CS551 Syllabus—Spring 2006, Thursday Section

John Heidemann

December 1, 2006

Class meets Thursday, 9am to 11:50am, beginning January 12 and ending April 27 Spring break is March 16 and the stop period does not intersect classroom days. The date and time of the final is Tuesday, May 9, 8–10am.

Changes: This syllabus may be updated over the semester. The most recent version can always be found at the class wiki site.

8-Dec-05: no changes yet
18-Jan-06: fix date of class spring break.

Obtaining these papers: All of these papers are available from the CSci551 wiki site (see URL above) in PDF format. Because they are copyrighted they are available only for classroom use. The wiki sites is only available to students with wiki-specific accounts to enforce this; to get an account, go to http://www.isi.edu/~johnh/cs551.html and follow the instructions, or contact the professor or TA.

You are encouraged to download and print the papers. Downloaded they take up about 95MB storage. You're encouraged to print them out and make notes on them as you go. Because there are many papers and many, many pages, you are strongly encouraged to use a double-sided printer. You will need a 3-inch binder if you keep them that way. (If you have to pay for printing, you may find it cheaper to get together with other students to print one copy and photocopy additional ones.)

Some of the papers were scanned. These tend to have large (2–5MB) PDF files, and may look slightly fuzzy when printed. Some of the papers may not display well in Acrobat on the screen, but they all should look reasonable when printed.

In SP2005 we tried making hardcopies of the papers available to students. Unfortunately, USC requires that we charge for these (to recover the costs of reproduction), and the copyright owners (ACM, IEEE, etc.) insist that if there is any charge, then they must get a copyright fee. The total fee for the entire paper set was well over $250, and it was still more than $100 even if the optional papers were eliminated. For this reason I do not plan to make hardcopies available.

In this syllabus, I indicate “new” by papers comparing what’s different relative to the last section of CSci551 I taught.

1 Reference and background

Supplementary:
All of the textbooks are *optional*. Peterson and Davies and Keshav provide an overview of some of the topics we talk about. They provide helpful background and are generally broader and more consistent in their coverage of networking, but less deep on the subjects we cover in class.

General background about networking: [Peterson00a]

(The Stevens *TCP/IP Illustrated* books are also excellent references relating the RFCs to the BSD code, but are less useful for class.)

Class 1 (Jan. 12):

Primary: Tips for reading papers: [Hanson99a]

Another viewpoint of paper reading [Jamin97b]

What to look for in a paper: [Levin83a]

2 Design principles

Class 2 (Jan. 19):

Primary: The Internet architecture: [Clark88a]

The Internet architecture, 10 years later: [Deering98a]

The end-to-end argument: [Saltzer81a]

Naming: [Saltzer82a]

Supplementary: More about the end-to-end argument: [Blumenthal01a]

How “tussles” affect network architecture: [Clark02a]

3 Unicast Routing

Class 3 (Jan. 26):

Primary:

Review of unicast and distance vector routing: [Papadopoulos00a]

Stranger kinds of routing: [Tsuchiya88a]

Potential routing problems: [Labovitz00a]

Supplementary: Supplement with detailed BGP information: [Stewart99a]

Synchronization as a pervasive problem, demonstrated here in routing: [Floyd94b]

NEW: Historical perspective on Internet routing: [Narten89a]

Class 4 (Feb. 2):

Primary:

Routing stability and oscillation: [Shaikh00a]

Routing hierarchy and policy: [Gao02a]

Supplementary: Consider the impacts of policy on routing: [Tangmunarunkit01a]

Classic cases where peerings result in oscillations: [Griffin99a]

4 Transport protocols, Congestion Control, and Queue Management

Class 5 (Feb. 9):

Primary: Congestion control from first principles: [Ramakrishnan90a]

TCP and congestion control: [Jacobson88a]

Modeling TCP: [Padhye98a]

Supplementary:

NEW: An early academic paper on TCP, prompting the 2004 Turing Award to its authors: [Cerf74a]

Explicit congestion notification (a version of adding DECbit to the Internet): [Ramakrishnan99a]

NEW: A recent look at a two-bit feedback from routers: [Xia05a]

An alternative, delay-based approach to detect congestion (current research uses the similar “FAST TCP”): [Brakmo94a]

Primary: Active queue management, such as fair queueing: [Demers89a]

Random early detection: [Floyd93a]

XCP and non-TCP congestion control: [Katabi02a]

What characteristic should we have in a network? [Floyd99b]

5 Differentiated and Integrated Services

Class 7 (Feb. 23):

Primary: Quality of service and admission control: [Shenker95a]

Lighter-weight QoS: [Stoica03a]

Supplementary: Resource reservation and RSVP: [Zhang93a]

6 Wireless and Mobile Networking

Class 8 (Mar. 2):

Primary:

Ad hoc routing: [Johnson96c]

Non-IP routing in sensor networks: [Intanagonwiwat00a]

MAC protocols: [Bharghavan94a]

Wireless propagation characteristics: [Aguayo04a]

Supplementary: NEW TCP interactions with wireless: [Balakrishnan97c]

Resource discovery: [Waldo99a]

A survey of sensor net research: [Heidemann04a]

7 Midterm and Spring Break

Class 9 (Mar. 9): midterm exam The midterm exam will be half of the class period, with lecture the other half.
Spring break: March 16, no class.

8 Modeling Network Traffic

Class 10 (Mar. 23):

Primary:
Self-similarity in LAN traffic: [Leland94a]

And in WAN and web traffic: [Crovella97a]

Packet-level network dynamics: [Paxson99b]

Internet topology: [Li04a]

Supplementary: More information about potential causes of self-similarity: [Feldmann99a]

9 Web Protocols and Caching

Class 11 (Mar. 30):

Primary: HTTP and TCP: [Padmanabhan95a]

Web caching and cache consistency: [Wolman99a]

Supplementary: Transport Layer Security (used in https): [Dierks99a]

10 Multicast Routing, Transport, and Applications

Class 12 (Apr. 6):

Primary:
Multicast routing: flood-and-prune, rendezvous: [Deering88b]

An alternate take at multicast: [Holbrook99a]

Multicast video/audio and real-time multimedia.
Primary:
Reliable multicast and SRM: [Floyd97c]

File distribution and coding: [Byers98a]

Supplementary: Multicast at the application layer: [Chu02b]

Multicast and congestion control via layering: [McCanne96a]

Multimedia: [Bolot98a]

11 Security

Class 13 (Apr. 13):

Primary: Denial of service attacks: [Hussain03b]

Worms and viruses: [Moore03a]

Supplementary: IP traceback: [Snoeren01b]

Worm propagation: [Staniford02a]

Unfortunately there is not time to talk about security and network protocols in CSci551. CSci555 provides a good coverage of security from an operating systems perspective; see the papers by Voydock and Kent and Needham and Schroder there.
12 Peer-to-peer storage

Class 14 (Apr. 20):

Primary:
Freenet and anonymous peer-to-peer file sharing: [Clarke02a]

Efficient peer-to-peer storage: [Stoica00a]

Geographical peer-to-peer storage: [Ratnasamy02b]

13 Current topics

Class 15 (Apr. 27):

Primary:
Peer-to-peer traffic loads and self-similarity: [Gummadi03a]

NEW traffic engineering: [Kandula05a]

A crazy idea, or a business model? [Wang04b]
14 Other Topics

These are topics we cannot cover but that are considered in some similar network courses. All these materials are supplementary.

Supplementary: Router design: [Partridge98a]

Optical networking: [Mukherjee00a]