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Abstract

1. Middle-sized robot soccer competition provides an excellent opportunity for distributed robotic systems. In particular, a team of dog-sized robot players must perform real-time visual recognition, navigate in a dynamic field, track moving objects, collaborate with teammates, and hit a FIFA size-4 ball in the correct direction. All these tasks demand integrated robots that are autonomous (on-board sensing, thinking, and acting as living creatures), efficient (functioning under time and resource constraints), cooperative (collaborating with each other to accomplish tasks that are beyond individual's capabilities), and intelligent (reasoning and planing actions and perhaps learning from experience). Building such robots may require techniques that are different from those employed in separate research disciplines. This paper describes our experience in building these soccer robots and highlights problems and solutions that are unique to such multi-agent robotic systems in general. These problems include a framework for multi-agent programming, agent modeling and architecture, evaluation of multi-agent systems, and decentralized skill composition. Our robots share the same general architecture and basic hardware, but they have integrated abilities to play different roles (goalkeeper, defender or forward) and utilize different strategies in their team behavior. In the 1997 RoboCup competition, these integrated robots played well and our "Dreamteam" won the world championship in the middle-sized robot league.

2. Introduction

The RoboCup task is for a team of fast-moving robots to cooperatively play soccer in a dynamic environment. Since individual skills and teamwork are fundamental factors in the performance of a soccer team, Robocup is an excellent test-bed for integrated robots. Each soccer robot (or agent) must have the basic soccer skills— dribbling, shooting, passing, and recovering the ball from an opponent, and must use these skills to make complex plays according to the team strategy and the current situation on the field. For example, depending on the role it is playing, an agent must evaluate its position with respect to its teammates and opponents, and then decide whether to wait for a pass, run for the ball, cover an opponent’s attack, or go to help a teammate.

In the “middle-sized” RoboCup league, robots are playing in a 8.22m x 4.57m green-floor area surrounded by walls of 50cm high. The ball is an official size-4 soccer ball and the size of goal is 150x50cm. (In the “small-sized” RoboCup league, the field is similar to a Ping-Pong table and the robots are playing a golf ball. There is no “large-sized” RoboCup.) The objects in the field are color coded, the ball is red, one goal is blue, the other is yellow, the lines are white, and players may have different colors. Each team can have up to five robot players with size less than 50cm in diameter. There was no height limit in 1997, so some robots were up to 100cm high. Since this was the first time for such a competition, teams were allowed to use global cameras, remote computing processors, and other remote computing devices. We did not use any off-board resource, as you can see below, because we believe in total autonomous and integrated robots.
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Figure 1: Integrated Soccer Robots

To build agents with soccer-playing capabilities, there are a number of tasks that must be addressed. First, we must design an architecture to balance the system’s performance, flexibility and resource consumption (such as power and computing cycles). This architecture, integrating hardware and software, must work in real-time. Second, we must have a fast and reliable vision system to detect various static and dynamic objects in the field, and such a system must be easy to adjust to different lighting conditions and color schema (since no two soccer fields are the same, and even in the same field, conditions may vary with time). Third, we must have an effective and accurate motor system and must deal with uncertainties (discrepancy between the motor control signals and the actual movements) in the system. Finally, we must develop a set of software strategy for robots to play different roles for the team. This can add considerable amount of flexibility to our robots.

We realize that we are not the only nor the first to consider these problems. For example, long before the publication of [5], layered-controlled robots [3] and behavior-based robots [1,2] already began to address the problem of integrated robots. In a 1991 AI Spring symposium, the entire discussion [6] was centered around integrated cognitive architectures. We will have more detailed discussion on related work later.

Since building integrated robots for soccer competition requires integration of several distinct research fields, such as robotics, AI, vision, etc., we have to address some of the problems that have not been attacked before. For example, different from the small-sized league and most other teams in the middle-sized league, our robots perceive and process all visual images on-board. This will give much higher noise-ratio if one is not careful about how the pictures are taken. Furthermore, since the environment is highly dynamic, uncertainties associated with the motor system will vary with different actions and with the changes of power supply. This posts additional challenges on real-time reasoning about action than systems that are not integrated as complete and independent physical entities.

Our approach to built the robots is to use the least possible sophistication to make them as robust as possible. It is like teaching a kid to slowly improve his/her ability. Instead of using sophisticated equipment, programming very complicated algorithms, we use simple but fairly robust hardware and software (e.g., a vision system without any edge detection). This proved to be a good approach and showed its strength during the competition.

In the following sections of this paper, we will address the above tasks and problems in detail. The discussion will be organized as descriptions of component in our systems, with highlights on key issues and challenges. The related work will be discussed at the end.

2.
The System Architecture 

Our design philosophy for the system architecture is that we view each robot as a complete and active physical entity, who can intelligently maneuver and perform in realistic and challenging surroundings. In order to survive the rapidly changing environment in a soccer game, each robot must be physically strong, computationally fast, and behaviorally accurate. Considerable importance is given to an individual robot’s ability to perform on its own without any off-board resources such as global, birds-eye view cameras or remote computing processors. Each robot’s behavior must base on its own sensor data, decision-making software, and eventually communication with teammates. 

The hardware configuration of our robot is as follows (see examples in Figure 1). The basis of each robot is a 30x50cm, 4-wheel, 2x4 drive, DC model car. The wheels on each side can be controlled independently to make the car spin fast and maneuver easily. The two motors are controlled by the on-board computer through two serial ports. The hardware interface between the serial ports and the motor control circuits on the vehicle are designed and built by ourselves. The robot can be controlled to move forward and backward, and turn left and right. The “eye” of the robot is a commercial digital color camera called QuickCam made by Connectix Corp.. The images from this camera are sent into the on-board computer through a parallel port. The on-board computer is an all-in-one 133MHz 586 CPU board extensible to connect various I/O devices. There are two batteries on board, one for the motor and the other for the computer and camera. 
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Figure 2: The System Architecture

The software architecture of our robot is illustrated in Figure 2.  The three main software components of a robot agent are the vision module, the decision engine, and the drive controller. The task of the vision module is to drive the camera to take pictures, and to extract information from the current picture. Such information contains an object’s type, direction, and distance. This information is then processed by the decision engine, which is composed of two processing units - the internal model manager and the strategy planner.  The model manager takes the vision module’s output and maintains an internal representation of the key objects in the soccer field. The strategy planner combines the internal model with its own strategy knowledge, and decides the robot’s next action. Once the action has been decided, a command is sent to the drive controller that is in charge of properly executing. Notice that in this architecture, the functionality is designed in a modular way, so that we can easily add new software or hardware to extend its working capabilities.

We use Linux as the on-board operating system and built a special kernel with 4MB file system, all compressed on a single 1.4MB floppy disk for easy down-loading. The entire software system (for vision, decision, and motor drive) consists of about 6,500 lines of C and C++ code.

One challenge we faced during the design of architecture was to draw a proper line between hardware and software. For example, to control the two motors, we had a choice between using one serial port (a commercial laptop) or two serial ports (a complete all-in-one CPU board), we chose the later because we decide to solve the interface issue completely in hardware. (The former requires a complex software protocol and hardware interface). In retrospect, it seems that our decision on this issue was mainly driven by two factors: feasibility and robustness.

3.
The Vision Module

Just as eyesight is essential to a human player, a soccer robot depends almost entirely on its visual input to perform its tasks, such as determining the direction and distance of objects in the visual field. These objects include the ball, the goals, other players, and the lines in the field (sidelines, end of field, and penalty area).  All this information is extracted from an image of 658x496 RGB pixels, received from the on-board camera via a set of basic routines from a free package called CQCAM, provided by Patrick Reynolds from the University of Virginia.

Since the on-board computing resources for an integrated robot are very limited, it is a challenge to design and implement a vision system that is fast and reliable. In order to make the recognition procedure fast, we have developed a sample-based method that can quickly focus attention on certain objects. Depending on the object that needs to be identified, this method will automatically select certain number of rows or columns in an area of the frame where the object is most likely to be located. For example, to search for a ball in a frame, this method will selectively search only a few horizontal rows in the lower part of the frame. If some of these rows contain segments that are red, then the program will report the existence of the ball (recall that the ball is painted red). Notice that domain knowledge about soccer is useful here to determine where and how the sample pixels should be searched. For example, since the ball is often on the floor, only the lower part of the image needs to be searched when we are looking for the ball. Similarly, when the robot is looking for a goal, it will selectively search columns across the image and the search should from the floor up. Using this method, the speed to reliably detect and identify objects, including take the pictures, is greatly improved; we have reached frame rates of up to 6 images per second.

To increase the reliability of object recognition, the above method is combined with two additional processes. One is the conversion of RGB to HSV, and the other is “neighborhood checking” to determine the color of pixels. The reason we convert RGB to HSV is that HSV is much more stable than RGB when light conditions are slightly changed. Neighborhood checking is an effective way to deal with noisy pixels when determining colors. The basic idea is that pixels are not examined individually for their colors, but rather grouped together into segment windows and using a majority-vote scheme to determine the color of a window. For example, if the window size for red is 5 and the voting threshold is 3/5, then a line segment of “rrgrr” (where r is red and g is not red) will still be judged as red.

Object’s direction and distance are calculated based on their relative position and size in the image. This is possible because the size of ball, goal, wall, and others are known to the robot at the outset. For example, if one image contains a blue rectangle of size 40x10 pixels (for width and height) centered at x=100 and y=90 in the image, then we can conclude that the blue goal is currently at 10 degree left and 70 inches away.

To make this vision approach more easily adjustable when environment is changed, we have kept the parameters for all objects in a table, in a separate file. This table contains the values of camera parameters such as brightness and contrast, as well as window size, voting threshold, average HSV values, and search fashion (direction, steps, and area). When the environment is changed, only this file needs to be changed and the vision program will function properly.

Given the speed of current processing rate of object recognition, it is now possible to track the moving direction of the ball and other players. To do so, a robot will take two consecutive pictures, and compare the locations of the ball in these two pictures. If the direction of the ball moves to left (right), then the robot concludes the real ball is moving towards left (right). In fact, this is how our goalkeeper predicts the movement of an incoming ball.

Vision modules such as the one described here also face problems that are unique for integrated robots. For example, images will have much higher noise-ratio if the robot is not careful about when and how the pictures are taken. It took us quite a long time to realize this problem. At first, we were very puzzled by the fact that although the vision system is tested well statically, our robot would sometimes behave very strangely as if it is blind. After many trials and errors, we noticed that pictures that are taken while the robot is still moving have very low quality. Such pictures are not useful at all in decision-making. Since then, special care has been given to the entire software system; furthermore, the robot takes pictures only when it is not moving.

4.
Drive Controller

As specified in the system architecture, the drive controller takes commands from the decision engine, and sends the control signals to the two motors in parallel via two serial ports and a special-purpose hardware interface board. The interface provides a bridge between the two systems (the computer and the robot body) that have different power supplies.

Since the two motors (one for each side of the robot) can be controlled separately, the robot can respond to a large set of flexible commands. The basic ones include turning left and right, moving forward and backward. Others include making a big circle in the forward-left, forward-right, back-left and back-right direction. This is done by giving different amounts of drive force to the different sides. In the competition, however, we only used the basic actions for reliability reasons.

One challenge for building this simple drive controller is how to make the measured movements, such as moving forward 10 inches or turning left 35 degree. We solve this problem first by building a software mapping from the measurements of movement to the time duration of the motor running. For example, a command turning left for 30 degree would be translated by this mapping to forwarding the right-motor and backwarding the left-motor for 300ms. This solution works well when all components in the system, especially the batteries, are in perfect condition and floor material is good for wheel movement. But the accuracy of this open-loop control “deteriorates” when the power decreases or as the environment changes. Once this happens, the whole robot will behave strangely because the motor movements are no longer agreeing with the control signals.

To solve this problem, we have made all motor controls closed-loop in the entire system. Instead of saying “turning 75 degree,” we also specify the termination criteria for such a turn command. For example, if the purpose of this turning is to find a goal, then the program will repeat issue smaller turnings until the goal is found. With the closed-loop control commands, the reliability of motor control has increased considerably and become more robust with respect to power fluctuation.

