Generating RSA Keys on a Handheld Using an Untrusted Server

Nagendra Modadugu Dan Boneh* Michael Kim
nagendra@cs.stanford.edu dabo@cs.stanford.edu mfk@cs.stanford.edu
Abstract

We show how to efficiently generate RSA keys on a low power handheld device with the help
of an untrusted server. Most of the key generation work is offloaded onto the server. However, the
server learns no information about the key it helped generate. We experiment with our techniques
and show they result in up to a factor of 5 improvement in key generation time. The resulting
RSA key looks like an RSA key for paranoids. It can be used for encryption and key exchange, but
cannot be used for signatures.

1 Introduction

In recent years we have seen an explosion in the number of applications for handheld devices. Many
of these applications require the ability to communicate securely with a remote device over an authen-
ticated channel. Example applications include: (1) a wireless purchase using a cell phone, (2) remote
secure synchronization with a PDA, (3) using a handheld device as an authentication token [2], and
(4) handheld electronic wallets [3]. Many of these handheld applications require the ability to issue
digital signatures on behalf of their users.

Currently, the RSA cryptosystem is the most widely used cryptosystem for key exchange and digital
signatures: SSL commonly uses RSA-based key exchange, most PKI products use RSA certificates,
etc. Unfortunately, RSA on a low power handheld device is somewhat problematic. For example,
generating a 1024 bit RSA signature on the PalmPilot takes approximately 30 seconds. Nevertheless,
since RSA is so commonly used on servers and desktops it is desirable to improve its performance on
handhelds.

In this paper we consider the problem of generating RSA keys. Generating a 1024 bit RSA key
on the PalmPilot can take as long as 15 minutes. The device locks up while generating the key and
is inaccessible to the user. For wireless devices battery life time is a concern. Consider a user who is
given a new cellphone application while traveling. The application may need to generate a key before
it can function. Generating the key while the user is traveling will lock up the cellphone for some time
and may completely drain the batteries.

The obvious solution is to allow the handheld to communicate with a desktop or server and have
the server generate the key. The key can then be downloaded onto the handheld. The problem with
this approach is that the server learns the user’s private key. Consequently, the server must be trusted
by the user. This approach limits mobility of the handheld application since users can only generate a
key while communicating with their home domain. We would like to enable users to quickly generate
an RSA key even when they cannot communicate with a trusted machine.

*Supported by NSF CCR-9732754.

Server #1 Server #2

PalmPilot
Serla! Gateway Ethernet
connection
AN
~ -
>~ _ _ SSL Connection — 7

Figure 1: A two server configuration

We study the following question: can we speed up RSA key generation on a handheld with the
help of an untrusted server? Our goal is to offload most of the key generation work onto the untrusted
server. However, once the key is generated the server should have no information about the key it
helped generate. This way the handheld can take advantage of the server’s processing power without
compromising the security of its keys.

Our best results show how to speed up the generation of unbalanced RSA keys. We describe these
keys and explain how they are used in the next section. Our results come in two flavors. First, we
show how to speed up key generation with the help of two untrusted servers. We assume that the
two servers are unable to share information with each other. For instance, the two untrusted servers
may be operated by different organizations. Using two untrusted servers we are able to speed up key
generation by a factor of 5. We then show that a single untrusted server can be used to speed up
key generation by a factor of 2. In Section 4 we discuss speeding up normal RSA key generation (as
opposed to unbalanced keys).

We implemented and experimented with all our algorithms. We used the PalmPilot as an example
handheld device since it is easy to program. Clearly our techniques apply to any low power handheld:
pagers, cell phones, MP3 players, PDA’s, etc. In our implementation, the PalmPilot connects to a
desktop machine using the serial port. When a single server is used to help generate the key, the
pilot communicates with the desktop using TCP/IP over the serial link. The desktop functions as
the helping server. Note that there is no need to protect the serial connection. After all, since the
desktop learns no information about the key it helped generate, an attacker snooping the connection
will also learn nothing. When two servers are used, the desktop functions as a gateway enabling the
pilot to communicate with the two servers. In this case, communication between the pilot and servers
is protected by SSL to prevent eavesdropping by the gateway machine, and to prevent one server from
listening in on communication intended for the other. Typically, the gateway machine functions as
one of the two servers, as shown in Figure 1.

