Leveraging AI in multi-omics oncology

Joshua Millstein, PhD
Division of Biostatistics
Dept of Population and Public Health Sciences (PPHS)
Keck School of Medicine of USC
Dr. Heinz-Josef Lenz, M.D., FACP

Laboratory

- Francesca Battaglin
- Wu Zhang
- Shivani Soni
- Goar Smbatyn
- Yan Yang
- Jae Ho Lo
- Lesly Torres-Gonzalez

Collaborators and mentee’s
- Sandra Algaze
- Priya Jayachandran
- Pooja Mittal
- Evanthia Roussos-Torres
- Karam Ashouri
- Lesly Torres-Gonzalez
- Joshua Millstein

mCRC clinical trials with molecular data

<table>
<thead>
<tr>
<th>Clinical trial/Study name (phase) [country]</th>
<th>Treatment</th>
<th>Clinical Outcome</th>
<th>Oncoarray (GWAS)</th>
<th>Gene expression</th>
<th>Mutation panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE-3 (III) [Germany]</td>
<td>FOLFIRI/CET (N=260)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td>✓ (hTG)</td>
<td>KRAS wildtype</td>
</tr>
<tr>
<td></td>
<td>FOLFIRI/BEV (N=260)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIBE (III) [Italy]</td>
<td>FOLFOXIRI/BEV (N=230)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td>✓</td>
<td>KRAS, NRAS, BRAF</td>
</tr>
<tr>
<td></td>
<td>FOLFIRI/BEV (N=230)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAVERICC (II) [USA]</td>
<td>mFOLFOX6/BEV (N=161)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td>✓ (Nano)</td>
<td>NGS</td>
</tr>
<tr>
<td></td>
<td>FOLFIRI/BEV (N=163)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOMA (II) [Italy]</td>
<td>FOLFOXIRI/BEV (N=160)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td>✓ (Nano)</td>
<td>RAS, BRAF</td>
</tr>
<tr>
<td>TRIBE-2 (III) [Italy]</td>
<td>FOLFOX/BEV → FOLFIRI/BEV (N=255)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td></td>
<td>KRAS, NRAS, BRAF</td>
</tr>
<tr>
<td></td>
<td>FOLFIRI/BEV (N=255)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALENTINO (II) [Italy]</td>
<td>FOLFOX/PANI vs 5FU/PANI maintenance (N=175)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td></td>
<td>RAS, BRAF wildtype</td>
</tr>
<tr>
<td>MSI-H CRC (retrospective) [Italy]</td>
<td>CHEMO/IMMUNO (N=73)</td>
<td>PFS, OS, TR</td>
<td>✓</td>
<td></td>
<td>MSI, KRAS, NRAS, BRAF</td>
</tr>
<tr>
<td>JACCRO-CC05/06 (II) [Japan]</td>
<td>FOLFOX/CET (N=40)</td>
<td>PFS, OS, TR</td>
<td></td>
<td></td>
<td>RAS wildtype</td>
</tr>
<tr>
<td></td>
<td>SOX/CET (N=37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JACCRO-CC11 (II) [Japan]</td>
<td>FOLFOXIRI/BEV (N=51)</td>
<td>PFS, OS, TR</td>
<td></td>
<td></td>
<td>RAS mutant</td>
</tr>
<tr>
<td>PANAMA (II) [Germany]</td>
<td>5FU/PANI vs 5FU maintenance (N=248)</td>
<td>PFS, OS, TR</td>
<td></td>
<td></td>
<td>RAS wildtype</td>
</tr>
<tr>
<td>CALGB/SWOG080405 Alliance (III) [USA]</td>
<td>CHEMO/BEV (N=315)</td>
<td></td>
<td>✓ (RNAseq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEMO/CET (N=321)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEMO/BEV+CET (N=207)</td>
<td>PFS, OS, TR</td>
<td>✓ (RNAseq)</td>
<td>NGS</td>
<td></td>
</tr>
<tr>
<td>USC CRC CARIS Cohort + [USA]</td>
<td>Any (N=450)</td>
<td>OS, ToT</td>
<td>✓ (WTS)</td>
<td></td>
<td>WES</td>
</tr>
</tbody>
</table>
Objectives for the high-dimensional molecular data

• **Biomarker development**
 - Predictive (predicts response to treatment)
 - Prognostic (predicts outcome)

• **New target identification**
Leveraging computational algorithms to identify patterns in molecular data

Conventional approach:

1. Hypothesis
2. Model
3. Experimental design
4. Data collection
5. Hypothesis testing

Data-driven paradigm:

1. Data resource
2. Training
3. Testing
4. Objectives
5. Computational algorithms
6. Predictive models
Gene expression networks to predict response to FOLFIRI vs FOLFOX

Step 1. Overall survival ~ coexpression treatment

Step 2. Network components

Step 3. Elastic net (or other ML algorithm)

Step 4. Biomarker score for FOLFOX – FOLFIRI
Prognostic gene expression signature for overall survival

• **Biomarker development**
 – Predictive (predicts response to treatment)
 – Prognostic (predicts outcome)

• **Machine learning approaches to predict 2 yr and 5 yr OS**
 – Backward stepwise regression after filtering
 – Elastic net
 – Survival random forests
 – Gradient boosting

joshua.millstein@usc.edu
Prognostic gene expression signature for overall survival

- 276 of 513 genes replicated with FDR < 0.05 for OS

FP

joshua.millstein@usc.edu