This closed-loop motor control also results in one of our secret weapons for well-behaved dribbling actions. Different from other team’s “kamikaze” action which often lose the ball quickly in dribbling, our robot uses closed-loop control and continuously adjusts its moving direction according to the current direction of the ball. This approach worked very well in the competition, and contributed a great deal to the success of our team.

5.
The Decision Engine

Based on the existing theories of autonomous agents (see for example [ShenBook]), integrated robots are best to be model-driven. This principle has guided our design and implementation of the brain of our robots, namely the Decision Engine. Compared to other model-less and pure-reactive approaches, our approach could in principle demonstrate more intelligent behaviors without sacrificing the ability to quickly react to different situations.

As one can see in Figure 2, the Decision Engine receives input from the vision module and sends move commands to the drive controller.  The decision engine bases its decisions on a combination of the received sensor input, the agent’s internal model of its environment, and knowledge about the agent’s strategies and goals.  The agent’s internal model and strategies are influenced by the role the agent plays on the soccer field. There are three types of agent roles or playing positions: goalkeeper, defender, and forward.  The team strategy is distributed into the role strategies of each individual agent. Depending on the role type, an agent can be more concerned about a particular area or object on the soccer field, e.g. a goalkeeper is more concerned about its own goal, while the forward is interested in the opponent’s goal. These differences are encoded into the two modules that deal with the internal model and the agent’s strategies.

The decision engine consists of two sub-modules: the internal model manager and the strategy planner. These sub-modules communicate with each other to formulate the best decision for the agent’s next action.  The model manager converts the vision module’s output into a “map” of the agent’s current environment, as well as generating a set of object movement predictions.  It calculates the salient features in the field and then communicates them to the strategy planner. To calculate the best action, the strategy planner uses both the information from the model manager and the strategy knowledge that it has about the agent’s role on the field.  It then sends this information to the drive controller and back to the model manager, so that the internal model can be properly updated.

5.1
Model Manager

For robots to know about their environment and themselves, the model manager uses the information detected by the vision module to construct or update an internal model. This model contains a map of the soccer field and location vectors for nearby objects. 

A location vector consists of four basic elements; distance and direction to the object and the changes in distance and direction for the object. The changes in distance and direction are used to predict a dynamic object’s movement; these are irrelevant for objects that are static. Depending on the role a robot is playing, the model manager actively calls the vision module to get the information that is important to the robot and updates the internal model. For example, if the robot is playing goalkeeper, then it needs to know constantly about the ball, the goal, and its current location relative to the goal.

An internal model is necessary for several reasons. First, since a robot can see only the objects within its current visual frame, a model is needed to keep information that is perceived previously. For example, a forward robot may not able to see the goal all the time. But when it sees the ball, it must decide quickly in which direction to kick. The information in the model can facilitate such decision readily. Second, the internal model adds robustness for a robot. If the camera fails for a few cycles (e.g. due to a hit or being blocked, etc.), the robot can still operate using its internal model of the environment. Third, the model is necessary for predicting the environment. For example, a robot needs to predict the movement of the ball in order to intercept it. This prediction can be computed by comparing the ball’s current direction with its previous one. Fourth, the internal model can be used to provide feedback to the strategy planner to enhance and correct its actions. For example, in order to perform a turn-to-find-the-ball using the closed-loop control discussed above, the internal model provides the determination criteria to be checked with the current visual information.

5.2
Strategy Planner

In order to play a successfully soccer game, each robot must react appropriately to different situations in the field. This is accomplished by the strategy planner that resides in the decision engine on each robot. Internally, a situation is represented as a vector of visual clues such as the relative direction and distance to the ball, goals, and other players. A strategy is then a set of mappings from situations to actions. For example, if a forward player is facing the opponent’s goal and sees the ball, then there is a mapping to tell it to perform the kick action. 

For our robots, there are five basic actions: forward, backward, stop, turn-left and turn-right. These actions can be composed to form macro actions such as kick, line-up, intercept, homing, and detour. For example, a detour action is basically a sequence of actions to turn away from the ball, move forward to pass the ball, turn back to find the ball again, and then forward to push the ball. These compound actions represent a form of simple planning. This simple reasoning and planning of actions is very effective to create an illusion that the robots are “intelligent.” Indeed, during the competition, the audience cheered when they saw one of our robot make such a detour in order to protect our goal.

5.3
Role Specifications

There are five roles that a robot can play for its team: left-forward, right-forward, left-defender, right- defender, and goalkeeper. Each role is actually implemented as a set of mappings from situations to actions, as described above. Each role has its own territory and home position. For example, the left-forward has the territory of the left-forward quarter of the field, and its home position is near the center line and roughly 1.5 meter from the left board line. Similarly, the left-defender is in charge of the left-back quarter of the field and its home position is at the left front of the base goal. The mappings for each role, that is goalkeeper, forward and defender, are defined briefly as follows.

For the goalkeeper, the two most important objects in the field are the ball and its own goal. Its home position is in front of the goal, and its strategy is to keep itself in line of the ball and the goal. Since most of its actions are parallel to the base line, the goalkeeper’s camera is mounted on the side (in the rest of the robots, the camera is mounted on the front), so that it can move sideways while keeping an eye on the ball. As we mentioned before, the goalkeeper also predicts the movement of an incoming ball in order to fulfill its strategy in time. There are four compound actions for the goalkeeper. Two actions, move to the left or right side, are used to prevent the ball from entering the goal. The third action is to search for the ball, and the fourth one is to position itself in the best location. This last action is the most difficult one to implement because the goalkeeper must simultaneously track three types of information, the ball, the horizontal and vertical offset with respect to the goal.

The strategy for the forward role is relatively simpler. Its task is to push the ball towards the opponent’s goal whenever possible. A forward must look for the ball, decide which direction to kick when the ball is found, and perform the kick or detour action appropriately. This strategy proved to be fast and effective in the competition.

The defender’s strategy is very similar to that of the forward, except that the distance to the opponent goal is substantially larger compared to the position of the forward. Similar to the goalkeeper, it also tries to position itself between the ball and its own goal. The most difficult action for a defender is to reliably come back to its position after it chases the ball away.

6.
Collaboration and Learning

As we can see from the role specifications, there is no explicit collaboration built into the role strategies. This is based on our general belief that if every robot plays its role perfectly, then collaboration will emerge naturally. Indeed, during the competition, we saw two of our forwards helped each other to score a goal: one robot rescued the ball from two opponents, and the other robot saw the ball right in front of the goal, and pushed it in. In the future, we will improve our role specification to include passing and assisting ball dribbling.

Learning is an important issue that we have not addressed yet, although our model-based approach provides the basic elements for its implementation. One particular area that especially needs learning is the vision calibration. In the long run, it would also be nice to have the robot learn from its own experience (such as the mistakes of scoring at one’s own goal).

7.
Related Work

Our current approach follows an earlier, integrated system called LIVE [9] for prediction, learning, planning and action, and a theory of autonomous learning in general [8]. This work also shares ideas with many cognitive architectures published in [6] that integrate planning and reacting for mobile robots, as well as recent progress in Agent research [4]. The unique feature of our approach is that a robot uses the internal model and the closed-loop control to guide its actions based on visual feedback. Our earlier work of this type includes a silver medal winner robot called YODA in the 1996 AAAI Robot competition [YODA97].

Our approach is also closely related to Arkin’s behavior-based robots [2]. They differ, however, in the fact that a soccer team is inherently a multi-agent problem. Our current approach is to collaborate without any explicit communication. This is possible because each robot’s internal model is kept consistent with the environment and with the models of its teammates.

Finally, although most of this work is experimental, the team’s performance during the competition indeed demonstrated the merits of this approach. The Dreamteam has scored 8 out of the 9 goals made in the entire middle-sized RoboCup tournament (although two of these goals were against our own goals).

8.
Conclusions and Future Work

In building integrated robots that are autonomous, efficient, collaborative, and intelligent, we have demonstrated a simple but effective approach. At the present, it seems that the most effective approach for soccer robots is to build integrated robots using the least-sophistication to achieve the most robustness. In the future, we will continue following our design strategy but improving our robots in many aspects. We plan to add communication and passing capacities to increase their ability to collaborate, provide better sensors to increase awareness, and allow them to learn from their own experience.
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