1.1 Timing cryptographic primitives on the PalmPilot

For completeness we list some running times for cryptographic operations on the PalmPilot. We used
the Palm V which uses a 16.6MhZ Dragonball processor. Running times for DES, SHA-1, and RSA
were obtained using a port of parts of SSLeay to the PalmPilot started by lan Goldberg.

Algorithm Time Comment
DES encryption 4.9ms/block

SHA-1 2.7ms/block

1024 bit RSA key generation | 15 minutes on average
1024 bit RSA sig. generation | 27.8 sec.

1024 bit RSA sig. verify 0.758 sec. e=

1024 bit RSA sig. verify 1.860 sec. e = 65537

2 Preliminaries

2.1 Overview of RSA key generation

As a necessary background we give a brief overview of RSA key generation. Recall that an RSA key is
made up of an n-bit modulus N = pq and a pair of integers d, called the private exponent, and e, called
the public exponent. Typically, N is the product of two large primes, each n/2 bits long. Throughout
the paper we focus on generating a 1024 bit key (i.e. n = 1024). The algorithm to generate an RSA
key is as follows:

Step 1: Repeat the following steps until two primes p, q are found:

a. Candidate Pick a random 512 bit candidate value p.

b. Sieve Using trial division, check that p is not divisible by any small primes (i.e. 2,3,5,7,
etc.).

c. Test Run a probabilistic primality test on the candidate. For simplicity one can view the
test as checking that ¢?»~1)/2 = +1 (mod p), where g is a random value in 1...p — 1. All
primes will pass this test, while a composite will fail with overwhelming probability [10].

Step 2: Compute the product N = pq (the product is 1024 bits long).

Step 3: Pick encryption and decryption exponents e and d where e -d = 1 mod ¢(N) and p(N) =
N-p—q+1.

The bulk of the key generation work takes place in step (1). Once the two primes p and ¢ are found,
steps (2) and (3) take negligible work. We note that trial division (step 1b) is frequently optimized
by using a sieving algorithm. Sieving works as follows: once the candidate p is chosen in step (1a),
the sieve is used to quickly find the closest integer to p that is not divisible by any small primes. The
candidate p is then updated to be the integer found by the sieve. Throughout the paper we use a
sieving algorithm attributed to Phil Zimmerman.

Our goal is to improve the performance of step (1). Within step (1), the exponentiation in step (1c)
dominates the running time. Our goal is to offload the primality test to the server without exposing
any information about the candidate being tested. Hence, the question is: how can we test that
g ' mod p = 1 with the help of a server without revealing any information about p? To do so we
must show how to carry out the exponentiation while solving two problems: (1) hiding the modulus
p, and (2) hiding the exponent p — 1.

2.2 Unbalanced RSA keys

Our best results show how to speed up the generation of unbalanced RSA keys. An unbalanced key
uses a modulus N of the form N = p- R where p is a 512 bit prime and R is a 4096 bit random
number. One can show that with high probability R has a prime factor that is at least 512 bits long
(the probability that it does not have such a factor is less than 1/22%). Consequently, the resulting
modulus N is as hard to factor as a standard modulus N = pq.

