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Abstract

This paper describes the ASP Execution Environment
(EE), a prototype general-purpose active network execu-
tion environment that initiates and controls the execution
of Java-based active applications. Features of the ASP
EE include support for persistent active applications, fine-
grained network I/O control, security, resource protection,
and timing services.

1. Introduction

The DARPA active network research program is devel-
oping mechanisms for dynamically deploying portable net-
work software inactive nodes, which may be programmable
routers, middle boxes, or end systems. Early active network
research used acapsulemodel, in which anactive packet
called a capsule would carry code and data to be executed
in each active node (for example [19, 11, 18]). More recent
work has used an approach that is often more practical: an
active packet carries only a reference to portable code, so
each active node that is visited by an active packet can fetch
and execute the referenced code [20, 4]. In either case, ac-
tive networking creates self-deploying network software.

The basic unit of active network programming is called
anactive applicationor AA. Execution of AA code may af-
fect the data plane, the control plane, or the management
plane of a router; active network research projects have
experimented with each of these cases. To provide secu-
rity and portability, AA code typically uses some platform-
independent type-safe language, such as Java.

The active network architecture [6] introduces three
generic software components to support AA execution: the
execution environmentor EE, thenode operating system

�Funding for the development of the ASP EE was provided by DARPA
ITO under contracts DABT63-97-C-0049 (ARP) and DABT63-99-C-0032
(ACTIVATE).

or node OS, and theuser applicationor UA. Each AA is
written to execute within a specific execution environment.
Each EE should be capable of supporting multiple AAs si-
multaneously. AAs may be highly dynamic but an EE is
expected to be a stable feature of an active node. An active
node is controlled by a node OS that is expected to support
simultaneous execution of multiple EEs.

Finally, an active packet flow is initiated by some user
application (UA). A UA might be an application executing
within the normal operating environment of a user’s end
system, or it might be a proxy or other control program
within the network, for example.

Two approaches to EE design have emerged, thestrong
EE modeland theweak EE model[3]. An EE following the
strong model is effectively a user-level operating system to
control AA execution; AAs obtain most of their essential
services, such as execution resources and network I/O, from
the EE, while the EE in turn gets its services from the node
OS. Under the weak EE model, the EE is only a set of li-
brary routines containing useful functions, while AAs ob-
tain their essential services directly from the the node OS.

Under the strong EE model, the node OS must mediate
among the EEs and isolate them from each other, and it must
protect the node and network by enforcing limits on each of
its EEs. An EE must in turn isolate and control AA execu-
tion, so that an AA cannot harm other AAs, the EEs, or the
node OS. Under the weak EE model, on the other hand, the
node OS directly isolates and controls AA execution.

This paper describes a prototype Java-based execution
environment, theASP EE.1 The design of the ASP EE
was shaped by the requirements for dynamic deployment of
complex control-plane functions such as network signaling
and management. The ASP EE therefore includes support
for persistent active applications, fine-grained network I/O
control, security, resource protection, and timing services.
On the other hand, it does not support capsules, i.e., it does

1“ASP” stands forActive Signaling Protocol, although the ASP EE is
applicable to a wide variety of network control applications.



not carry active code “in-band” within an active packet, be-
cause a single network-layer datagram is too small to carry
code for other than toy algorithms.

Section 2 summarizes the main features of the ASP EE
(or simply “ASP”). Section 3 describes the design and im-
plementation of ASP in more detail. Section 4 briefly
describes some active applications that have been imple-
mented for ASP, and Section 5 compares ASP with previous
work. Section 6 concludes the paper.

2. ASP EE Overview

The ASP EE implements the strong EE model; thus, ASP
sub-allocates resources among AAs, isolates AAs from
each other, and protects itself and the node OS from the
AAs. The ASP EE plays the role of “kernel” to its AAs.

ASP has three major interfaces: “downward” to the node
OS, “upward” to its AAs, and (in end nodes) “sideways” to
UAs, as indicated in Figure 1.

� EE/Node OS interface– The ASP EE was devel-
oped to execute under a Unix-based node OS, so its
EE/Node OS interface generally follows the Posix
standard. An important exception is the network
I/O portion of this interface, which is based on the
I/O interface of the reference standard [16] for the
EE/Node OS interface. This reference interface in-
cludes a network I/O abstraction that is based upon
channelsrather than the standard Posixsocketabstrac-
tion. The ASP EE implements this channel abstraction
using an adaptation module callednetiod (Network I/O
Daemon)[2, 3]. Netiod executes within Unix and ex-
ports an interface based on the channel abstraction.2

� AA/EE interface – PPI – The AA/EE interface is
called theprotocol programming interfaceor PPI [17].
The PPI is a “system call” interface that is used by AAs
to obtain communication and resource-related services
from the ASP EE.

� UA API – This interface allows a user application
(which may range from a simple GUI to a complex
subsystem) to initiate active packets. The UA API
is built upon a local IPC mechanism (Section 2.4) to
communicate with an instance of the ASP EE on the
same node.

The PPI interface includes the following functional ar-
eas:

� Process Management (Section 3.1)
2For operation within the initial ABone active networks testbed [3],

ASP can alternatively be configured to receive input packets from standard
input and to send output packets using the JVM-supported socket interface.
ASP hides this choice from AAs.
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Figure 1. Active Node Architecture

� Network I/O (Section 2.1)

� Timer Services and State Repository (Section 2.6)

� Routing (Section 2.7)

� Traffic Control (Section 2.7)

Like ASP’s EE/Node OS interface, the network I/O func-
tions of the PPI are based on the channel abstraction (see
Section 3.7). For an EE that used the weak EE model,
the EE/Node OS interface would be exposed directly to
an AA. Since the ASP EE uses the strong-EE model, it
could present different I/O models “upwards” to AAs (i.e.,
through the PPI) and “downwards” to the node OS. How-
ever, the ASP EE uses the channel abstraction model in both
interfaces in order to (1) simplify porting an AA to a differ-
ent EE, and (2) simplify the logic of the EE’s implementa-
tion of network I/O. We refer toPPI channelsandnode OS
channelsto distinguish the two interfaces. Although both
PPI channels and node OS channels use the same channel
abstraction, there are important differences in detail that are
discussed later (Section 3.8.)

The channel abstraction provides a uniform and flexible
interface for demultiplexing incoming packets using packet
filters and for sending packets with appropriate encapsula-
tion. It allows an EE or AA to access the native protocol
stack of the node OS. The channel abstraction also provides
a convenient notation for describing network I/O options.

The ASP EE is designed to support bothpersistentAAs
that have persistent execution threads andtransientAAs
that execute once and terminate. For example, a transient
AA might be used to query and report local state, while a
persistent AA might be used for signaling or routing. Either
AA type may maintain persistent state in a node.

A persistent AA may support multiple independentac-
tivities. For example, a signaling AA should be able to



handle any number of independent signaling activities si-
multaneously, while a routing AA would typically support
a single activity, the local routing computation.

The ASP EE may be configured to load a specific AA at
boot time. However, the power of active networking arises
from the ability to dynamically load AAs upon request from
active packets. Since the code to implement realistic net-
work control algorithms is typically too large for an indi-
vidual capsule, each active packet for the ASP EE carries
anAAspeccontaining a reference to the code for an AA3.

An AAspec contains (1) anAAnamethat is a globally
unique name for the AA, (2) a search path specifying one
or more locations from which classes that compose the AA
can be fetched, and (3) the name of a primordial Java class
specific to the AA and known as theAAbaseclass (Section
3.3). An AAspec is encoded as a variable-length text string
in a format defined in the Appendix. A.

As an operating environment for active applications, the
ASP EE must provide OS-like functions such as network
I/O, resource protection and security, inter-AA communica-
tion, and timing services. Resource protection and security
are central issues, since an ultimate goal of the ASP EE is
to allow safe execution of untrusted user-supplied AAs. To
support active networking, ASP needs to support dynamic
loading of AA code and to support the UA API. Because the
ASP EE is designed for activating complex control-plane
functions, it supports two additional features: sharable AA
code and dynamic class name binding. All of these features
of the ASP EE are discussed in the remainder of this sec-
tion.

2.1. Network I/O

The node OS and an EE must cooperate to dispatch re-
ceived active packets to the appropriate AAs and to allow
these AAs to send packets into the network. An ASP AA
can receive a packet that is addressed to itself or it can inter-
cept a packet from the node’s forwarding path. Receiving
a packet addressed to the AA requires two demultiplexing
steps: (1) the node OS demuxes the packet to the EE, for ex-
ample using thetypeIDfield in the ANEP (Active Network
Encapsulation Protocol)[1] header, and (2) the EE demuxes
the packet to an AA in an EE-specific manner. If the target
AA supports multiple activities, it may have to perform a
further AA-specific demuxing to a particular activity.

Intercepting packets makes use of an essential feature of
active node architecture [6]: programmable packet filters
in the packet forwarding path. An AA can open aninput
channelthat will insert a filter to capture an arbitrary subset
of the input stream (under security limitations), demuxing

3However, no AAspec is required in the packet when ASP is configured
to map particular legacy packets into pre-configured AAspecs, as described
in Section 2.3.

packets to the AA via the EE. The ASP EE supports this
interception mechanism.

The network control and management applications tar-
geted by the ASP EE require fine-grain control over net-
work I/O. For example, an AA may need to learn the net-
work interface (real or virtual) through which the packet
was received or the network-layer source address or the
TTL with which a packet arrived. Similarly, an AA may
need to explicitly set the source address with which a packet
is sent (not necessarily to one of its own interfaces), set the
packet TTL, or explicitly control the outgoing interface.

2.1.1 Network Access Modes

The ASP EE supports two network access modes: native IP
connectivity and virtual connectivity [3].

� Native IP connectivity– This mode gives AAs direct
access to the Internet protocol stack, including the abil-
ity to intercept packets for which this node is not the
destination.

� Virtual connectivity– In this mode, ASP EE instances
in different active nodes are interconnected byvirtual
links formed by UDP/IP tunnels, creating a virtual
topology among nodes running the ASP EE. The IP
address and the UDP destination port of a tunnel end-
point define thevirtual link layer (VLL) address of a
virtual interface.

An AA operating in virtual connectivity mode may build
its own virtual protocol stack on top of the virtual link
layer. However, for the convenience of AA builders the ASP
EE includes a component calledVNET that implements a
simple user-space virtual protocol stack, as described in
Section 3.9. VNET implements virtual layers 2 (link), 3
(network), and 4 (transport) of the OSI protocol reference
model. VNET also provides default (unicast) forwarding
in the virtual internetwork topology, using a routing table
(more accurately called a forwarding information base or
”FIB”). ASP EE configuration files define the initial virtual
link layer (VLL) interfaces and the initial FIB entries within
VNET. An AA with the appropriate permission (Section
2.2) can issue PPI calls to dynamically modify this boot-
time information, adding or deleting VLL interfaces or up-
dating routing entries in the VNET FIB. In particular, a priv-
ileged routing AA called Jrip (Section 4) updates the VNET
FIB to implement dynamic routing in the virtual topology.

2.1.2 Network I/O Primitives

This section discusses the network I/O interface that the PPI
presents to AAs. As noted earlier, this interface uses an
extended version of thechannel abstractionof the EE/Node



OS reference interface [16].4 ASP implements two kinds
of PPI channels: input channels (InChannels) and output
channels (OutChannels).5 The network I/O implementation
in the PPI is described in Section 3.8 below.

The call to open an InChannel specifies a packet filter to
select a subset of the input stream. Following the EE/Node
OS interface model, the ASP EE uses anupcall model to
deliver incoming packets to an AA. TheAAbaseprimordial
object whose name appears in the AAspec must implement
the following upcall method6:

receivePacket(InChannel chan,
NetBuffer msg,
Attribute R-attrib)

The chan parameter specifies the InChannel through
which the packet arrived, while themsgparameter specifies
a receive buffer containing the packet. TheAttribute
object specifies important protocol fields of the packet, in-
cluding the actual values that matched wildcards in the In-
Channel parameters (Section 3.7). TheAttribute ob-
ject is readily extensible to return additional fine-grained
attributes of the packet.

An AA sends a packet with a PPI downcall, using the
following method of anOutChannel object:

sendPacket(NetBuffer msg,
AddressNet dest,
Attribute S-attrib)

This call specifies the destination address using an
AddressNet object, which may be an IPv4 or IPv6 ad-
dress in native IP mode or a VNET network-layer address in
virtual connectivity mode. TheAttribute object speci-
fies other values to be sent in specific protocol fields, over-
riding OutChannel parameters.

See Section 3 for more information on network I/O in
the ASP EE.

2.2. Security and Isolation

The EE protects itself from an untrusted AA by a com-
bination of static and dynamic means. The scope rules of
the Java language (e.g., the package mechanism) provide
static protection for internal EE variables that need not ap-
pear outside the EE. The EE provides dynamic protection of
other variables by installing a custom Java Security Man-
age, which blocks illegal access requests from an AA to
either the JDK or the EE.

4However, the ASP EE can also be configured to usesocketI/O to the
Posix interface, at the sacrifice of significant flexibility.

5ASP does not currently implement the cut-through channels of the
EE/Node OS interface spec [16].

6The IOException clauses are omitted here from the sendPacket and
receivePacket calls.

The AA is the unit of security and isolation within the
ASP EE. The ASP EE must preventboundary violations
andresource violationsby an AA. In a boundary violation,
one AA makes unauthorized changes to the data or code of
another AA or to the rest of the system. In a resource viola-
tion, an AA uses to excess some resource that it is permitted
to use.

The ASP EE protects against AA boundary violations
using Java’s strong typing and safe references. Since an AA
cannot access a field in a class for which it does not have a
reference, one AA cannot access the state of concurrent or
previously-executingAAs. The EE is constructed to prevent
“leaking” of AA references to other AAs by passing all PPI
parameters by value, i.e., as references to cloned copies.
This cloning is done by the callee (usually the EE).

An (unprivileged) AA is also prevented by the EE from
sending a packet containing an AAspec that is not its own,
so one AA cannot spoof another. Finally, each AA is given
an isolated subspace of the system file space, and the EE’s
security manager prevents an (unprivileged) AA from ac-
cessing files outside this subspace. File system access is
needed at least for utility functions such as reading AA con-
figuration files and writing and manipulating AA log files.

The ASP EE’s protection against resource violations is
limited to approximate fair-sharing of the CPU among AA
threads (see Section 3.1). Other major resources – e.g.,
memory and network output bandwidth – are not currently
protected by the ASP EE.

The ASP EE is intended to support some trusted AAs
that perform basic signaling and management functions for
the node and which therefore need access to node control
functions. However, ASP is also intended to safely execute
untrusted AAs. This conflict is resolved by guarding sensi-
tive control functions with permissions that are granted only
to privileged AAs; see Table 1. Permissions are granted to
AAs by an EE configuration file, which is consulted at the
time of AA loading.

