
Knowledge Acquisition for Configuration Tasks :
The EXPECT Approach

Surya Ramachandran Yolanda Gil
USC Information Sciences Institute
4676 Admiralty Way, Suite 1001.
Marina del Rey, California 90292

{rama, gil}@isi.edu

Abstract
Configuration systems often use large and complex
knowledge bases that need to be maintained and extended
over time. The explicit representation of problem-solving
knowledge and factual knowledge can greatly enhance the
role of a knowledge acquisition tool by deriving from the
current knowledge base, the knowledge gaps that must be
resolved. This paper details EXPECT’s approach to
knowledge acquisition in the configuration domain using
the propose-and-revise strategy as an example. EXPECT
supports users in a variety of KA tasks like filling
knowledge roles, making modifications to the knowledge
base including entering new components, classes and even
adapting problem-solving strategies for new tasks.
EXPECT’s guidance changes as the knowledge base
changes, providing a more flexible approach to knowledge
acquisition. The paper also examines the possible use of
EXPECT as a KA tool in the complex and real world
domain of computer configuration.

Introduction
Knowledge Acquisition is an integral part of any
configuration system. Changes and modifications need to
be continuously made with respect to changes in markets.
With the emergence of new product-lines and the
discontinuation of old ones there is a need not only for
good configuration systems, but also for knowledge
acquisition tools that will help to keep knowledge bases
current. Further, with the changes in the business needs of
customers more sophisticated tools that help change
configuration constraints and parameters are needed. These
would be a very useful capabilities, since product
knowledge changes at a high rate (40-50%/year) is
reported for configuration systems such as R1 (McDermott
82) and PROSE (Wright et al. 93).

EXPECT (Swartout and Gil 95; Gil 94; Gil and Paris 94)
is a flexible KA tool that has been used for a variety of
tasks and domains including configuration. The
problem-solving strategy is represented explicitly, and the
knowledge acquisition tool reasons about it and
dynamically derives the knowledge roles that must be
filled out, as well as any other information needed for
problem solving. Because the problem-solving strategy is

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

explicitly represented, it can be modified, and as a result,
the KA tool changes its interaction with the user to acquire
knowledge for the new strategy. EXPECT provides greater
flexibility in adapting problem-solving strategies because
their representations can be changed as much as needed.

The paper begins by describing propose-and-revise and
its use in a role-limiting tool for knowledge acquisition.
Then we summarize the work described in (Gil and Melz
96) to illustrates how EXPECT's knowledge acquisition
tool works when the system is using a specific
problem-solving strategy. EXPECT not only supports users
in filling out knowledge roles, but extends the support to
acquire additional knowledge needed for problem-solving.
We use the propose-and-revise paradigm in small domain
for U-Haul rentals (Gennari et al. 93). We then look at a
possible implementation and usefulness of a KA tool for
the computer configuration domain, a domain that is
considerably more complex and real world. Though not
implemented, it serves as an example of the power of
EXPECT as a KA tool. We describe the types of
knowledge that need to be acquired for configuration tasks
and show how EXPECT could support users in
implementing them.

Solving Configuration Design Tasks with
Propose-and-Revise

Propose-and-revise is a problem-solving strategy for
configuration design tasks. A configuration problem is
described as a set of input and output parameters (or
variables), a set of constraints, and a set of fixes to resolve
constraint violations. A solution consists of a value
assignment to the output parameters that does not violate
any constraint.

Propose-and-revise constructs a solution by iteratively
extending and revising partial solutions. The extension
phase consists of assigning values to parameters. In the
revision phase, constraints are checked to verify whether
they are violated by the current solution and if so, the
solution is revised to resolve the violation. Violated
constraints are resolved by applying fixes to the solution. A
fix produces a revision of the solution by changing the
value of one of the parameters that are causing the
constraint violation.

Propose-and-revise was first defined as a problem-
solving method for configuration in VT (Marcus 88) for

designing elevator systems. Input parameters for VT
included features of the building where the elevator was to
be installed. Output parameters included the equipment
selected and its layout in the hoistway. An example of a
constraint is that a model 18 machine can only be used
with a 15, 20, or 25 horsepower motor. An example of a
fix for a violation of this constraint is to upgrade the motor
if the current configuration was using one without enough
horsepower.

SALT (Marcus and McDermott 89) which was used to
build VT, is a knowledge acquisition tool for
propose-and-revise using a role-limiting approach. In this
problem-solving strategy, there are three types of
knowledge roles; procedures to assign a value to a
parameter which would result in a design extension,
constraints that could be violated in a design extension and
fixes for a constraint violation. Consequently, the user
could enter one of the three types of knowledge. For each
type of knowledge, a fixed menu is presented to the user to

be filled out. SALT does not provide support in updating
or maintaining the knowledge about elevator components.
Explicit Representations in EXPECT
In EXPECT, both factual knowledge and problem-solving
knowledge are represented explicitly. This means that the
system can access and reason about the representations of
factual and problem-solving knowledge and about their
interactions. Factual knowledge is represented in LOOM
(MacGregor 91), a knowledge representation system based
on description logic. Factual knowledge includes concepts,
instances, and the relations among them. Problem-solving
knowledge is represented in a procedural-style language
that is tightly integrated with the LOOM representations.
Subgoals that arise during problem solving are solved by
methods. Each method description specifies: 1) the goal
that the method can achieve, 2) the type of result that the
method returns, and 3) the method body that contains the
procedure that must be followed in order to achieve the
method's goal. A method body can contain nested
expressions, including subgoal expressions that need to be
resolved by other methods; control expressions such as
conditional statements and some forms of iteration; and

relational expressions to retrieve the fillers of a relation
over a concept. Some method bodies are calls to Lisp
functions that are executed without further subgoaling.

We first look at an example of EXPECT's
representations using propose-and-revise as a strategy for
solving the following type of problems in the U-Haul
domain: Given the total volume that the client needs to
move, the system recommends which piece of equipment
(e.g., a truck, a trailer, etc.) the client should rent. Figure 1
graphically shows parts of the factual domain model for
propose-and-revise and for the U-Haul domain. 1The upper
part of the picture shows factual knowledge that is domain
independent and can be reused for any domain. In the
configuration process, there is an explicit representation of
state variables (which denote a configuration) and
constraints. The state variables can be associated with
components the make up the configuration. Constraints are
associated with valid sets of instantiations for the state
variables. The lower part of the picture shows factual

knowledge that is relevant to the U-Haul domain. Here
state variables denote things like pieces of equipment and
constraints contain information about capacity restrictions,
etc.

There is a continuum between the representation of
domain-dependent and domain-independent factual
knowledge in EXPECT. They are represented in the same
language, yet they can be defined and maintained
separately. Once a U-Haul problem is specified as a kind
of configuration problem, it inherits the fact that it has
constraints and fixes. Trucks are not defined as having
upgrades, since having upgrades is a way to look at
components from the point of view of configuration
problems. Instead, they are defined as configuration
components, which have upgrades.

(defmethod REVISE-CS-STATE
''To revise a CS state, apply the fixes found for the
constraints violated in the state.''
:goal (revise (obj (?state is (inst-of cs-state))))
:result (inst-of cs-state)

1 By convention, we denote relations with the prefix r-.

Figure1: EXPECT’s representation of some of the factual knowledge needed for propose and revise problems, for configuration problems
and the U-Haul domain.

configuration-
 problem

r-state
configuration

 :some
r-variables variable-

with-component

r-value
component

r-upgrade

 uhaul-
problem

r-state uhaul-
configuration

r-variables rented-
equipment-
 variable

r-value rental-
equipment

r-capacity

volume-
variabler-constraints

CapacityConstraint
r-fixes

UpgradeEquipmentFix

trailer rooftop truck

parameter

:body (apply (obj (find (obj (set-of (spec-of fix)))
(for (find

(obj
(set-of (spec-of violated-constraint)))

(in
?state)))))

(to ?state)))

(defmethod CHECK-CAPACITY-CONSTRAINT
''To check the Capacity Constraint of a U-Haul
configuration, check if the capacity of the rented
equipment is smaller than the volume to move.''
:goal (check (obj CapacityConstraint)

(in (?c is
(inst-of uhaul-configuration))))
:result (inst-of boolean)
:body (is-greater-or-equal

(of(r-capacity
(r-rented-equipment ?c)))

(than (r-volume-to-move ?c))))
Figure 2: Problem-solving knowledge in EXPECT.

Figure 2 shows two different problem-solving methods.
REVISE-CS-STATE is one of the methods that specifies
how propose-and-revise works. The CHECK-CAPACITY-
CONSTRAINT specifies that the capacity of the
equipment rented must at least be equal to the volume of
the client’s needs.

Knowledge Acquisition in EXPECT
EXPECT's problem-solver is designed to detect errors and
to report them to the KA tool (see table 1) together with
detailed information about how they were detected. The
KA tool uses this information to support the user in fixing
them. Other modules that can detect and report errors are
the parser (which detects syntax errors and undefined
terms), the method analyzer (which detects errors within a
problem-solving method), and the instance analyzer (which
detects missing information about instances).

EXPECT's problem-solver can analyze how the different
pieces of knowledge in the knowledge-based system
interact. For this analysis, it takes a generic top-level goal
representing the kinds of goals that the system will be
given for execution. In the U-Haul example, the top-level
generic goal would be (solve (obj (inst-of
uhaul-problem))), and a specific goal for execution would
be (solve (obj jones-uhaul-problem)).

EXPECT analyzes how to achieve this goal with the
available knowledge. EXPECT expands the given top-level
goal by matching it with a method and then expanding the
subgoals in the method body. This process is iterated for
each of the subgoals and is recorded as a search tree.
Throughout this process, EXPECT propagates the types of
the arguments of the top-level goal, performing an
elaborate form of partial evaluation supported by LOOM's
reasoning capabilities. During this process, EXPECT
derives the interdependencies between the different
components of its knowledge bases. This analysis is done

every time the knowledge base changes, so that EXPECT
can re-derive these interdependencies.

The EXPECT's problem solver is designed to detect
goals that do not match any methods, and to detect
relations that try to retrieve information about a type of
instance that is not defined in the knowledge base. In
addition to detecting an error, each module is able to
recover from the error if possible, and to report the error's
type and the context in which it occurred. It would also
report this error to the knowledge acquisition module,
together with some context information and a pointer to the
part of the problem-solving trace where the subgoal was
left unsolved.

Once the errors are detected, EXPECT can help users to
fix them as follows. EXPECT has an explicit
representation of types of errors, together with the kinds of
corrections to the knowledge base that users can make in
order to solve them. This representation is based on typical
error situations that we identified by hand. Table 1 shows
some of the errors that can currently be detected by two of
the modules: the problem solver (e1 through e3) and the
instance analyzer (e5).

Knowledge Acquisition for
Propose-and-Revise in EXPECT

Previously, we pointed out some of SALT's limitations in
terms of its lack of flexibility as a knowledge acquisition
tool. In this section, we illustrate how EXPECT's explicit
representations support a more flexible approach to
knowledge acquisition.

Table1: Some of the potential problems in the knowledge bases
detected by EXPECT.

Acquiring Domain-Specific Knowledge
Suppose that U-Haul decided to begin renting a new kind
of truck called MightyMover. The user would add a new
subclass of truck, and EXPECT would immediately request
the following:

E1---I need to know the capacity of a MightyMover.
The reason for this request is that EXPECT has detected
that the capacity of rental equipment is a role that is used
during the course of problem solving, specifically while
achieving the goal of checking the CapacityConstraint with
the method shown in Figure 2.

Code Error/Potential Problem Suggested Corrections

e1 no method found to achieve
goal G in method body M

modify method body
modify another method’s goal
add a new method
modify instance, concept, relation

e2 role R undefined for type C in
method M

modify method M
add relation R to C

e3 expression E in method M has
invalid arguments

modify method M
modify another method’s goal
modify instance, concept, relation

e5 missing filler of role R of
instance I needed in method M

add information about instance
modify method body
delete instance

This corresponds to errors of type e5 in Table 1.
EXPECT will only request the information that is needed
by the problem-solving methods.
Acquiring New Constraints and Fixes
Instead of needing the definitions of schemas to enter
constraints and fixes, EXPECT requests them as
constraints and fixes that are to defined by the user.
Suppose for example that the user wants to add a new
constraint that restricts the rental of trailers to clients with
cars made after 1990 only. The user would add a new
instance of constraint: TrailersForNewCarsOnly. EXPECT
would analyze the implications of this change in its
knowledge base and signal the following problem:

E2---I do not know how to achieve the goal
(check (obj TrailersForNewCarsOnly) (in (inst-of
uhaul-configuration)))

This is because during problem solving EXPECT calls a
method that tries to find the violated constraints of a
configuration by checking each of the instances of
constraint of U-Haul problems. This is a case of an error of
type e1. Before defining this new instance of constraint,
the only subgoal posted was (check (obj
CapacityConstraint) (in (inst-of uhaul-configuration))) and
now it also posts the subgoal (check (obj TrailersFor
NewCarsOnly) (in (inst-of uhaul-configuration))). There is
a method to achieve the former subgoal (shown in Figure
2), but there is no method to achieve the latter.

To resolve E2, the user chooses the third suggestion for
errors of type e1 and defines the following method to
check
the constraint: Once this method is defined, E2 is no longer
a problem and disappears from the agenda. EXPECT's
error detection mechanism also notices possible problems
in the formula to check the constraint. For example, if
r-year had not been defined EXPECT would signal the
following problem (of type e2):

E3---I do not know what is the year of a car.
When the user defines the role r-year for the concept car
this error will go away. EXPECT can also detect other
types of errors in the formulas to check constraints. For
example, if r-year was defined to have a string as a range,
then EXPECT would detect a problem. It would notice that
there is no method to check if a string is greater than a
number, because the parameters of the method for
calculating is-greater must be numbers. EXPECT would
then tell the user:

E4---I do not know how to achieve the goal
(is-greater (obj (inst-of string)) (than 1990))

Like E2, E4 is an error of type e1. But in this case the user
chooses a different way of resolving the error, namely to
modify the definition of the relation r-year. If the user
defined a fix for the new constraint, then EXPECT would
follow a similar reasoning and signal the need to define a
method to apply the new fix.

EXPECT changes its requests for factual information
according to changes in the problem-solving methods. This
can be illustrated in this example of adding a new
constraint. An effect of the fact that the user defined the

new method to check the constraint is that new factual
knowledge about the domain is needed. In particular,
EXPECT detects that it is now important to know the year
of the car that the client is using (and that is part of the
configuration), because it is used in this new method. The
following request will be generated for any client that, like
in this case Mr. Jones, needs to rent U-Haul equipment:

E5---I need to know the year of the car of Jones.
This is really requiring that the information that is input to
the system is complete in the sense that configuration
problems can be solved. In EXPECT, the requirements for
inputs change as the knowledge base is modified.
Changing the Propose-and-Revise Strategy
Suppose that the user wants to change the revision process
of propose-and-revise to introduce priorities on what
constraint violations should be resolved first. The priorities
will be based on which variable is associated with each
constraint.

The user would need to identify which of the
problem-solving methods that express propose-and-revise
in EXPECT needs to be modified. The change involves
adding a new step in the method to the revise state in the
propose-and-revise methodology. The new step is a
subgoal to select a constraint from the set of violated
constraints. EXPECT would signal the following request:

E6---I do not know how to achieve the goal
(select (obj (spec-of constraint)) (from (set-of (inst-of
violated-constraint))))

This is an error of type e5, and it indicates that the user has
not completed the modification. The user needs to create a
new method to achieve this goal. The user may also need
to define a new method for the take subgoal.

With these modifications to the knowledge base, the
propose-and-revise strategy that EXPECT will follow has
changed. Because the representation of the new strategy is
explicit, EXPECT can reason about it and detect new
knowledge gaps in its knowledge base. As a result of the
modification just made, there is additional factual
information needed including new information about an
existing knowledge role and a new kind of knowledge role.
EXPECT would then signal the following requests (both of
type e5):

E7---I need to know the constrained variable of
TrailersForNewCarsOnly.
E8---I need to know the preference of equipment-
variable.

E7 and E8 illustrate that EXPECT has noticed that the
change in the problem-solving strategy requires the user to
provide new kinds of information about the factual
knowledge used by the strategy. This shows that in
EXPECT the acquisition of problem-solving knowledge
affects the acquisition of factual knowledge. Recall that E2
illustrated the converse.

Knowledge Acquisition for Computer
Configuration

In this section we shall describe how the explicit
representation of knowledge approach used in the
EXPECT architecture can aid knowledge acquisition in the
computer configuration domain. This is not an
implemented domain but serves as an example to show that
the approach taken in the U-Haul domain can be applied to
more complex real world domains. In EXPECT the
separation of different pieces of knowledge can help the
user (or developer) in acquiring different forms of
knowledge. In the computer configuration domain we shall
look at problem solving methods (PSMs), constraints, class
hierarchies and the actual instances of data that populate
these classes as examples of knowledge.

For lucidity in the explanation of the benefits of a KA
tool in the computer configuration domain, let us look at a
possible way of representing constraints and component
specifications. As the reader is aware the knowledge
representation framework used by EXPECT is LOOM a
description logic based KR system (detailed in the section
on explicit representations in EXPECT). Frame based
semantics that provide for the definition of Concepts (or
frames), Instances of these concepts and Roles which
provide a way to relate instances. LOOM allows for class
hierarchy descriptions of components. A hierarchy of
constraints can then be defined that closely relates to the
class hierarchy.

The advantages of using a description logics based
system as described in the PROSE system (Wright, et al
93) which uses C-Classic (Weixelbaum 91) are applicable.

• Classification. The ability to find all descriptions
applicable to an object; finding all descriptions that are
more general or more specific than it (subsumption
architecture).

• Completion or propagation of logical consequences.
including but not limited to inheritance.

• Contradiction detection where a particular
instantiation of features does not represent a legal
combination.

• Dependency maintenance. A truth (or falsity)
preservation over the entire set of assertions.

Figure3 depicts, on the left, a possible representation of
the class hierarchy for the general class of storage
mediums that can be further decomposed into hdd (hard
disk drives), fdd (floppy disk drives), CDROMs and so on.
On the right, a similar hierarchy is shown describing a
common data bus architectures found in the computer
domain today.

An example of what kinds of attributes an actual
instance would have are also depicted. Instances here are
actual components that are manufactured and that make up
the final configuration.

Generally, constraints can be defined as the rules or
heuristics that govern the binding of values to a set of

variables for a given problem specification. A constraint
limits the possible values that can be assigned to these
variables. The constraint satisfaction problem (CSP) can
thus be defined as a consistent set of variable assignments
such that the resultant solution does not violate any of the
given constraints. Configuration can be classified as a type
CSP where the final solution is a list of instances (or
variable instantiations) from the domain of products that do
not violate any constraints (which is represented in the top
half of figure 1). Constraints in the computer configuration
domain can be represented either as roles (or relations)
defined on the component class hierarchy at the LOOM
level or as explicit problem solving methods in EXPECT.

Figure3 : Hierarchical representation of classes and instances.

Let us now look at some examples of constraints. A
typical constraint on the class of storage mediums may try
to assign a data bus to connect the device to. This
constraint may in turn be composed of two disjunctive sub-
constraints. One trying to assign an existing data bus
checking for bandwidth availability. Failing which (OR),
the assignment of some component to be included in the
configuration that will provide the correct bus type and
enough bandwidth. But the focus of this section is not on
the formulation of constraints or the actual configuration
process but rather on enumerating the clear benefits of
using an architecture like that of EXPECT for the ease of
knowledge acquisition. We shall now describe the benefits
that a KA tool provides at various levels of the hierarchy
and aspects of the configuration process. We have
identified four main levels that a KA tool can provide
support and aid the user/developer.
The addition of a new component.
By representing explicitly the information used in the
constraints and problem solving methods, the KA tool can
identify which attributes of a class are needed in the
configuration task. Thus the KA tool can be used to guide
the users (or data entry operators) to enter only relevant
information for configuration. The benefits here are that
not only do data entry operators spend less time entering
information on new components but the automation of this
process will lead to the configuration system co-existing

Storage Medium

Hdd CDROMFdd

SCSIIDE

EIDE UATA SCSI SCSI2 SCSI3

IDM1234HDD
•Type : SCSI 2
•Capacity 4.2 Gb
•Speed : 10,000 Rpm
•Dim : 5 1/4 L
 3 1/2 W
 1 1/2 H
•Cost : 240.00

Data Busses

IDE

SCSI SCSI2 SCSI2 SCSI3

WideNarrow

SCSI

SCSI2NBUS
•Type : SCSI 2
•Aux Type : Narrow
•Transfer Rate : 15 Mb/sec

with other applications in the enterprise by sharing
information from different databases. An example of the
extraction of component information from databases may
include; a database that maintains product sheets for user
information, a database that has stock and warehouse
information and another that has current pricing
information. This is similar to E1 for knowledge
acquisition in the U-Haul domain.
The addition of a new component class.
By exploiting the inter-dependencies between the various
constraints and classes (i.e. the attributes used in a
constraint must be defined in at least one class in the
constraint hierarchy) the KA tool can suggest the possible
list of attributes that would be needed for that class by
comparing the list of attributes that are mentioned in the
constraints and the inherited attributes at that level of the
component hierarchy. The KA tools can further help in
defining the value, range, and domain if such information
is exploited in the constraints. Thus the configuration
system can be modified with relative ease and without the
domain knowledge of either the component manufacturer
or the component hierarchy knowledge. This resembles E1
for KA in the U-Haul domain.
The addition of new constraints.
By identifying the level of applicability of a constraint with
respect to it’s position in the constraint hierarchy and the
class of components it affects, the KA tool can guide the
user in effectively using all parts of the KB that are
available at that level (often times with complex class
hierarchies and inheritance patterns, the user may not be
completely aware of what attributes are available to him
while writing a constraint). Another area where a KA tool
can help the user write constraints is by looking for similar
constraints that may already exist, and the modification of
which would not only lead to greater uniformity and less
mistakes in the knowledge bases but would also be a
conservation of time and effort. This is similar to E2
through E5 for KA in the U-Haul domain.
The modification/extension of PSMs.
By explicitly representing the problem solving methods
used by the configuration system and having access to a
library of PSMs, the KA tool can help the user make the
appropriate change to the PSMs for a new application in a
domain requiring different inferential capabilities. For
example, the choice of which part of a disjunctive
constraint to evaluate first may be based on some criteria
like the amount of computation needed to explicitly make a
choice at to which branch to explore first. The primary
benefit of having a KA tool actually guiding the user
throughout this process is the fact that its usage will lead to
a more robust and efficient configuration system. This is
similar to E6 through E8 for KA in the U-Haul domain.

Discussion and Conclusion
Throughout the paper, we have referred to a generic user
wanting to make changes to the knowledge base. This is

not necessarily one user, and not necessarily the end user
or domain expert. For example, the end user may only
enter knowledge about clients and new parts. A more
technical user would be able to modify propose-and-revise.
A domain expert who does not want to change the
problem-solving methods can still use EXPECT to fill up
knowledge roles and populate the domain-dependent
factual knowledge base. Supporting a range of users would
require adding a mechanism that associates with each type
of user the kinds of changes that they can make to the
knowledge base and limiting the users to make only those
changes. The important point is that all the changes, no
matter who ends up making them, are supported by the
same core knowledge acquisition tool. EXPECT’s explicit
representations of problem-solving strategies can be used
to support flexible approaches to knowledge acquisition.
Our goal is to apply this approach to support users to
maintain and extend configuration systems.

Acknowledgments
The authors are grateful to all the members of the EXPECT
group, past and present. Especially to Eric Melz for his
work on the U-Haul Domain. We are grateful for the
support of DARPA with contract DABT63-95-C-0059 as
part of the DARPA/Rome Laboratory Planning Initiative,
and with grant F30602-97-1-0195 as part of the DARPA
High Performance Knowledge Bases Program.

References
Gennari, J. H., Tu, S. W., Rothenfluh, T. E., and Musen, M. A.
Mapping methods in support of reuse. In Proc. of the 8th

Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, 1994.
Gil, Y. Knowledge refinement in a reflective architecture. In
Proc. of the 12th National Conference on AI, Seattle, WA, 1994.
Gil, Y., and Paris, C. Towards method-independent knowledge
acquisition. Knowledge Acquisition, 6(2):163--178, 1994.
Gil, Y. and Melz, E. Explicit Representations of Problem-Solving
Strategies to Support Knowledge Acquisition. In Proc. of 13th

National Conference on AI, AAAI 96. 469-476, 1996.
McDermott, J. R1: A rule-based configurer of computer systems.
Artificial Intelligence 19:39--88, 1982.
MacGregor, R. The evolving technology of classification-based
knowledge representation systems. In J. Sowa, editor, Principles
of Semantic Networks: Explorations in the Representation of
Knowledge. Morgan Kaufmann, San Mateo, CA, 1991.
Marcus, S., and McDermott, J. SALT: A knowledge acquisition
language for propose-and-revise systems. Artificial Intelligence,
39(1):1--37, May 1989.
Marcus, S., Stout, J., and McDermott, J. VT: An expert elevator
designer that uses knowledge-based backtracking. AI Magazine
9(1):95--112, 1988.
Swartout, W. R., and Gil, Y. EXPECT: Explicit Representations
for Flexible Acquisition. In Proc. of the 9th Knowledge

Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, 1995.
Weixelbaum, E. C-CLASSIC Reference Manual, Release 1.0,
Technical Memorandum 59620-910731-07M, AT&T Bell
Laboratories, Murray Hill, NJ. 1991.
Wright, J. R., Thompson, E. S., Vesonder, G. T., Brown, K. E.,
Palmer, S. R., Berman, J., and Moore, H. A knowledge-based
configurator that supports sales, engineering, and manufacturing
at AT&T Network Systems. AI Magazine 14(3):69--80, 1993.