An unbalanced key is used in the same way as standard RSA keys. The public key is (e, N) and
the private key is (d, N). We require that e-d =1 mod p — 1. Suppose p is m-bits long. The system
can be used to encrypt messages shorter than m bits. As in standard RSA, to encrypt a message M,
whose length is much shorter than m bits, the sender first applies a randomized padding mechanism,
such as OAEP [4, 9]. The padding mechanism results in an m — 1 bit integer P (note that P < p).
The sender then constructs the ciphertext by computing C' = P® mod N. Note that the ciphertext is
as big as V. To decrypt a ciphertext C, the receiver first computes Cj, = C mod p and then recovers
P by computing P = Cg mod p. The plaintext M is then easily extracted from P. Since decryption
is done modulo p it is as fast as standard RSA.

The technique described above for using an unbalanced key is similar to Shamir’s “RSA for para-
noids” [11]. It shows that unbalanced keys can be used for encryption/decryption and key exchange.
Unfortunately, unbalanced keys cannot be used for digital signatures. We note that some attacks
against RSA for paranoids have been recently proposed [5]. However, these attacks do not apply when
one uses proper padding prior to encryption. In particular, when OAEP padding is used [4] the attacks
cannot succeed since the security of OAEP (in the random oracle model) only relies on the fact that
the function f : {0,...,2™ '} — Zx defined by f(z) = 2° mod N is a one-to-one trapdoor one way
function.

3 Generating an unbalanced RSA key with the help of untrusted
servers

We show how RSA key generation can be significantly sped up by allowing the PalmPilot to interact
with untrusted servers. At the end of the computation the servers should know nothing about the key
they helped generate. We begin by showing how two untrusted servers can help the Pilot generate
RSA keys. The assumption is that these two servers cannot exchange information with each other.
To ensure that an attacker cannot eavesdrop on the network and obtain the information being sent
to both servers, our full implementation protects the connection between the Pilot and the servers
using SSL. Typically, the machine to which the pilot is connected can be used as one of the untrusted
servers (Figure 1). We then show how to speed up key generation with the help of a single server. In
this case there is no need to protect the connection.

3.1 Generating keys with the help of two servers

Our goal is to generate a modulus of the form N = pR where p is a 512-bit prime and R is a 4096-bit
random number. To offload the primality test onto the servers we must hide the modulus p and the
exponent p — 1. To hide the modulus p we intend to multiply it by a random number R and send the
resulting N = pR to the servers. The server will perform computations modulo N = pR. If it turns
out that p is prime, then sending N to the servers does not expose any information about p or R. If

p is not prime we start over. To hide the exponent p — 1 used in the primality test we intend to share
it among the two servers. Individually, neither one of the servers will learn any information.

Our algorithm for generating an unbalanced RSA modulus N = pR is as follows. The algorithm
repeats the following steps until an unbalanced key is generated:

Step 1: Pilot generates a 512 bit candidate p that is not divisible by small primes and a 4096 bit
random number R. We require that p = 3 mod 4.

Step 2: Pilot computes N =p- R.

Step 3: Pilot picks random integers s; and so in the range [—p, p] such that s; + so = (p — 1)/2. It
also picks a random g € Z.

Step 4: Pilot sends (N, g,s1) to server 1 and (N, g, —s2) to server 2.

Step 5: Server 1 computes X; = ¢! mod N. Server 2 computes X = ¢(=*2) mod N. Both results
X1 and X5 are sent back to the pilot.

Step 6: Pilot checks whether X1 = +X5 mod p. If equality holds, then N = pR is declared as a
potential unbalanced RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 7: The Pilot locally runs a probabilistic primality test to verify that p is prime. This is done to
ensure that the servers returned correct values.

First, we verify the soundness of the algorithm. In step 6 the Pilot verifies that ¢! -g%2 = ¢®~1)/2 =
+1 mod p. If the test is satisfied then p is very likely to be prime. Then step 7 ensures that p is in
fact prime and that the servers did not respond incorrectly. When generating a 1024 bit RSA key, a
single primality test takes little time compared to the search for a 512 bit prime. Hence, Step 7 adds
very little to the total running time.

During the search for the prime p, the only computation carried out by the pilot is the probable
prime generation and the computation of s; and so. The time to construct s; and sy is negligible.
On the other hand, generating the probable prime p requires a sieve to ensure that p is not divisible
by small factors. As we shall see in Section 5 the sieve is the bottleneck. This is unusual since in
standard RSA modulus generation sieving takes only a small fraction of the entire computation. We
use a sieving method attributed to Phil Zimmerman. We note that faster sieves exist, but they result
in an insecurity of our algorithm.

Security To analyze the security properties of the algorithm we must argue that the untrusted
servers learn no information of value to them. During the search for the RSA modulus many candidates
are generated. Since these candidates are independent of each other, any information the servers learn
about rejected candidates does not help them in attacking the final chosen RSA modulus. Once the
final modulus N = pR is generated in Step 2, each server is sent the value of N and s; where ¢ is either
1 or 2. The modulus N will become public anyhow (it is part of the public key) and hence reveals no
new information. Now, assuming servers 1 and 2 cannot communicate, the value s; is simply a random
number (from Server 1’s point of view). Server 1 could have just as easily picked a random number
in the range [—N, N] itself. Hence, s; reveals no new information to Server 1 (formally, a simulation
argument shows that s; reveals at most two bits). The same holds for Server 2. Hence, as long as
Server 1 and Server 2 cannot communicate, no useful information is revealed about the factorization
of N. We note that if the servers are able to communicate, they can factor V.

Performance The number of iterations until a modulus is found is identical to local generation of
an (unbalanced) modulus on the PalmPilot. However, each iteration is much faster than the classic
RSA key generation approach of Section 2.1. After all, we offloaded the expensive exponentiation to
a fast Pentium machine. As we shall see in Section 5.2, the total running time is reduced by a factor
of 5.

3.2 Generating keys with the help of a single server

Next, we show how a single untrusted server can be used to reduce the time to generate an RSA key
on the PalmPilot. Once the key is generated, the server has no information regarding the key it helped
generate. Typically, the pilot connects to the helping server directly through the serial or infrared
ports.

As before we need to compute ¢®?~9/2 mod p to test whether p is prime. Our technique involves
reducing the size of the exponent using the help of the server and hence speeding up exponentiation
on the pilot. The algorithm repeats the following steps until an unbalanced modulus is found:

Step 1: Pilot generates a 512 bit candidate p that is not divisible by small primes and a 4096 bit
random number R. We require that p = 3 mod 4.

Step 2: Pilot computes N = p- R. It picks a random ¢ € Z7%.

Step 3: Pilot picks a random 160 bit integer r and a random 512 bit integer a. It computes z =
r+alp—1)/2.

Step 4: Pilot sends (N, g, z) to the server.
Step 5: The server computes X = g°* mod N and sends X back to the Pilot.
Step 6: Pilot computes Y = ¢" mod p.

Step 7: Pilot checks if X = £Y mod p. If so then the algorithm is finished and N = pR is declared
as a potential unbalanced RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 8: The Pilot locally runs a probabilistic primality test to verify that p is prime.

To verify soundness observe that N will make it to step 8 only if X = +Y ie. g'toe-D/2 =
+¢" mod p. As before, this condition is always satisfied if p is prime. The test will fail with over-
whelming probability if p is not prime. Hence, once step 8 is reached the modulus N = pR is very
likely to be an unbalanced modulus. The test is Step 8 takes little time compared to the entire search
for the 512-bit prime.

Performance Since we are generating an unbalanced modulus the number of iterations until NV is
found is the same as in local generation of such a modulus on the PalmPilot. Within each iteration
the Pilot generates p and R using a sieve and then computes Y = ¢" mod p (in step 6). However, r is
only 160 bits long. This is much shorter than when a key is generated without the help of a server.
In that case the Pilot has to compute an exponentiation where the exponent is 512 bits long. Hence,
we reduce the exponentiation time by approximately a factor of three. Total key generation time is
reduced by a factor of 2, due to the overhead of sieving.

Recall that in Step 6 the Pilot computes Y = ¢" mod p where r is a 160-bit integer. This step can
be further sped up with the help of the server. Let A = 2%0 and write r = ry + r1 A + 19 A% + 13 A3
where 7, 71,79, 73 are all in the range [0, A]. In Step 5 the server could send back the vector R =
(gA,gAZ,gA?’) mod N in addition to sending X. Let B = (R;, Ry, R3). Then in Step 6 the Pilot only
has to compute Y = g™ - R}' - Ry* - R3® mod p. Using Simultaneous Multiple Exponentiation [7, p.
617] Step 6 can now be done in approximately half the time of computing Y = ¢" mod p on the Pilot
directly. This improvement reduces the total exponentiation time on the Pilot by an additional factor
of 2.

Security In the last iteration, when the final p and R are chosen, the server learns the value z =
a(p — 1) + r. Although z is a “random looking” 1024 bit number, it does contain some information
about p. In particular, z mod p —1 is very small (only 160 bits long). The question is whether z helps
an adversary break the resulting key. The best known algorithm for doing so requires 2’/2 modular
exponentiations. Due to our choice of 160 bits for r, the algorithm has security of approximately
280 This is good enough since a 1024 bits RSA key offers security of 280 anyhow. Nevertheless,
the security of the scheme is heuristic since it depends on the assumption that no faster algorithm
exists for factoring N given z. More precisely, the scheme depends on the following “(p — 1)-multiple
assumption”:

(p—1)-multiple assumption: Let A, be the set of integers N = pq where p and ¢ are both n-bit primes.
Let m be an integer so that the fastest algorithm for factoring a random element N € A,, runs in time
at least 2"/2. Then the two distributions: (N, r +a(p—1)/2) and (N, z) cannot be distinguished with
non-negligible probability by an algorithm whose running time is less than 2"/2. Here N is randomly
chosen in A,,, a is randomly chosen in [0, p], 7 is randomly chosen in [0,2™], and z is randomly chosen
in [0,p%/2].

Based on the (p — 1)-multiple assumption, the integer z given to the server contains no more
statistical information than a random number in the range [0,p?]. Hence, the server learns no new
useful information from z.

As before, since the generated key is an unbalanced key it can only be used for encryption/decryption
and key exchange. It cannot be used for signatures.

4 Generating standard RSA keys

One could wonder whether the techniques described in the previous sections can be used to speed up
generation of standard RSA keys. We show that at the moment these techniques do not appear to
improve the generation time for a 1024 bit key. For shorter keys, e.g. 512 bits keys, we get a small
improvement. In what follows we show how to generate a normal RSA key, N = pq, with the help of
two servers.

We wish to generate an RSA modulus N = pq where p and ¢ are each 512-bits long. As before,
we wish to offload the primality test to the servers. To do so we must hide the moduli p and ¢ and
the exponents p — 1 and ¢ — 1. The basic idea is to simultaneously test primality of both p and ¢. For
each pair of candidates p and ¢ the Pilot computes N = pq and sends N to the servers. The servers
carry out the exponentiations modulo N. To hide the exponents p —1 and ¢ — 1 we share them among
the two servers as in the last section.

The resulting algorithm is similar to that for generating unbalanced keys. In fact, the server-side is

identical. The algorithm works as follows. Repeat the following steps until a standard RSA modulus
is found:

Step 1: Pilot generates two candidates p, ¢ so that neither one is divisible by small primes. We refer
to p and g as probable primes.

Step 2: Pilot computes N =p-q and ¢(N) = N —p — ¢+ 1. Pilot picks a random g € Z%.
Step 3: Pilot picks random integers p; and @9 in the range [N, N] such that ¢ + @9 = p(N)/4.
Step 4: Pilot sends (N, g, p1) to server 1 and (N, g, —p2) to server 2.

Step 5: Server 1 computes X; = ¢¥* (mod N). Server 2 computers Xo = g ¥2 (mod N). Both
results X; and X9 are sent back to the pilot.

Step 6: Pilot checks if X; = +X5 mod N. If so, the algorithm is finished and N = pq is declared as
a potential RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 7: The Pilot locally runs a probabilistic primality test to verify that p and ¢ are prime. This is
done to ensure that the servers returned correct values.

First, we verify soundness of the algorithm. In step 6 the Pilot is testing that X; = + X5, namely
that g** = g~%¥2 mod N. That is, we check that ¢#1 %2 = g#(N)/4 = +1 mod N. Clearly, this condition
holds if p and g are both primes. Furthermore, it will fail with overwhelming probability if either p
or g are not prime. Hence, Step 7 is reached only if N = pq is extremely likely to be a proper RSA
modulus. Step 7 then locally ensures that p and ¢ are primes.

Security To analyze the security properties of the algorithm we must argue that the untrusted
servers learn no information of value to them. During the search for the RSA modulus many candidates
are generated. Since these candidates are independent of each other, any information the servers learn
about rejected candidates does not help them in attacking the final chosen RSA modulus. Once the
final modulus N = pq is generated in Step 2, each server is sent the value of N and ¢; where ¢ is either
1 or 2. The modulus N will become public anyhow (it is part of the public key) and hence reveals
no new information. Now, assuming servers 1 and 2 cannot communicate, the value ¢; is simply a
random number (from Server 1’s point of view). Server 1 could have just as easily picked a random
number in the range [—N, N| itself. Hence, ¢ reveals no new information to Server 1. As long as
Server 1 and Server 2 cannot communicate, no useful information is revealed about the factorization
of N. If the servers are able to communicate, they can factor N.

Performance FEach iteration in our algorithm is much faster than the classic RSA key generation
approach of Section 2.1 — we offloaded the expensive exponentiation to a fast Pentium machine.
Unfortunately, the number of iterations required until an RSA modulus is found is higher. More
precisely, suppose in the classic approach one requires k iterations on average until a 512-bit prime
is found. Then the total number of iterations to find two primes is 2k on average. In contrast, in
our approach both p and ¢ must be simultaneously prime. Hence, k? iterations are required. We
refer to this effect as a quadratic slowdown. When generating a 1024 bit modulus the value of k is
approximately 14. So even though we are able to speed up each iteration by a factor of 5, there are
seven times as many iterations on average. Therefore when generating a standard 1024 bit key these
techniques do not improve the running time. When generating a shorter key, e.g. a 512 bit key, the

quadratic slowdown penalty is less severe since k is smaller (9 rather than 14). For such short keys
we obtain a small improvement in performance.

Similarly, when generating keys with the help of a single server, the quadratic slowdown outweighs
the reduction in time per iteration. It is an open problem to speed up server aided generation of
standard RSA keys.

5 Experiments and implementation details

5.1 Implementation details

The two main components of our implementation were the cryptographic and networking modules.
SSLeay provided for the cryptographic code on both the server (Pentium IT 400Mhz) and PalmPilot
side. In the case of the Pilot, we used SSLeay code that had been previously ported by Ian Goldberg.

5.1.1 Networking

We connect the pilot to a Windows NT gateway running RAS (Remote Access Service) through a
serial-to-serial interface. The function of the gateway was to provide TCP/IP access to the network.

In our single server implementation, we used the gateway as our assisting server while in our dual
server implementation, we used the gateway and another local machine.

Our networking layer abstracts the secure communication of Biglntegers to and from the PalmPilot.
The network layer packs a number of Biglntegers into a buffer and sends the entire buffer at once.
The receiving side unpacks the buffer and processes it as required.

5.2 Experiments

Tables 1 and 2 show the results we obtained when generating 512, 768 and 1024 bit RSA keys. The
network traffic column measures the amount of data (in bytes) exchanged between the Pilot and the
servers. We generate keys using three methods:

(1) Local: Key generated locally on the Pilot (no interaction with a server).
(2) One server: Pilot aided by a single untrusted server.

(3) Two servers: Pilot aided by two untrusted servers.

As expected we see that generating unbalanced keys with the aid of one or two servers leads to
a performance improvement over generating keys locally on the PalmPilot. The rest of this section
discusses these experimental results.

We note that the key factor that determines the time it takes to generate an RSA key is the
time per iteration (the time to sieve and exponentiate one probable prime p). This number is more
meaningful than the total running since since the total time has a high variance. More precisely, the
number of iterations until a prime is found has high variance. Our tables state the average number of
iterations we obtained.

In our experiments, we carried out trial division on a candidate prime using the first 2048 primes
(upto approximately 17,000). In all our experiments we observed that the server’s responses are

Sieve Server Exp. total time/ average total net
time(ms) | time(ms) | time(ms) | iter.(ms) num. iter. time traf.
Local unbal. 3,805 21,233 25,038 18.16 7.5min.
Local norm. 3,805 21,233 25,038 36.32 15.16min.
One serv. | unbal. 3,516 955 6,995 11,467 14.5 2.7min. 5,568
Two serv. | unbal. 3,587 1,462 5,156 12.75 1.1min 8,160
Two serv. | norm. 7,850 820 0 8,720 406 59min | 311,808

Table 1: Statistics for different key generation methods (1024 bit keys)

instantaneous compared to the Pilot’s processing time. Consequently, improving server performance
will only marginally affect the overall running time.

5.2.1 Generating a 1024 bit key

Table 1 shows detailed timing measurements for generating 1024 bit RSA keys. Our breakdown of
timing measurements follows the description in Section 2.1. The first column shows the time to pick a
probable prime, the second shows the time the Pilot spent waiting for the server to respond, the third
shows the time to exponentiate on the PalmPilot (not used in the two-server mode). The last column
shows the total network traffic (in bytes).

The first two rows in Table 1 measure the time to generate keys on the Pilot. The first column
represents the time to generate an unbalanced key, the second represents the time to generate a normal
N = pq key. Since an unbalanced key requires only one prime (the other is a random number) the
number of iterations for locally generating an unbalanced key is half that for generating a normal key.

When comparing the time per iteration for local generation and two server generation, we see that
using two servers we get an improvement of a factor of 5. Using one server we obtain an improvement
of a factor of 2. The average number of iterations is approximately the same in all three methods.
Note that the improvements are a result of speeding up (or eliminating) the exponentiation step on
the PalmPilot. Observe that when two servers are used the bottleneck is the sieving time — the time
to generate a probable prime p.

On average, 406 iterations are needed to generate a normal RSA key (N = pq) with the aid of two
servers. The large number of iterations is a result of the quadratic slowdown discussed in Section 4.
Even though each iteration is much faster than the corresponding value for local generation, we end
up hurting the total generation time.

Our algorithms require only a few kilobytes of data transfer between the Pilot and the servers.
The traffic generated is linear in the number of iterations which explains the large figure for two server
normal key generation.

5.2.2 Generating various key sizes

From Table 2 we see that the total iteration time increases almost linearly with key size for dual server
aided generation. Indeed, the dominant component of each iteration is sieving, which takes linear time
as a function of the key size. The expected total time for generating the key is the product of the
time-per-iteration and the expected-number-of-iterations.

Observe that the improvement over local generation is less significant for shorter keys than for

10

512 bits 768 bits 1024 bits

num. | time/ net | num. | time/ net num. | time/ net

iter. | iter.(ms) | traf. || iter. | iter.(ms) | traf. iter. | iter.(ms) | traf.
Local unbal. 9.15 3,550 10.53 | 8,215 18.16 | 25,038
Local norm. 18.3 3,550 21.1 8,215 36.32 | 25,038
One serv. norm. 9.3 4,546 1,785 || 14.8 7,644 4,262 14.5 11,467 5,568
Two serv. unbal. 9 2,492 2,880 || 12.55 3,687 6,024 || 12.75 9,156 8,160
Two serv. norm. 26 4,364 9,984 || 119.7 6,560 68,947 || 406 8,720 311808

Table 2: Statistics for different key sizes

longer keys. For instance, for a 512 bit key, two servers improve performance by only 50%. For a 1024
bit key the improvement is a factor of 5. The reason is that for smaller keys, the primality test is less
of a dominating factor in the running time per iteration (we use the same size sieve, 2048 primes, for
all key sizes). Hence, reducing the exponentiation time has less of an effect on the the total time per
iteration.

6 Conclusions

At the present using RSA on a low power handheld is problematic. In this paper we study whether
RSA’s performance can be improved without a loss of security. In particular, we ask whether an
untrusted server can aid in RSA key generation. We wish to offload most of the work to the server
without leaking any of the handheld’s secrets.

We showed a significant improvement in the time it takes to generate an unbalanced RSA key.
With the help of two isolated servers we obtained a speed up of a factor of 5. With the help of a single
server we obtained a speed up of a factor of 2. For normal RSA keys, N = pq, we cannot improve the
running time due do the quadratic slowdown problem discussed in Section 4. It is an open problem to
speed up the generation of a normal RSA key using a single server. In all our algorithms the load on
the server is minimal; our experiments show that even though the server is doing most of the work,
the PalmPilot does not produce candidates fast enough to fully occupy the server. Our code available
for anyone wishing to experiment with it.

Acknowledgments

We thank Certicom for providing us with SSL libraries for the PalmPilot.

References

[1] N. Asokan, G. Tsudik and M. Waidner, “Server-Supported Signatures”, Journal of Computer
Security, Vol. 5, No. 1, pp. 91-108, 1997.

[2] D. Balfanz, E. Felten, “Hand-Held Computers Can Be Better Smart Cards”, to appear in the 8th
USENIX Security Symposium.

11

[3] D. Boneh, N. Daswani, “Experimenting with electronic commerce on the PalmPilot”, in proc. of
Financial-Crypto ’99, Lecture Notes in Computer Science, Vol. 1648, Springer-Verlag, pp. 1-16,
1999.

[4] M. Bellare, P. Rogaway, “Optimal asymmetric encryption — How to encrypt with RSA”, in proc.
Eurocrypt ’94.

[5] H. Gilbert, D. Gupta, A. M. Odlyzko, and J.-J. Quisquater, “Attacks on Shamir’s 'RSA for para-
noids,” Information Processing Letters 68 (1998), pp. 197-199.

[6] T. Matsumoto, K. Kato, H. Imai, “Speeding up secret computations with insecure auxiliary de-
vices”, In proc. of Crypto '88, Lecture Notes in Computer Science, Vol. 403, Springer-Verlag, pp.
497-506, 1998.

[7] A. Menezes, P. van Oorschot and S. Vanstone, “Handbook of Applied Cryptography”, CRC Press,
1996.

[8] P. Nguyen, J. Stern, “The Beguin-Quisquater Server-Aided RSA Protocol from Crypto’95 is not
secure”, in proc. of AsiaCrypt "98, Lecture Notes in Computer Science, Vol. 1514, Springer-Verlag,
pp. 372-380, 1998.

[9] Public Key Cryptography Standards (PKCS), No. 1, “RSA Encryption standard”,
http://www.rsa.com/rsalabs/pubs/PKCS/.

[10] R. Rivest, “Finding four million large random primes”, In proc. of Crypto '90, Lecture Notes in
Computer Science, Vol. 537, Springer-Verlag, pp. 625-626, 1997.

[11] A. Shamir, “RSA for paranoids”, CryptoBytes, Vol. 1, No. 3, 1995.

12

