Non-Intrusive Analysis of Sensor Network MAC Protocols

Tyler McHenry, John Heidemann
ISI Laboratory for Embedded Networked Sensing Experimentation - http://www.isi.edu/ilense

Introduction: Some experiments require MAC-layer analysis of live sensor networks

Example: High-Density Sensor Networks
- High density networks cannot be simulated reliably
 - As potential traffic increases, the actual collision rate must be measured rather than modeled statistically to discover realistic MAC performance
 - In real networks, packets do not collide or corrupt at a known rate.
- Low-level MAC layer timings need testing in light of real collision rates.

Problem Description: MAC-Level analysis is hindered by the addition of reporting code
- Extra traffic generated
 - Sending reporting data over the network requires either piggybacking it on normal packets or creating entirely new packets for debugging purposes, increasing traffic on the network.
 - Plus, the delivery of this data depends on the reliability of the network, which may be a variable!
 - Tethered nodes
 - Sending reporting data over backchannels restricts the placement of nodes and cannot be used in an existing deployment.
- Important MAC timings affected
 - In S-MAC, the extra processing and transmission time necessary to add extra debugging information to SYNC packets causes the S-MAC period to elongate by 1.04 ms, which may affect performance under dense or heavy-use conditions.
 - Inability to detect some collisions
 - Relying on the source to report its transmissions ignores collisions entirely.
 - Relying on the sink to report its receptions will still fail to capture “total loss” collisions (in which preambles are corrupted), without modifying the MAC.

Needs/Requirements:
- Software to collect and analyze the behavior of active sensor networks
 - Must not interfere with the operation of the network
 - Must be able to deliver state information which is not explicitly communicated between nodes

Proposed Solution: A snooper mote can collect data to be processed later with Ethereal addons

The “Radio Traffic Analysis” (RTA) Suite
- Data collection based on snooper mote
 - Constantly listens using the same physical layer as the MAC being analyzed, but need not implement the MAC protocol itself.
 - Echoes every byte it overhears to a Linux host over some backchannel (most simply, a serial cable). Other motes do not even know it exists.
 - Can also monitor for “total loss” packet collisions by detecting changes in RSSI.
- Packet-level processing emulates a Linux network interface
 - The moteradio driver accepts bytes from a snooper mote and presents them as whole packets on a network interface with a microsecond timestamp added.
 - Any program can read this interface as it would read any other network card.
- Reporting and analysis software are addons to Ethereal
 - A familiar and widely-used network traffic analysis package
 - Provides a portable framework and familiar GUI that can capture packets from any network interface and feed them to custom processing code depending on the type of packet captured.
 - New dissectors (packet format definitions) are easily created for new MAC protocols or higher-level protocols
 - Packets progress through a tree of analysis code from physical layer to MAC layer to higher layers (if applicable).
 - Adding a new dissector for a new MAC or higher layer protocol is straightforward.
 - Dissectors currently exist for B-MAC, S-MAC, SCP-MAC, the SMACTest application, and Linkstate data.
 - Designed from the bottom up to be as portable as possible
 - Ethereal is already portable to Linux, Windows and more.
 - Porting to a different version of Linux or a new platform entirely necessitates modifying or replacing the moteradio driver only.

The Ethereal GUI with RTA Modifications
- Parser to dissect packets
 - Provides a portable framework and familiar GUI that can capture packets from any network interface and feed them to custom processing code depending on the type of packet captured.
 - Provides a point-to-point conversation tracking, enumeration of nodes within a network.
 - Provides a point-to-point conversation tracking, enumeration of nodes within a network.
- Users can specify parameters whenever possible.
 - A key use of Radio Traffic Analysis is testing the effectiveness of modifications to protocol parameters.
 - Dissectors should detect parameters whenever possible.
- Example: S-MAC sleep/listen cycle length (period) and schedules
 - The S-MAC dissector detects the period in use within some margin of error and is able to determine the 25 node cycles that are on the same schedule.
 - It can then constrain the timing of sleeps in that schedule within a +/- 5ms window for prediction of future sleep times.

Ethereal GUI with RTA Modifications

Goal: Automatic Adaptability in MAC Analysis
- Each protocol with a dissector may provide more complex data analysis
 - For S-MAC, RTA provides: point-to-point conversation tracking, enumeration of schedules and schedule tracking, and node activity graphs.
 - Each of these requires intensive post-processing of captured packets.
- Analysis provided by the dissector should not make assumptions
 - RTA provides: point-to-point conversation tracking, enumeration of schedules and schedule tracking, and node activity graphs.
 - Dissectors should detect parameters whenever possible.
- Example: S-MAC sleep/listen cycle length (period) and schedules
 - The S-MAC dissector detects the period in use within some margin of error and is able to determine the 25 node cycles that are on the same schedule.
 - It can then constrain the timing of sleeps in that schedule within a +/- 5ms window for prediction of future sleep times.

Screenshot of Ethereal displaying an S-MAC SYNC packet and a list of point-to-point conversations determined from this flow of packets

S-MAC Packet Structures

Workstation

Ethereal

Capture List & Tree

Ethereal GUI

Parsers for Higher-Layer Data (if any)

B-MAC Packets

SCP-MAC Packets

S-MAC Packets

S-MAC Schedules

S-MAC Activity Graph

S-MAC Conversations

Packet Capture Libraries (libpcap, wiretap)

Linux Kernel

MoteRadio Driver

Network Interfaces

Blue elements are completely new, hashed elements are modified.