Multi-Omics Data in Environmental Health

David Conti, PhD Norris Comprehensive Cancer Center Keck School of Medicine University of Southern California

Keck School of Medicine of USC

Department of Population and Public Health Sciences

Population Health Scientists

Data Scientists

Bench Scientists

Dept. of Population and Public Health Sciences

Leda Chatzi, MD, PhD

Wendy Setiawan, PhD

David Conti, PhD

Max Aung, PhD

Department of Medicine

How can we advance mechanistic insight linking the human exposome to health across the life-course?

Measuring multiple exposures and omics layers

Liver Injury Risk in the HELIX cohort

Application

Analysis frameworks for multiple exposures, multiple omics layers, and an outcome

Multi-omics Integration

Liver Injury Risk in the HELIX cohort

Application

Analytic Considerations

- Omic features:
 - High dimensional features within each omic layer.
 - Currently use machine learning for feature selection.
 - Omic features often highly correlated.
 - Balance estimation and inference within and across omic layers.
- Need to adjust for study design covariates.
- Temporal or biological relation to data:
 - Exposures -> Omics -> Outcome
- Potential to incorporate external biological info
 - From experiments, ontologies, etc.

Overall goals:

- · Identify causal features.
- Identify relevant biological patterns.
- Predict outcomes.