There are current limitations of the ASP EE’s security
mechanism. First, ASP does not support user authentica-
tion, so AA permissions cannot be determined by the user
or user group that initiated an active packet. There is a pro-
posal for a certificate-based end-to-end authentication sys-
tem for this purpose [10]. Second, given that AA permis-
sions must be based upon AA identity, ASP should prevent
an intruder from spoofing an AAname and causing a rogue
version of an AA to load and execute. A code signing mech-
anism is needed to prevent this.

2.3. Loading AAs

To dynamically load an AA, the EE must receive or in-
tercept an active packet and determine its AAspec. The
AAspec may be determined in any of several different ways,



Permission Permission
Name Meaning

interface Can modify VNET virtual interface table.
route Can modify VNET route table.
divert Can perform arbitrary packet intercept.
process Terminate another AA.
file Can read/write outside AA file subspace.
socket Can use JDK sockets interface rather than

than channel-based PPI. (Useful for
legacy or third party software.)

native Can load native code into the JVM.
noaaspec Can suppress EE generation of

AAspec in outgoing packets.

Table 1. AA Permissions in the ASP EE

as discussed below. No matter how it is determined, the
AAspec contains the AAname and a search path. ASP uses
the AAname to locate the AA if it is already loaded, or it
uses the search path to locate and load the byte code for
the primordialAAbaseclass (Section 3.3) of that AA and
instantiate this object. In either case, the EE then passes
the packet to the AA via areceivePacket upcall in
the AAbaseobject. Subsequent references to missing AA
classes cause the JVM to use the same search path to load
the missing classes.

Loading across the network uses a reliable transport pro-
tocol, either the legacy protocol TCP with native IP con-
nectivity or a Java-based implementation of RDP [15] with
virtual connectivity.7

A search path can include multiple locations; the ASP
EE will try each in turn until it succeeds. Each loca-
tion can be the network address for a code server, ei-
ther an HTML server or an ASP-specific server (actually
a specially-configured copy of the ASP EE.) Alternatively,
a location can be an implicit reference to the previous-hop
node from which the packet arrived; this option provides
hop-by-hop deployment of AA code, a technique intro-
duced by the ANTS EE [20].

The ASP EE implements multiple ways to determine
the AAspec for an incoming active packet, to provide flex-
ibility in support of a variety of experimental situations.
The AAspec may be: (1) carried explicitly as an ASP
header prefixing the AA payload, (2) defined implicitly by
an EE-specified packet filter that maps a subset of incom-
ing packets into a pre-configured AAspec, or (3) encapsu-
lated within the AA payload using some AA-specific syn-
tax. Case (3) is intended for interworking with legacy non-

7RDP was built into the ASP EE to provide the experimental option of
building an entire active protocol stack, using no legacy protocols above
the link layer. See [9] for a description of the properties of RDP and an
overview of its implementation in Java.

active protocols.8

The choice among these cases is controlled by an ASP
configuration file,asp.conf . The three cases are deter-
mined by lines of the following forms in the configuration
file:

� Case (1) – AAspec explicitly in packet:

"InChannel <ChanParms> invokes *"

� Case (2) – AAspec implied by ChanParms match:

"InChannel <ChanParms>
invokes AAname <AAname>"

� Case (3) – AAspec encapsulated within AA payload:

"InChannel <ChanParms>
invokes Legacy <AAname>"

At boot time, the ASP EE will open an InChannel with
the parameters specified by<ChanParms> , for each line
in the configuration file. When an arriving packet (or UA
API message; see Section 2.4) matches these parameters
and is delivered to the EE, the EE will use the configuration
clause following theinvokes keyword to determine the
AAspec. The asterisk in case (1) implies that the AAspec is
to be found in the packet; in cases (2) and (3), the configura-
tion line implies an AAname that is mapped into a complete
AAspec using another ASP configuration file.

After loading a new AA, ASP will deliver the in-
coming packet (or UA API message) to that AA via
a receivePacket upcall that specifies animplicitly-
opened PPI InChannel. The EE will use the same
implicitly-opened PPI InChannel to pass to that AA all
subsequent packets that match the same<ChanParms>
parameters and determine the same AAspec. Such an
implicitly-opened PPI InChannel will have the attributes
specified in the<ChanParms> of the matching config-
uration file entry. It is possible for an AA to have mul-
tiple implicitly-opened InChannels as the result of multi-
ple matching configuration file entries. Once it starts, an
AA may explicitly open additional InChannels as well as
OutChannels.

The <ChanParms> parameter can specify filtering in
either the native IP protocol space or in the virtual protocol
space created by VNET. The encoding of this parameter is
discussed later in Section 3.7.

8Note that putting the AAspec into the payload creates an apparent cir-
cularity: since the encapsulation is AA-specific, it would seem that the AA
must be loaded to scan the packet for the AAspec that is needed to load the
AA. This circularity is avoided by mapping the packet to the AAspec for
a service-specific transient AA that only extracts the real AAspec from the
packet.



2.4. User Application API

The UA API is used by UAs (user applications) to launch
activities using specific AAs. The ASP EE uses a TCP con-
nection for IPC between the UA process and the EE pro-
cess.9

UA API TCP connections appear as PPI channels to the
AAs. An AA can thus be dynamically loaded by request
from a UA as well as by the arrival of an active packet. To
initiate an activity, a UA opens a TCP connection to a well-
known TCP port in the ASP EE and sends the first request
message. The same configuration mechanisms described
in Section 2.3 are used to determine an AAspec from the
incoming message and to dynamically load the AA if it is
not already loaded. The UA’s message then arrives at the
AA through an implicit UA API channel (Section 3.7). API
InChannels and OutChannels are identical; to send a reply
to a UA, the AA casts the implicitly-opened InChannel into
an OutChannel for a call tosendPacket() .

2.5. Inter-AA Communication

The PPI implements an inter-AA communication (IAC)
facility, again using PPI channels. An InChannel and an
OutChannel belonging to (the same or) different AAs can
form a unidirectional IAC pipe. The writer AA creates
the pipe by opening an OutChannel specifying IAC, the
AAspec of the reader AA, and an IAC pipe name. This cre-
ates an implicit InChannel for the reader, which uses a nor-
mal receivePacket() upcall to receive messages sent
by the writer AA. This mechanism assumes that the AAspec
and the pipe name will be known to both parties by prior
agreement; there is no rendezvous mechanism in the current
ASP EE. Pipe data is passed by value, so references cannot
leak between AAs. Multiple IAC pipes between the same
pair of AAs are distinguished by the connection names set
by the writer AA. The reader AA can reject the open request
by closing the channel, causing the writer AA to receive an
end-of-file exception from its next write request.

2.6. Timer Services

Most non-trivial network control protocols need a timer
service for retransmissions, timeouts, sending periodic soft-
state refresh messages, etc. An ASP AA can spawn its own
persistent (ASP) threads for timing (Section 3.1). However,
for the convenience of AAs, the ASP EE provides a timer
service combined with a state repository mechanism. The

9Note that a TCP connection works remotely as well as locally, so the
UA API can be used to inject an active application into a remote active
node, “tunneling” through the Internet. Thisremote UAcapability has
proven very useful for remote management of ASP EE instances in the
ABone [3] active networks testbed.

state repository allows an AA to instantiate multiple pri-
vate name-to-object mappings or “tuple spaces”, which are
called (soft)state containers. Associated with each tuple in
a state container are two timers: atimeouttimer that dis-
cards the entry after a specified interval, and arefresh timer
to periodically trigger an upcall to send refresh messages to
neighboring nodes.

A state container is therefore a repository for a set of
4-tuples: {Key, Value, RefreshT, TimeoutT} .
HereKey is a key for retrieving the tuple,Value is the ob-
ject being stored, andRefreshTand TimeoutTare refresh
and timeout time intervals, respectively. Expiration of either
timer causes an upcall to a corresponding method specified
in a helper class. Expiration of the timeout timer deletes
the tuple from the state container before the upcall is per-
formed. If either interval is negative, the corresponding up-
call and/or deletion does not occur. A negative timeout time
implements hard state, which may be useful for some per-
sistent applications, although soft state is to be generally
preferred.

State containers are created and accessed by ASP EE li-
brary routines, including methodsget, put, andremove. A
state container is local to an AA so it cannot allow refer-
ences to leak to another AA. A state container therefore
cannot be used for inter-AA communication; the IAC fa-
cility described above must be used instead. An AA must
maintain in its local context the handle for each state con-
tainer it creates.

2.7. Other Services

In order to support control-plane functions, the ASP
EE should provide a (privileged) AA with direct control
over facilities in the packet forwarding path. This includes
access to forwarding tables (FIBs) and packet scheduling
mechanisms in both the real and virtual modes. Currently,
support in these areas is only partial, and the PPI interfaces
are not unified between native IP and virtual connectivity.

In the virtual connectivity mode, the PPI provides the
ability to read, update, and receive change notification for
the virtual FIB in VNET. There is not packet scheduling
currently implemented in VNET.

In the native IP connectivity mode, the PPI provides ac-
cess to a multicast FIB maintained by mrouted, the multi-
cast routing daemon using the DVMRP protocol. ASP does
not currently provide access to the native unicast FIB of the
node. An AA does have access to a traffic control inter-
face designed for the RSVP protocol [5] and extended for
an active filtering application [22].



2.8. Sharable AA Code

The widespread application of active networking tech-
nology in the real world may result in the proliferation of
large and complex AAs. Furthermore, the ease of deploying
new versions of a protocol with active networking may lead
to a proliferation of AAs representing different versions of
the same service, to introduce new features and for user-
specific customization. The result may be many AAs that
could share a great deal of code in common.

To reduce the memory footprint for such active applica-
tions, the ASP EE supports the sharing of common class
byte code among different AAs. The mechanism for ac-
complishing this in Java is described in Section 3.4. The
class inheritance mechanism of an object-oriented language
like Java naturally supports such code sharing. Inheritance
allows the selective modification of individual methods and
fields of a classCx, by defining a new class versionCy that
extendsCx. The common methods and fields ofCx need be
loaded only once.

However, the sharable byte code capability creates sev-
eral technical problems for the ASP EE.

1. Sharable byte code severely restricts the usefulness of
thestatic attribute in AAs. Normal Java class defi-
nitions may contain data with thestatic attribute,
or they may usestatic initialization to set data val-
ues when a class is loaded. In either case, data val-
ues are created that can be read or written by any AA
sharing the same byte code. This would violate the
isolation of AAs and hence is not permissible under
ASP. The ASP EE must therefore provide a mecha-
nism to replacestatic variables and static initializ-
ers in sharable byte code. This replacement isAA-local
data(AA-LD), described in Section 3.2.

2. To make shared code useful, the ASP EE must support
dynamic bindingof class names, as described in the
next subsection. Suppose that two AAs share a com-
mon class C1 but use different versions of class C2,
and that a method M1 in C1 constructs a new instance
of C2. The particular version of C2 to be constructed
depends upon which particular AA is executing M1.
That is, the name used for C2 must be dynamically
bound in C1.

3. For reasons described in detail in Section 3.4, the ASP
EE implements shared byte code using a single class
loader shared among all AAs. This creates a conflict
between the ability to unload an individual AA and the
ability to share byte code among AAs. In Java, each
class loader instance creates a separate name space for
the code and data of the classes it loads. Thus, the fully
qualified name of a loaded class is implicitly prefixed

by a reference to the ClassLoader object that loaded
the class. To unload byte code of a class so it can be
garbage-collected, it is necessary to delete the Class-
Loader that was used to load that class. Individual
AA classes cannot be unloaded if there is a single class
loader shared among all AAs.

Due to these considerations, the ASP EE can be con-
figured to operate in one of two modes: code-sharing or
non-code-sharing.10 The code sharing mode uses a single
class loader and shares common byte code; this mode is ex-
pected to be useful for production operations where there is
significant overlap of classes among large, complex AAs.
In the non-code-sharing mode, each AA has a distinct class
loader for each AA and common byte code is replicated in
the heap. This mode will be useful when there is significant
churn of AA code being installed and removed, e.g., when
testing new AAs.

2.9. Dynamic Class Name Binding

Dynamic class name binding can be logically divided
into two distinct steps,name mappingandversion resolu-
tion.

Name mapping is necessary in AAs for the effective use
of shared byte code, as discussed above. In the name-
mapping step, anapparent class nameused as a place-
holder is mapped to atarget class name. This mapping
is performed dynamically whenever the AA constructs a
new instance of the apparent class, i.e., when it wants to
execute the Java constructornew using an apparent class
name. Name mapping yields the name of the target class to
be loaded from a code server and instantiated.

Many operating systems support the dynamic loading of
code fragments into running applications from loadable li-
braries, using a standardized naming convention for repre-
senting version and compatibility information. However,
Java performs dynamic loading at the granularity of classes
rather than libraries, and it has no such naming convention.
The ASP EE fills this gap with the optionalversion resolu-
tion step of dynamic class name binding. Version resolution
maps the target from the name-mapping step, aversioned
name, to the actual class name. In particular, version res-
olution can resolve awildcard version specification to find
the latest version of the code for a particular class.

The name mapping step of dynamic class name binding
is expected to select from among names for functionally dif-
ferent target classes, e.g., classes that implement different
feature sets. Name mapping defines the class composition

10This simple alternative could be generalized to define sharing groups,
with a class loader per group. Each AA would be mapped to a group by
its AAspec. Non-shared byte code mode would correspond to every group
containing a single AA.



of a particular AA, so this mapping is defined in the pri-
mordial AAbaseclass of the AA. On the other hand, the
version resolution step is expected to choose among classes
that perform identical functions with identical interfaces but
may for example represent different generations of debug-
ging and/or optimizing the same class code.

To specify versions, the ASP EE adopts the naming con-
vention:

<class name>_<major V #>_<minor V #>

Here<major V #> and<minor V #> represent the
major and the minor version numbers, respectively. A new
version that did not change the interface or function would
have the same major number but a new minor number. The
minor version number may be wild-carded (“* ”) to load the
latest minor version available from the code server. Note
that the major version number overlaps in function with
the name mapping step; experience will reveal whether the
major version number is redundant with the name-mapping
step and could be removed.

The ASP EE uses different implementation strategies for
the two steps in dynamic binding. The name mapping step
is implemented by explicit AA code (see Section 3.5 be-
low), while the version resolution step is performed by the
EE. It would have been possible to perform both name map-
ping and version resolution entirely inside an AA, allowing
different AAs to use different conventions. However, ver-
sion resolution within an AA may require two round trips
to the code server, one to return all available version names
and the second to load a specific version. Therefore, version
resolution is performed in the ASP EE, which can move
wildcard resolution to the code servers.

3. ASP EE Implementation

3.1. Processes and Threads

The ASP EE implements a simple Java-basedprocess
model to control AA execution. The model includes the
definition of a process, a rudimentary process scheduler,
and logically separate data spaces for different AAs. The
ASP process model is flat, providing no hierarchical struc-
ture. There is a one-to-one correspondence between ASP
processes and AAs executing in the node.

