ENS <u>Center for Embedded Networked Sensing</u>

Non-Intrusive Analysis of Sensor Network MAC Protocols

Tyler McHenry, John Heidemann

ISI Laboratory for Embedded Networked Sensing Experimentation - http://www.isi.edu/ilense

Introduction: Some experiments require MAC-layer analysis of live sensor networks

Example: High-Density Sensor Networks

- High density networks cannot be simulated reliably
 - As potential traffic increases, the actual collision rate must be measured rather than modeled statistically to discover realistic MAC performance In real networks, packets do not collide or corrupt at a known rate.
 - Low-level MAC layer *timings* need testing in light of real collision rates.

Needs/Requirements:

- Software to collect and analyze the behavior of active sensor networks
 - Must not interfere with the operation of the network
 - Must be able to deliver state information which is not explicitly communicated between nodes

Problem Description: MAC-Level analysis is hindered by the addition of reporting code

• Extra traffic generated

Important MAC timings affected

T7 T1

- Sending reporting data over the network requires either
 piggybacking it on normal packets or creating entirely new
 packets for debugging purposes, increasing traffic on the network.
- Plus, the delivery of this data depends on the *reliability* of the network, which may be a variable!
- **Tethered nodes**
 - Sending reporting data over backchannels restricts the placement of nodes and cannot be used in an existing deployment.
- In S-MAC, the extra processing and transmission time necessary to add extra debugging information to SYNC packets causes the S-MAC period to elongate by 1.04 ms, which may affect performance under dense or heavy-use conditions.
- Inability to detect some collisions
 - Relying on the source to report its transmissions ignores collisions entirely.
 - Relying on the sink to report its receptions will still fail to capture *"total loss" collisions* (in which preambles are corrupted), without modifying the MAC.

Key Idea:

Completely avoid modifying all mote-side software

Proposed Solution: A snooper mote can collect data to be processed later with Ethereal addons

The "Radio Traffic Analysis" (RTA) Suite

Data collection based on snooper motes

- Constantly listens using the same physical layer as the MAC being analyzed, but need not implement the MAC protocol itself.
- Echoes every byte it overhears to a Linux host over some backchannel (most simply, a serial cable). Other motes do not even know it exists.
- Can also monitor for "total loss" packet collisions by detecting changes in RSSI.
- Packet-level processing emulates a Linux network interface
 - The *moteradio driver* accepts bytes from a snooper mote and presents them as whole packets on a network interface with a microsecond timestamp added.
 - Any program can read this interface as it would read any other network card.
- Reporting and analysis software are addons to Ethereal
 - A familiar and widely-used network traffic analysis package
 - Provides a portable framework and familiar GUI that can capture packets from any network interface and feed them to custom processing code depending on the type of packet captured.

The Ethereal GUI with RTA Modifications

smac-experiment-run1-38nodes - Ethereal	111111111			1-1-1-1	11111111	1-	1111111111	1110700	00	
<u>File E</u> dit <u>View Go</u> <u>Capture Analyze Statistics</u> <u>H</u> elp										
	■ 🔿 轮 🥇			€ (२, 🔍 🖭		5 💥 🔯			
Eilter:	▼ 4 <u>E</u> xp	ression 💡	<u>s C</u> lear	<u>A</u> pply						
No Time Source Destination	Protoco	l Info								
5790 404.100022 Node 19 Broadcast					ation Data					
5791 404.149026 Node 35 Broadcast					ation Data					
5792 404.199012 Node 3 Broadcast					ation Data					
5793 404.255001 Node 15 Node 12	S-MAC Request-to-Send									
5794 404.274003 Node 12 Node 15 5795 404.329997 Node 15 Node 12	S-MAC Clear-to-Send S-MAC Linkstate Data									
5796 404.329997 Node 13 Node 12 5796 404.347993 Node 12 Node 15	S-MAC Acknowledgement									
5797 404.395982 Node 11 Node 13	S-MAC Request-to-Send									
5798 404.413984 Node 13 Node 11	Conversation				odes	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	1111	· O ×	
5799 404.470978 Node 11 Node 13										
▷ Frame 5792 (19 bytes on wire, 19 bytes captu	Ethernet Fib	re Channel F	DDI IPv4	IPX S	CTP S-MAC: 17	1 TCP Toke	n Ring UDP W	LAN		
▼ Mica-2 Mote Radio										
Time Received by Kernel: 476867787	S-MAC Conversations									
Packet Length: 10	Address A	Address B	Packets *	Bytes	Packets A->B	Bytes A->B	Packets A<-B	Bytes A<-B		
CRC-16 Checksum: 0×1e9f	Node 25	Node 32	90	3240	34	646	56	2594	-	
▼ Sensor MAC	Node 4	Node 37	89	3401	38	722	51	2679		
0100 = Message Type: Sync Packet (4)	Node 13	Node 15	88	3292	49	2551	39	741		
0000 = Message Subtype: 0	Node 16	Node 17	88	3562	42	798	46	2764		
Source Address: 3	Node 27	Node 30	88	3382	39	741	49	2641		
State: 2	Node 4	Node 7	86	3434	43	817	43	2617		
Sequence Number: 5	Node 24	Node 30	86	3524	45	2745	41	779	-	
Next Sleep Time: 503										
0000 7e cb 6c 6c 1c 00 00 00 00 0a 40 03 00 0		Copy								
0010 01 9f 1e	🛛 Name reso	lution								

- New *dissectors* (packet format definitions) are easily created for new MAC protocols or higher-level protocols
 - Packets progress through a tree of analysis code from physical layer to MAC layer to higher layers (if applicable).
 - Adding a new dissector for a new MAC or higher layer protocol is straightforward.
 - Dissectors currently exist for B-MAC, S-MAC, SCP-MAC, the SMACTest application, and Linkstate data.
- Designed from the bottom up to be as portable as possible
 - Ethereal is already portable to Linux, Windows and more.
 - Porting to a different version of Linux or a new platform entirely necessitates modifying or replacing the moteradio driver only.

Type is the major type of the S-MAC packet (smac.type), 1 byte

•

Screenshot of Ethereal displaying an S-MAC SYNC packet and a list of point-topoint conversations determined from this flow of packets

Goal: Automatic Adaptability in MAC Analysis

- Each protocol with a dissector may provide more complex data analysis
 - For S-MAC, RTA provides: point-to-point conversation tracking, enumeration of schedules and schedule tracking, and node activity graphs.
 - Each of these requires intensive post-processing of captured packets.
- Analysis provided by the dissector should not make assumptions
 - A key use of Radio Traffic Analysis is testing the effectiveness of modifications to protocol parameters.
 - Dissectors should *detect* parameters whenever possible.
- Example: S-MAC sleep/listen cycle length (period) and schedules
 - The S-MAC dissector *detects* the period in use within some margin of error and is able to determine that 3 nodes are on the same schedule
 - It can then constrain the timing of sleeps in that schedule within a +/- 5ms window for prediction of future sleep times.

X Close

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced