of
ISI stack over Berkeley stack are the flexible packet format and the clear separation of MAC and the
physical layer (PHY). The nested header structure allows each component to freely define its own packet
formats and add its header fields in each packet from its upper layers. In Berkeley’s stack, there is only

7



Functionality and features ISI stack Berkeley stack
File names of components SMAC NETWORK LISTENER

RANDOM LFSR RANDOM LFSR
CLOCK

Broadcast CSMA/backoff CSMA/backoff
Unicast RTS/CTS/Data/ACK Data/ACK
- Address hidden terminal problem RTS/CTS No
- Retry on RTS lost Yes N/A
- Re-Tx data/fragment on ACK timeout Yes ???
- Fragmentation support Yes No
- Sleep while neighbors are talking Yes No

Low-duty-cycle operation Configurable No

Table 4: Functionality comparison of ISI stack with Berkeley stack: the MAC layer.

one packet format, which is used by all components. They are restricted on freely adding layer-specific
headers in the packet, since that may break other components. Clear separate of the MAC and physical
layers allows different MAC protocols can be easily built on top of the same PHY.

Table 3 compares the physical layer of the two stacks. Our stack is designed to reliably and efficiently
handle packets with dramatically different lengths. More importantly, it provides a clean interface to
support different MAC protocols. In Berkeley’s stack, the physical layer is tightly integrated with the
MAC layer. It becomes very difficult to build a different MAC on the stack.

Table 4 is the comparison at the MAC layer. One of the most important features that S-MAC provides
is the low-duty-cycle operation on the radio. It is able to make tradeoffs on latency for energy savings.

For broadcast, the two stacks use the same mechanism, i.e., CSMA with random backoff. For unicast,
S-MAC provides much more features (as listed in the table) than Berkeley’s MAC. These features make
the unicast much more reliable than broadcast. The fragmentation support provides an efficient way
(message passing) to transmit a message that is longer than the physical-layer limit.

5 Performance on Testbed Experiments

In order to characterize the basic performance of our communication stack, we have done testing and
measurement on the Mica motes. The primary version of Mica motes that are used at USC/ISI has
the radio operating at 433MHz. It comes with a matched external whip antenna. We have also done
some measurement on the version of Mica motes with 916MHz radio and an on-board antenna. As a
comparison, we have done some similar measurement on the communication stack in the TinyOS release.

5.1 Physical Layer Performance

We focus on two aspects of the performance of the physical layer. The first one is that if it is able to
efficiently and reliably handle packets with dramatically different lengths. The other one is the maximum
transmission range. The experiments are performed in a clean environment without strong noise and
interference.

In the first test, we use only one transmitter and one receiver with a distance of 1 meter between
them. The transmitter sends 3 groups of packets with a fixed length of 40, 100 and 250 bytes. Each group
has 100 packets being sent back-to-back, i.e., start sending the second packet as soon as the sending of
the first packet is done. The test is repeated for 10 times.

Table 5 shows the results using Berkeley stack and ISI stack. Berkeley stack has some systematic loss
of long packets being sent back-to-back. Then we add a fixed delay of 20ms between two consecutive
packets, and repeat the same tests. There is no systematic loss this time. Table 6 shows the new results.

8



Physical layer Packet length
40 bytes 100 bytes 250 bytes

Berkeley stack 100% 50% 50%
ISI stack 100% 100% 100%

Table 5: Reception rates of fixed-length packets being sent back-to-back.

Physical layer Packet length
40 bytes 100 bytes 250 bytes

Berkeley stack 100% 99.5% 99.3%
ISI stack 100% 100% 100%

Table 6: Reception rates of fixed-length packets being sent with 20ms packet interval.

In the second experiment, we measure the reception rate as the distance between the transmitter
and receiver increases. There are one transmitter and multiple receivers that are put along a line with
an equi-space of 1 meter. In this test, the transmitter sends 100 packets in a group with packet length
randomly changes between [10–250] bytes. Since Berkeley stack needs some packet interval to handle
long packets, we still put 20ms delay between two consecutive packets when testing Berkeley stack. When
testing ISI stack we send the variable-length packets back-to-back. The test is repeated 10 times for each
stack.

This test is performed in the hallway within the ISI’s building during a weekend. We put marks
on the location of each node to ensure that the same node is put at exactly the same location after we
change the communication stack on it. During the period of test, there are no people walking around,
and most doors are closed. (Some doors were open, but had kept the same positions during the entire
test.) This arrangement tries to keep the radio propagation conditions the same for all tests.

Figure 4 shows the reception rate at different distances using Berkeley stack and ISI stack. A close
look reveals that ISI stack obtained almost all 100% reception rate on the receivers whose distance are
between 1m to 16m. In fact, except the two receivers at 13m and 16m, who obtained 99.9%, all other
receivers within 16m achieved 100% reception rates. Now we look at the same communication range
when using Berkeley stack. Except the receiver at 7m, whose reception rate is about 40%, other receivers
obtained from 98.5% to 99.8%. The reason of the low reception rate on the receiver at 7m is not clear.
It could be caused by undesirable multipath propagations. However, the same node with ISI stack on
the same location obtained 100% reception rate.

On the other hand, Berkeley stack obtained longer transmission range. It acchieved 95.8% reception
rate at 20m. The transmission range of ISI stack is about 18m. After that, the reception rate decreases
very quickly. The longer transmission range of Berkeley stack is due to the coding scheme it adopts.
This is verified by the next experiment which uses ISI stack with different channel coding schemes.

The third experiment is performed along with the previous experiment at the same place and during
the same period of time. It compares different channel coding schemes with only ISI stack. The locations
of the sender and the receivers are exactly the same as those in the second experiment.

Figure 5 shows the measured reception rate at different distances. Each line is based on 10 tests.
The 4B/6B code has the minimum coding overhead, but it is not as robust as the other two. Using
SEC/DED code, ISI stack obtains similar results on transmission range as Berkeley stack. Moreover, all
receivers at the distances between 1m to 16m got 100% reception rate.

The SEC/DED code can correct single-bit errors in each byte after encoding. As distance increases
the received signal power decreases, so does the signal-to-noise ratio. As a result, the bit error rate
(BER) increases. The error correction capability of SEC/DED code increases the transmission range by
reducing the BER.

9



0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

110

Distance between transmittr and receiver (m)

R
ec

ep
tio

n 
ra

te
 (

%
)

Indoor transmission range: Berkeley stack vs. ISI stack

ISI stack     
Berkeley stack

Figure 4: Comparison of Berkeley stack and ISI stack on packet reception rates at different distances between
the transmitter and the receiver. Each line is based 10 repeated tests of 100 packets with packet length randomly
changes between [10–250] bytes.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

110
Comparison of coding schemes: SEC−DED, Manchester and 4b/6b

Distance between transmittr and receiver (m)

R
ec

ep
tio

n 
ra

te
 (

%
)

Manchester
SEC−DED   
4b/6b     

Figure 5: Comparison of different channel coding schemes on ISI stack measured by packet reception rates at
different distances between the transmitter and the receiver. Each line is based 10 repeated tests of 100 packets
with packet length randomly changes between [10–250] bytes.

10



0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

20

number of synchronized transmitters

pa
ck

et
 lo

ss
 r

at
e 

(%
)

Collision avoidance on broadcast packets

ISI stack     
Berkeley stack

Figure 6: Packet loss rate due to collisions from multiple synchronized transmitters. Each transmitter sends 20
packets in each test. Each point in the figure is based on 10 repeated tests.

5.2 Collision Avoidance in MAC

After measuring the physical layer performance, we have done a simple test to measure the collision
avoidance capability of the MAC layer of both Berkeley stack and ISI stack.

The experiment is designed to measure the packet loss rate at a single receiver, which is only caused
by collisions because of the synchronized transmissions from multiple transmitters. We use a control
node to send a packet to all transmitters. Upon receiving the control packet, each transmitter starts a
timer which fires every half second. A packet will be generated on each transmitter when its timer fires
if the previous packet is already sent out. Each transmitter sends 20 packets in each test. The nodes
take slightly different time to finish sending all their packets because of the backoff delay.

So far we have only done the measurement on broadcast packets. In this case, both Berkeley stack
and ISI stack are using CSMA, with only some difference in implementation details.

Figure 6 shows the packet loss rate due to collisions as the number of synchronized transmitters
increases. With a small number of transmitters, i.e., 2 – 4, Berkeley stack obtains better results. When
the number of transmitters are more than 4, ISI stack achieves better performance.

It would be interested to see the performance of unicast packets where the ACK and retransmission
can be utilized. We expect that the loss rate can be significantly reduced.

Another interesting experiment is to measure collisions over multi-hop networks, where hidden ter-
minal problem becomes an important issue. We expect the RTS/CTS mechanism can effectively resolve
it.

6 Summary

This report describes the design and implementation details about the communication stack on Mica
Motes developed at USC/ISI and UCLA. Experimental results are presented to characterize some per-
formance of the stack. Some comparison studies are also made with the communication stack developed
by the TinyOS group at UC Berkeley.

11



As mentioned earlier, we plan to do more testing and measurements on our stack, including through-
put and collision avoidance over multi-hop networks.

The following features will be available in S-MAC soon.

• A user-configurable threshold to control the use of RTS/CTS. If there is only one fragment and its
length is smaller than the threshold, RTS/CTS will not be used.

• A user-configurable option to completely turn off the periodic sleep. It is for some applications
that cannot tolerate the latency introduced by the sleep.

Acknowledgments

This work is in part supported by NSF under grant ANI-0220026 as the MACSS project, and by DARPA
under grant DABT63-99-1-0011 as the SCADDS project. The work is also support by the Center for
Embedded Networked Sensing (http://cens.ucla.edu/) and a grant from the Intel Corporation.

The authors would like to acknowledge the discussions from members of the SCADDS projects, the
TinyOS group (http://tinyos.millennium.berkeley.edu/) at UC Berkeley, and researchers at Intel Labs.
Specifically, we would like to thank Mark Yarvis and David Culler for their detailed feedback; Athanasios
Stathopoulos, Jerry Zhao and Naim Busek for testing the stack and in-depth discussions.

References

[1] Wei Ye, John Heidemann, and Deborah Estrin, “An energy-efficient mac protocol for wireless sensor
networks,” in Proceedings of the IEEE INFOCOM, New York, USA, June 2002, pp. 1567–1576.

[2] LAN MAN Standards Committee of the IEEE Computer Society, Wireless LAN medium access
control (MAC) and physical layer (PHY) specification, IEEE, New York, NY, USA, IEEE Std 802.11-
1999 edition, 1999.

[3] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister, “System
architecture directions for networked sensors,” in Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA, USA,
Nov. 2000, pp. 93–104, ACM.

[4] Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., New Jersey, USA, 3 edition, 1996.

[5] Wiliam Stallings, Data and Computer Communications, Prentice-Hall, Inc., New Jersey, USA, 5
edition, 1997.

[6] Roger Forster, Manchester encoding: opposing definitions resolved, http://www.engj.ulst.ac.uk/

sidk/quintessential/chapters/manchester.htm, 2000.

[7] RF Monolithics Inc., “Ash transceiver designer’s guide,” http://www.rfm.com/, 2002.

[8] Daniel J. Costello Jr., Joachim Hagenauer, Hideki Imai, and Stephen B. Wicker, “Applications of
error-control coding,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2531–2560, Oct.
1998.

12