The ASP process scheduler provides simple round-robin
scheduling. This prevents starvation of AA processing,
overcoming the undefined semantics of thread scheduling in
the Java language.11 The ASP EE scheduler also measures
approximate CPU utilization for each process and the life-
time of the process since inception. This information could

11The Java specification contains no requirement for preemption or fair-
ness; thread scheduling policies are regarded as an OS implementation
detail.

be used to demote the priority of processes which are con-
suming excessive CPU resources or have been in existence
for an extended period of time.

Each ASP process may contain an arbitrary num-
ber of Java threads that are realized using the
AspThread class. This class has all the methods of
the java.lang.Thread class and adds the following
two methods:

public static AspThread currentThread()
public AspProcess getProcess()

The first method returns a reference to the currently-
executing thread, and the second returns the ASP process
that contains this thread.

To implement InChannels, the ASP EE creates a de-
fault AspThread per AA (i.e., per ASP process), to perform
receivePacket upcalls. The single thread per AA pre-
serves ordering of packets and ensures that there cannot be
more than one packet-reception upcall at the same time. The
upcall design allows simple transient ASP AAs to be com-
pletely event-driven. For the upcall, the default thread is
handed to the ASP process using a sequence like the fol-
lowing:

AspThread t = new AspThread();
AspProcess p = new AspProcess(...);
...
t.setProcess(p);
<upcall(...)>
t.setProcess(null);

The firstsetProcess call hands off the threadt to the
processp, while the second reverts thread ownership back
to the EE.

An AA may also fork persistent AspThreads. Most AAs
will have at least one such persistent thread, forked inter-
nally by the state container library routines to handle their
timing. An AA can also do its own timing explicitly using
an explicitly-created AspThread.

Java currently disallows the forced termination of an
application thread. When an ASP process is terminated,
the ASP EE relies on the AA to terminate its outstanding
AspThreads. Every AspThread should periodically invoke
the PPI call:boolean isAlive() and terminate if the
result isfalse . Calling the methodterminate() sends
this message to other AspThreads in the same ASP process.
The ASP scheduler will demote any threads that are not ter-
minated to minimal scheduling priority.

3.2. AA Local Data

The ASP EE provides a process-local (hence, AA-local)
data space to each ASP process. ThisAA-local dataor AA-
LD provides a space for variables that are global within an



AA but unavailable to other AAs. For example, the state
containers implemented by EE library routines use AA-LD
rather than static variables for saving context.

The AA-LD mechanism exports two basic methods to an
AA:

static void putLD(String name,
Object value)

static Object getLD(String name)

The putLD method places an object into the AA-LD
data space with the keyname, and thegetLD method re-
trieves the object using the same key. The ASP EE im-
plicitly qualifies the key by the class name of the caller,
allowing different classes to use the same key to maintain
class-specific data within the AA-LD space. It also enforces
Java’s static scoping rules on accessing class-specific data.

3.3. The AAbase Class

Every AA includes a primordial Java class, known as the
AAbaseclass, that extends the ASP classasp.AAContext. To
begin loading a new AA, the ASP EE obtains the name of
theAAbaseclass from the AAspec, invokes the ASP class
loader (Section 3.4) to fetch and load that class, and instan-
tiates it.

TheAAbaseclass has the following major functions.

1. It implements upcall routines invoked by the EE (ex-
cept those associated with state containers). In particu-
lar, it must implement thereceivePacket method.

2. It can be used by the AA for saving local context, as an
alternative to AA-LD. This is possible because there is
a distinct instance of theAAbaseobject for each AA.

3. It may contain mechanisms for dynamic class name
binding: a mapping table and routine, and/or proxy
constructor methods. See Section 3.5.

4. It inherits the fields from the correspondingAAspec.

A receivePacket upcall is executed on theAAbase
object itself, providing the AA with an immediate reference
to theAAbaseobject (using the Java primitivethis ). How-
ever, when an AA is dispatched by a timer upcall from a
state container, the AA may need a reference to theAAbase
object to find its local context; this reference can be kept in
AA-LD.

3.4. Class Loading

The ASP EE fetches AA classes using search paths
found in AAspecs. A reference to a missing class causes
the JVM to invoke a loader method of the ASP class loader

(that overrides the standard JVM ClassLoader). The upcall
from the JVM provides the name of the needed class, and a
stack examination by the class loader determines which AA
process was executing when the load request occurred.

When the ASP EE is executed in non-code-sharing
mode, each AA uses a separate class loader instance and
maintains its own copy of all its byte code. Each class
loader instance can maintain the corresponding AA search
path as member data.

There are several possible design approaches for code-
sharing mode. The two most promising are a class loader
instance per AA, and a single class loader for all AAs.

� Class Loader per AA– Although class loaders cre-
ate individual name spaces, it is still possible to share
common byte code across multiple class loaders, by
using a shared table to explicitly share class refer-
ences between different loader instances. This ap-
proach could be used to realize code sharing with one
class loader per AA.

However, the fully qualified name of a class would re-
main prefixed with the class loader instance that per-
formed the original load operation on that class, and
significant complexity would be required to avoid vi-
olating the access rules of the Java language. Java
symbols that are defined with package scope must
be visible to one another. Therefore, an implemen-
tation of the class-loader-per-AA approach must not
load classes from the same Java package into the name
spaces of different class loaders. This requires that the
cooperating loader instances delegate the loading of all
classes within a given package to a specific class loader
instance.

� One Class Loader– The ASP EE adopted the approach
of a single ASP class loader for all AAs, to avoid the
complex inter-class-loader communication required by
the class loader per AA approach. The single class
loader need only maintain a table containing the search
path for each AA, whose identity it can obtain from the
currently executing ASP thread.

3.5. Coding Rules for an ASP AA

Active applications running under the ASP EE cannot
use completely arbitrary Java code, for reasons of func-
tionality and security that have been discussed earlier. In
summary, executing ASP AA code must obey the following
rules; see [17] for details.

1. An AA must include a primordialAAbaseclass. See
Section 3.3.

2. A persistent application thread must periodically call
the isAlive function and exit if it returnsfalse .



3. An AA may create its own thread(s), but it must
not use java.lang.Thread or java.lang.
Threadgroup directly; it must instead use the ASP
classesAspThread or AspThreadGroup , respec-
tively.

4. An AA must use theAspFile class instead of the
File class for accessing the local file system.

5. An AA must use no Javastatic fields; it must in-
stead use AA-local data as described in Section 2.8.

6. An AA must use no Java static initializer blocks; it
must instead use a replacement construct [17] that
causes a static initializer to be invoked once for each
new ASP process that is created. The ASP implemen-
tation executes only the initializers that are reachable
by a given process; this is determined by a static reach-
ability analysis on the loaded byte code, augmented
by dynamic reachability information gained by mon-
itoring the usage of getName(). This mechanism re-
quires that an AA useAspSystem.getName() in-
stead ofClass.getName() and useAspSystem.
forName() instead ofClass.forName() .

7. An AA must use no synchronized static methods; it
must instead place locks on global variables defined in
its AA-LD space.

8. When a new instance of an AA class is constructed,
name mapping should be provided wherever it may
possibly be useful for future flexibility.

Restrictions (3) and (4) and (6) concern particular Java
library classes that must be replaced by ASP versions. This
substitution of class names can be performed automatically
on the byte code by the ASP class loader. This is currently
implemented for cases (3) and (6) above, and it could eas-
ily handle all such substitutions. Restrictions (5) - (8) are
not required if an AA is to be executed only in ASP EEs
executing in non-shared-code mode.

Finally, we summarize the coding necessary for the name
mapping part of dynamic class name binding. The primor-
dial AAbaseclass contains the AA’s code and data for name
mapping. The procedure for this mapping is in principle
AA-specific, but an example is given here. In theAAbase
class, one could build ajava.util.Hashtable object
for name mapping:

Hashtable nameTbl= new Hashtable();
nameMapper.put(<apparentName>,

<targetName>);
...

When it needs to construct an instance of a mapped
name, the AA might call a method in theAAbaseobject

that uses this hash table to map a stringnameArg contain-
ing the<apparentName> into a target name:

String targetName =
(String)nameMapper.get(nameArg);

and then invoke the ASP EE routine:

AspSystem.forName(targetName).

The forNameroutine would resolve a versioned name if
necessary, fetch the resulting actual class, and load the class
code. The AA would finally use the Java reflection interface
to construct an instance of the actual class.

The detailed AA coding for this dynamic name binding
is somewhat complex, especially when the constructor is
parametrized. If version resolution is not required, class
name mapping can be much simplified by the use ofproxy
constructormethods [17] in theAAbaseclass to implicitly
do the name-mapping step. Instead of directly invoking
the Javanew primitive to create an instance of a class, an
AA would call a corresponding proxy constructor method
in the AAbaseclass. There would be a proxy constructor
method for each<apparentName> in use. For example,
one proxy constructor method might be:

<superclass> new<apparentName> {
return new <targetName>();

}

Here <superclass> is a parent of
<apparentName> and<targetName> .

3.6. Network Interfaces

The once-simple concept of a network interface has be-
come complex, due to multiple network-layer addresses per
physical interface, virtual interfaces for multicasting, IP-in-
IP tunnels, and support for both IPv4 and IPv6, for exam-
ple. As a result, a node OS may know about many more
logical/virtual network interfaces than physical network in-
terface devices.

The ASP EE builds a single master interface table that
contains all logical, virtual, and physical interfaces known
to the node OS as well as the virtual interfaces created by
VNET. This table, built at boot-time from kernel queries
and configuration information, may be modified by subse-
quent PPI calls that add or delete network interfaces.

The logical interface numberor LIN is the ordinal posi-
tion of an entry in this master interface table, so every de-
fined interface has a unique LIN value. When an interface is
deleted its LIN is not reused; thus, the space of LIN values,
initially contiguous, may become quite sparse over time.12

12This design has the theoretical problem that it prevents the ASP EE
from running forever.



protocolSpec Receive Attributes demux
( addressSpec) Key?

vif<LIN>/vn/vt[/asp] local Vport, remoteVport, local Vaddr, remoteVaddr, tos, ttl, LIN
vif<LIN>/vn/rdp [/asp] local Vport, remoteVport, remoteVaddr, LIN
vif Yes
if<LIN>/ipv4/udp[/asp] local port, remoteport, localaddr, remoteaddr, LIN
if<LIN>/ipv6/udp[/asp] local port , remoteport, localaddr, remoteaddr, LIN
if<LIN>/ipv4/udp/rdp[/asp] local port remoteport, remoteaddr, LIN
if<LIN>/ipv4/tcp[/asp] local port remoteport, localaddr, remoteaddr, LIN
if<LIN>/ipv6/tcp[/asp] local port remoteport, localaddr, remoteaddr, LIN
if<LIN>/ipv4[/asp] local addr, remoteaddr, protocol, TTL Yes
if<LIN>/ipv6[/asp] local addr, remoteaddr, protocol, TTL Yes
api[/asp] local port remoteport, localaddr, remoteaddr, LIN (n/a)
ipc dst AAspec, channame (n/a)

ProtocolSpec Elements:
Symbol Meaning Symbol Meaning
vif<LIN> Virtual link layer (VLL) processing in VNET. if<LIN> Link layer processing.
vn Network-layer datagram processing by VNETipv4 Network-layer IPv4 datagram processing.

(LayerVN or Layer VNS). ipv6 Network-layer IPv6 datagram processing.
vt Transport-layer processing by VNET udp Transport-layer UDP datagram processing.

(LayerVT or Layer VTS).
tcp Transport-layer TCP processing.

rdp Transport-layer RDP processing. asp Process ASP header (framed AAspec).

Table 2. Supported PPI Channel Parameters



PPI calls allow an AA to find a particular interface object
in the master table and to get a copy of the complete table
[17].

The receive attributes set by areceivePacket() call
include the LIN number for the network interface on which
the packet arrived, and an AA can set the LIN value in
the send attributes parameter to thesendPacket() call.
However, some existing kernels may not provide complete
information about, or control over, its real network inter-
faces.

3.7. The Channel Abstraction

The EE/Node OS reference interface [16] specifies the
syntax and semantics for three basic parameters of the net-
work I/O channel abstraction – protocolSpec, addressSpec,
and demuxKey [16, 3]. These three parameters define
packet processing and filtering to be performed on incoming
active packets by an InChannel, while the protocolSpec and
addressSpec alone are used to specify headers to be added
by an OutChannel.

� protocolSpec– This parameter is a character string that
defines a set of protocols to process and remove head-
ers from an incoming packet, or to be added to output
packets.

� addressSpec– This parameter defines specific values
for demultiplexing fields in the protocol headers listed
in the protocolSpec. For a PPI channel, the ASP EE
encodes the addressSpec as anattributeobject contain-
ing binary values, rather than as the character string
used in the EE/Node OS interface specification.

� demuxKey– This parameter specifies arbitrary filter-
ing on the payload of input packets selected by the ad-
dressSpec after processing by the protocols named in
the protocolSpec. The demultiplex key may contain
one or more (offset, length, mask, value, relop) tuples.

For example, the protocolSpec"if4/ipv4/udp" for
an InChannel implies that a packet received on logical inter-
face number 4 will be processed by IPv4 and by UDP; the
UDP payload may be further filtered by a demuxKey that
selects which UDP payloads will be delivered.

The<ChanParms> element in InChannel entries of the
asp.conf configuration file (Section 2.3) is actually com-
posed of strings representing protocolSpec, addressSpec,
and an optional demuxKey; see [17] for the detailed for-
matting.

3.8. PPI Channels

Table 2 summarizes the protocolSpecs currently sup-
ported by PPI channels. It also shows the correspond-
ing receive attributes, i.e., the attributes included in a

receivePacket() upcall, and whether demuxKeys are
supported. A subset of these attribute fields is available for
opening PPI channels and for a sendPacket call; see [17] for
full details. An attribute list generally plays the role of an
addressSpec; however, ASP attributes include some proto-
col fields that may not be included in the EE/Node OS spec
definitions of an addressSpec but may be of importance to
an AA.

Table 2 also illustrates the extensions to the node OS
channel abstraction that are supported by PPI channels.

� The ASP EE generalizes the channel abstraction to
cover the virtual protocol stack implemented by VNET
as well as the native IP stack. Thus, the protocol-
Spec"vif13/vn/vt" implies a packet received on
the virtual interface withLIN = 13 and processed by
the virtual network layer (vn ) and the virtual datagram
protocol (vt ); see 3.9.

� PPI channels are used to implement the UA API (pro-
tocolSpecapi ); see Section 2.4.

� PPI channels are used for inter-AA communication
(protocolSpecipc ); see Section 2.5.

� PPI channels support stream-based I/O (protocolSpec
elementsrdp, tcp ) although the channel abstrac-
tion is fundamentally datagram-based. In particular,
ASP supports the reliable transport protocol RDP [15]
in addition to TCP.

� The elementasp appended to the protocolSpec re-
quests that the EE process explicit AAspec headers.
Here “process” means to remove the AAspec header
from the AA payload in an InChannel and to automat-
ically supply an AAspec header in an OutChannel. In
fact, an unprivileged AA isrequired to appendasp
to its protocolSpecs, or the channel open request will
fail. This mechanism (mentioned in Section 2.2) pre-
vents an unprivileged AA from sending a packet with
an AAspec not its own.

Stream-based channels (TCP, RDP) have some special
rules. They do not preserve packet boundaries from sender
to receiver. A connection is opened actively or passively
by opening an OutChannel or an InChannel, respectively.
Once open, the stream-based channel is actually duplex: an
InChannel object can be cast to an OutChannel object and
vice versa. A stream channel provides anend-of-fileupcall
to the AA if the other side closes the connection.

3.9. VNET: Virtual Protocol Stack

The ASP EE includes a software package called VNET
[14], which implements a simple virtual stack that may be



useful to AAs. VNET supports only unicast transmission
on (virtual) point-to-point links – no broadcasting, multi-
casting, or multiaccess. It does not support fragmentation
or reassembly in the virtual internetwork layer. Its network-
layer address structure is flat, providing only host addresses
with no network numbers. On the other hand, VNET does
include ahop-by-hop deliverymechanism, which provides
a service analogous to the use of the IP Router Alert op-
tion [12]. A datagram sent using hop-by-hop service is
addressed to a final destination but is delivered to the next
hop as if it had been addressed there. Packets sent without
the hop-by-hop service option are said to receiveend-to-end
service.

VNET provides a Network Management Interface
(NMI) to the PPI, allowing a (privileged) AA to create,
modify, or query the network interface and FIB tables used
by the VNET protocols.13 An AA can also register upcall
routines that will inform the AA that something in these ta-
bles has been changed.

VNET currently implements the following virtual proto-
col layers.

� LayerVT, Layer VTS – user datagram transport. Lay-
erVT provides a datagram transport service analogous
to UDP, using source and destination ports chosen
from a VNET port space of 32-bit integers. Incoming
datagrams are queued internally for delivery to AAs
and dropped if these queues are filled. LayerVTS is
the same but provides hop-by-hop service.

� LayerRDP – Reliable byte stream. This layer provides
an interface to a Java implementation of the Reliable
Data Protocol (RDP) [15]. VNET does the buffering
and protocol conversion to make a sequence of RDP
packets look like a byte stream, i.e., like a TCP con-
nection.

� LayerVN, LayerVNS – connectionless network. These
layers provide a connectionless network service analo-
gous to IP but with fewer features (see above). Lay-
erVN provides end-to-end service while LayerVNS
provides hop-by-hop service. LayerVN packets carry
a time-to-live (TTL) field to handle routing loops; Lay-
erVNS needs no TTL.

� LayerUI – Virtual Link Layer using UDP/IP.

LayerUI packets are framed using a HeaderUI header
and encapsulated within UDP and IP headers. A lo-
cal AddressUI object is supplied as the virtual link
layer address when a LayerUI object is created. The
LayerUI implementation opens a socket for the local
IP address and UDP port number contained in the Ad-
dressUI object. A listening thread receives datagrams

13This NMI should be extended to control native IP connectivity.

from this socket, decapsulates the packet, and sends it
to the appropriate Layer 3 protocol for subsequent pro-
cessing. Packets passed down from Layer 3 are framed
with a HeaderUI header and sent to the appropriate
UDP socket for encapsulation.

� LayerAnep – Virtual Link Layer using ANEP/UDP/IP.

LayerAnep frames packets using both a UDP/IP
header and an ANEP header but no VNET-specific
header. Virtual link layer addresses for this layer use
AddressAnep objects that contain an IP address, UDP
port number, and the ANEP Type ID.14

3.10. VNET Implementation

The current VNET implementation uses a general
object-oriented framework to implement its protocols. A
particular VNET protocol layer is defined by three Java
classes:address , header , and layer . The layer
class implements the layer-specific protocol processing
rules, anaddress object names an instance of an entity
at that layer, and theheader class defines the representa-
tion of the protocol header in a packet. The layer names in
the previous section are in factlayer class names.

To process a packet, each VNETlayer object maps the
appropriate local address – source or destination for sending
or receiving, respectively – for its own protocol layer to the
next layer object instance with that address, and hands
the packet to thatlayer instance for subsequent process-
ing. The VNET protocol stack within a given ASP EE in-
stantiation will havelayer instances corresponding to all
addresses currently in use at that node. This will generally
include network-layer interface addresses, the correspond-
ing link layer addresses for these interfaces, and transport
layer addresses in use by running applications. Only one
layer instance can be bound to a particular local VNET port
at any time.

Packets that arrive carrying non-local addresses, such as
packets that are destined for the forwarding engine, cannot
be mapped to specifically-named layer instances. To handle
this case, each layer designates alayer instance as the
“default” to handle all packet requests for unknown address
values.

4. ASP AAs

The features of the ASP EE can be illustrated by describ-
ing a sample of ASP AAs that have been demonstrated. See
Table 3.

14LayerAnep uses UDP port zero as an escape to support the reception
of VNET packets on standard input, as required by the initial ABone man-
agement tool Anetd [3].



Name Function

Jrip RIP routing protocol
PIM Protocol-Independent Multicast.
Jrsvp RSVP QoS signaling protocol
AFSP Active Filter Signaling Protocol
Delay Generate random forwarding delays
Sencomm Active network management

environment (BB&N).
(many) EE monitoring and management

Table 3. Some ASP-Based Active Applica-
tions

� Jrip – The Jrip AA executes the RIP protocol in the vir-
tual topology defined by the VNET configuration file.
Using a privileged PPI call (permissionroute , see
Table 1), Jrip updates the FIB that is used by VNET for
default forwarding in the virtual network layer topol-
ogy.

� PIM – This AA, which does multicast routing and
forwarding using the PIM sparse-mode protocol, was
originally written for the ANTS EE but ported to the
ASP EE as an exercise. Porting from ANTS to ASP is
much easier than the other direction, primarily because
ANTS does not support persistent AAs or timing ser-
vices.

� Jrsvp– This very large and complex AA implements
most of the QoS signaling protocol RSVP [5], for both
unicast and multicast data traffic. It handles signaling
traffic and data traffic using either virtual or native IP
connectivity.

� AFSP– This signaling protocol for interest filtering
[22] for large-scale distributed simulations has been
demonstrated. The AFSP protocol is quite close to
RSVP, so the AFSP AA was derived from Jrsvp by
changing a small percentage of the Java code.

� Delay– This AA is indicative of the usefulness of ac-
tive networking for quickly generating and deploying
experimental tools. It was developed by the ACC (Ac-
tive Congestion Control) research project [8], which
has been using the ASP EE as an experimental vehi-
cle.

� Sencomm– This complex AA is itself an execution en-
vironment, recursively built upon the ASP EE. It was
developed by BBN as an active network monitoring
environment.

5. Comparison to Other Work

Pioneering research in active networks preceded the
development of the standard active network architectural
model [6], with its clear distinction between EE and AA.
These early projects explored important ideas, for exam-
ple, data flow architectures (Netscript [21, 7]) and a se-
cure scripting languages (PLAN [11]). The earliest EE con-
forming to the AA/EE/Node OS architecture was the ANTS
system[20]. ANTS is the project whose objectives and gen-
eral architecture are most nearly akin to those of the ASP
EE. Both follow the active networks architecture, executing
on top of a node OS to provide a well-defined environment
for executing active applications. ASP has borrowed useful
ideas from ANTS. Each has its strengths and weaknesses;
neither is the final answer for an active networks EE.

ANTS uses an elegant mechanism to propagate and ex-
ecute transient AAs hop-by-hop. Although its design was
inspired by the capsule model, ANTS “capsules” actually
carry AA code by reference. This mechanism was the in-
spiration for the corresponding ASP facility, specifying the
PHOP (previous hop) option in the search path of an ASP
AAspec. The ANTS EE has seen considerable use as a plat-
form for experimentation with AAs and node OSs. One of
its important features is a strong resource control and secu-
rity mechanism, including a generalized TTL to limit how
many packets a particular AA can originate. One signifi-
cant drawback of ANTS is its lack of persistent AA execu-
tion threads, and therefore its inability to provide timer ser-
vices within the network. One research project using ANTS
added persistent AAs, at the sacrifice of ANTS’ generalized
TTL control on packet transmission [13].

In several important aspects the ASP EE represents a
more realistic model for real-world active network technol-
ogy than ANTS. The ASP EE supports persistent AAs, in-
cluding threads, timer services, etc., which ANTS does not.
Both EEs support virtual connectivity, but the ASP EE also
supports native IP connectivity, which is perhaps more im-
portant. ASP provides a more general AA-launching mech-
anism mechanism than the ANTSApplication class.
The ASP EE has paid attention to providing programmable
router services like access to native-mode routing tables and
fine-grained network I/O.

On the other hand, while the ASP EE represents a signifi-
cant step beyond ANTS in its facilities, some useful features
of the ANTS EE are missing from ASP. The University of
Utah has modified ANTS to support the full EE/Node OS
interface, while ASP supports only a generic version of the
network I/O portion of that interface. This makes ANTS
more easily portable to specialized node OSs, although it
is unclear that this will be a real issue. ASP has no mech-
anism comparable to ANTS’ limit on the use of network
resources, although we do not believe that the ANTS mech-



anism has sufficient generality for real control plane func-
tions. Finally, there are important gaps in the ASP security
system; in particular, ASP would benefit by adopting a code
signature mechanism like ANTS, to ensure that an AAname
cannot be spoofed.

6. Conclusions

The ASP EE was developed to explore of the use of ac-
tive networks for rapid deployment of complex protocols
in the control and management planes. This general objec-
tive led to dynamic code installation, functional extension
and customization of code, and the use of portable code
to reduce protocol standardization. The ASP EE was de-
signed to provide these facilities with fine-grain, flexible,
and portable access to network protocol layers, using the
channel abstraction. A second primary objective of ASP
was the isolation and resource protection to allow arbitrary
AAs to safely execute, while privileged AAs can still access
key node resources. Other important ASP EE features in-
clude support for persistent AAs, timer services and a soft-
state data repository, a general user application model, and
an inter-AA communication mechanism.

Much of the complexity of ASP results from a desire to
provide a highly flexible platform for active application ex-
periments. The generality of ASP partly reflects the evolv-
ing orientation of the overall active networks research pro-
gram while ASP was being developed. For example, the im-
plementation of the virtual protocol stack within the VNET
component of ASP resulted from an early push from the
program sponsors towards “reinventing” networking using
active networking. The program orientation later shifted to-
wards the use of active networking within the context of
legacy Internet protocols, which makes the VNET virtual
protocol stack and forwarding in the virtual topology less
useful. On the other hand, active routers are very likely to
be interspersed with non-active routers, so some support for
overlays is likely to continue in importance.

Certain features of ASP, for example sharable byte code,
turned out to introduce much greater complexity than ex-
pected. Although byte code sharing may be desirable in a
production environment, it may not be worthwhile in the
current active network experimental environment. How-
ever, the ASP EE can be configured to bypass byte code
sharing.

As the preceding discussion has made clear, there are
important directions for further work on the ASP EE. These
include:

� Per-AA limits on the use of the JVM memory heap.

� Support in OutChannels for packet scheduling to en-
force limits on AA network usage, at least fair-sharing.

� End-to-end user authentication to control AA permis-
sions.

� Signed AA code.

� A complete implementation of PPI channels (e.g., fill-
ing many of the blank spaces in Table 2).

� A complete implementation of access to native IP rout-
ing tables.

Finally, we list larger design issues raised by the ASP
EE.

1. The ASP EE is (too) specialized for support of persis-
tent AAs. This is revealed in the fact that ASP can
support at most one execution instance of a given AA
at one time. Supporting multiple simultaneous execu-
tions would require the introduction of a new identifier
space. This space might provide an “AAidentifier” or
“AA flow id”, which could also be used for efficient
demuxing of packets from the nodeOS directly to an
AA, even in the strong EE model. This concept might
be pushed to an “activity identifier”, to incorporate ac-
tivities in a clean and efficient manner.

2. An active packet for ASP can invoke at most one AA,
which raises the question of how to compose multiple
AAs to form a single logical AA. This is an open re-
search issue.

3. The ASP EE does not support capsules. However, this
either/or approach to capsules may be too simple. In
the future, capsules may prove useful in a specific and
limited fashion to make small incremental changes,
e.g., for customization, of large and complex AAs that
are initially loaded by reference.

4. Java is powerful, well-documented, and widely avail-
able, but it may not be the ideal language for active
network programming.
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A. AAspec Format

An AAspec consists of a set of variable-length quoted
text strings, denoted by “Q-” prefixes in the following BNF-
like syntax definition.

<AAspec> ::= <Q-AAname>
[<sp> <Q-searchPath>

<sp> <Q-ClassName-List> ]

<Q-AAname> ::= " <AAname> "

<Q-searchPath> ::= " <SearchPath> "
<SearchPath> ::= <location> |

<location> , <SearchPath>
<location> ::= <URL> | <ASPloc>

<ASPloc> ::=
asp-private-ip://<IPaddr> |
asp-private-vnet://<VNETAddr> |
asp-private-ip://PHOP

<Q-ClassName-List> ::=
" <ClassName-List> "

<ClassName-List> ::= <className> |
<className> <sp> <ClassName-List>

<AAname> ::= <AAnameChar> |
<AAnameChar> <AAname>

<AAnameChar> ::= <letter> | <digit> |
! | # | $ | % | & | = | + | - |
_ | @

<className ::=
<Fully-qualified Java class>

<IPaddr> ::=
<host name or numeric IP addr>

<VNETAddr> ::= <32-bit integer>
<sp> ::= < 1 or more space chars>

AAnameis assumed to be globally unique.
<SearchPath> contains a list of code-servers from

which the EE will fetch the AA classes. A code server
may be an HTTP server (<URL>) or an instance of the
ASP EE running as a code server (<ASPloc> ). In the lat-
ter case, the byte code can be fetched using a TCP con-
nection (asp-private-ip ), using RDP through VNET
(asp-private-vnet ), or from the previous hop using
TCP (PHOP) over native IP.

The <ClassName-List> entry is a list of classes to
be loaded initially. The first (and normally the only) entry
on this list will be the name of theAAbaseclass.

The optional <Q-searchPath> and <Q-
ClassName-List> elements may be omitted only

if it is certain that the AA has already been loaded, e.g.,
because it is loaded at boot time by EE configuration.

The following string is an example of an AAspec. The
newlines included here are for presentation purposes only,
as AAspecs contain no newlines.

"RSVP_base_version"
"asp-private-ip://PHOP,

asp-private-ip://128.9.160.128,
"rsvp.VersionBase"

An AAspec appearing explicitly as the header of a packet
must be framed with a 2-byte length field that precedes the
variable-length AAspec string. This convention is also used
for messages across the UA API.
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