Seminars and Events

Artificial Intelligence Seminar

Data Representation Learning from a Single Pass of the Data

Event Details

In many applications, constructing kernel matrices or pairwise distance matrices can be prohibitively expensive. This can be due to the expense of storing data in a streaming setting, or the expense of accessing multiple large data sets to compute some statistical distance between them. In this talk, I highlight several settings in which we can compute representations of data points (or entire point clouds) on a single pass. This includes Linearized Optimal Transport for computing Wasserstein distances between distributions and performing supervised learning, boosted kernel regression on streaming data, and streaming quantization of translation invariant kernel feature spaces.

Speaker Bio

Alex Cloninger is an Associate Professor in Mathematics and the Halıcıoğlu Data Science Institute at UC San Diego. He received his PhD in Applied Mathematics and Scientific Computation from the University of Maryland in 2014, and was then an NSF Postdoc and Gibbs Assistant Professor of Mathematics at Yale University until 2017, when he joined UCSD.  Alex researches problems in the area of geometric data analysis and applied harmonic analysis. He focuses on approaches that model the data as being locally lower dimensional, including data concentrated near manifolds or subspaces. These types of problems arise in a number of scientific disciplines, including imaging, medicine, and artificial intelligence, and the techniques developed relate to a number of machine learning and statistical algorithms, including deep learning, network analysis, and measuring distances between probability distributions.

Host: Mohammad Rostami, POC: Peter Zamar

YOU ONLY NEED TO REGISTER ONCE TO ATTEND THE ENTIRE SERIES – We will send you email announcements with details of the upcoming speakers.

Register in advance for this webinar:

After registering, you will receive an email confirmation containing information about joining the Zoom webinar.

The recording for this Interview Seminar talk will be posted on our USC/ISI YouTube page within 1-2 business days: