Wrapper Learning

Craig Knoblock
University of Southern California

This presentation is based on slides prepared by Ion Muslea
Wrappers & Information Agents

GIVE ME:
Thai food < $20
“A”-rated

Thai < $20

“A” rated
Problem description:

- Web sources present data in *human-readable format*
 - take user query
 - apply it to database
 - present results in “template” HTML page

- To integrate data from multiple sources, one must first *extract relevant information* from Web pages

- Task: learn extraction rules based on labeled examples
 - Hand-writing rules is tedious, error prone, and time consuming
Example of Extraction Task

NAME: Casablanca Restaurant
STREET: 220 Lincoln Boulevard
CITY: Venice
PHONE: (310) 392-5751
In this part of the lecture …

• Wrapper Induction Systems
 • WIEN:
 • The rules
 • Learning WIEN rules
 • SoftMealy

• The STALKER approach to wrapper induction
 • The rules
 • The ECTs
 • Learning the rules

• Wrapper validation and maintenance
• Assumes items are always in fixed, known order

... Name: J. Doe; Address: 1 Main; Phone: 111-1111. <p>
Name: E. Poe; Address: 10 Pico; Phone: 777-1111. <p> ...

• Introduces several types of wrappers

• LR:
Wrapper Types

- **LR**
 - L and R delimit each of the k attributes

- **HLRT**
 - Two additional strings:
 - H marks the end of the header
 - T marks the beginning of the tail

- **BELR**
 - B & E mark the beginning and end of each tuple (row of data in the page)

- **HBELRT**
 - ??
Rule Learning

• Machine learning:
 • Goal: Find a instance of the given wrapper type that covers the given examples

• INPUT:
 • Labeled examples: training & testing data
 • Admissible rules (hypotheses space)
 • Search strategy

• Desired output:
 • Rule that performs well both on training and testing data

• Termination
 • Train on sufficient data to be provably approximately correct (PAC)
Learning LR extraction rules

<html> Name: Kim’s Phone: (800) 757-1111 ...

<html> Name: Joe’s Phone: (888) 111-1111 ...

USC Information Sciences Institute

/ISI

ISI
Learning LR extraction rules

Admissible rules:
- prefixes & suffixes of items of interest

Search strategy:
- start with shortest prefix & suffix, and expand until correct
Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest

- Search strategy:
 - start with shortest prefix & suffix, and expand until correct
Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest

- Search strategy:
 - start with shortest prefix & suffix, and expand until correct

<html>
 Name: Kim’s Phone: (800) 757-1111
</html>

<html>
 Name: Joe’s Phone: (888) 111-1111
</html>
Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest

- Search strategy:
 - start with shortest prefix & suffix, and expand until correct

```html
<html> Name:<b> Kim's </b> Phone:<b> (800) 757-1111 </b> ...
</html>
```

```html
<html> Name:<b> Joe's </b> Phone:<b> (888) 111-1111 </b> ...
</html>
```
Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest
- Search strategy:
 - start with shortest prefix & suffix, and expand until correct
Labeling Data

- Instead of labeling all of the data, use recognizers to find instances of a particular attribute.

- Recognizers may be:
 - Perfect
 - Accept all positive instances and reject all negatives
 - Incomplete
 - Reject all negative instances but reject some positives
 - Unsound
 - Accept all positive, but accept some negatives
 - Unreliable
 - Reject some positive instances and accept some negatives

- Combine the constraints on the ordering of attributes with the information on the type of recognizer.
 - E.g., If a perfect recognizer says that position 15-19 is the year and an unsound recognizer says that 18-19 is the age, then the later information would be considered a false positive.
Summary

• Advantages:
 • Fast to learn & extract
 • Some sources could be labeled automatically given an appropriate set of recognizers

• Drawbacks:
 • Cannot handle permutations and missing items
 • Entire page must be labeled
 • Requires large number of examples
In this part of the lecture …

- Wrapper Induction Systems
 - WIEN:
 - The rules
 - Learning WIEN rules
- The STALKER approach to wrapper induction
 - The rules
 - The ECTs
 - Learning the rules
- Wrapper validation and maintenance
STALKER [Muslea et al, ’98 ’99 ’01]

- Hierarchical wrapper induction
 - Decomposes a hard problem in several easier ones
 - Extracts items independently of each other
 - Each rule is a finite automaton
STALKER: The Wrapper Architecture

Query → Information Extractor → Data

Information Extractor

EC Tree

Extraction Rules
Extraction Rules

Extraction rule: sequence of *landmarks*

SkipTo(**Phone**) SkipTo(**<i>**) SkipTo(**</i>**)

Name: Joel’s <p> Phone: <i> (310) 777-1111 </i></p> Review: …
More about Extraction Rules

Name: Joel’s <p> Phone: <i> (310) 777-1111 </i><p> Review: ...

Name: Kim’s <p> Phone (toll free): (800) 757-1111 ...

Name: Kim’s <p> Phone: (888) 111-1111 <p>Review: ...

Start: EITHER SkipTo(Phone : <i>)
OR SkipTo(Phone) SkipTo(:)
The Embedded Catalog Tree (ECT)

Name: KFC
Cuisine: Fast Food

Locations:
- Venice (310) 123-4567, (800) 888-4412
- L.A. (213) 987-6543
- Encino (818) 999-4567, (888) 727-3131

RESTAURANT

Name
List (Locations)
Cuisine

City
List (PhoneNumbers)

AreaCode
Phone
Learning the Extraction Rules

GUI

Labeled Pages

EC Tree

Inductive Learning System

Extraction Rules
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p>Cuisine ...

Name: Burger King <p> Phone : (310) 987-9876 <p> Cuisine: …
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p>Cuisine ...

Name: Burger King <p> Phone : (310) 987-9876 <p> Cuisine: …

Initial candidate: SkipTo(())
Example of Rule Induction

Training Examples:

- Name: Del Taco <p> Phone (toll free): (800) 123-4567 <p>Cuisine ...

- Name: Burger King <p> Phone: (310) 987-9876 <p>Cuisine: ...

Initial candidate:

```
SkipTo( () )
```

```
SkipTo( <b> () ) ...
```

```
SkipTo(Phone) SkipTo( () ) ...
```

```
SkipTo( :) SkipTo()
```
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p>Cuisine ...

Name: Burger King <p> Phone : (310) 987-9876 <p>Cuisine: ...

Initial candidate:

SkipTo(()

SkipTo(() ... SkipTo(Phone) SkipTo(() ... SkipTo(,:) SkipTo(()) ...

... SkipTo(Phone) SkipTo(:) SkipTo(()) ...
Active Learning & Information Agents

- **Active Learning**
 - **Idea:** system selects most informative examples to label
 - **Advantage:** fewer examples to reach same accuracy

- **Information Agents**
 - One agent may use hundreds of extraction rules
 - Small reduction of *examples per rule* => big impact on user
 - Why stop at 95-99% accuracy?
 - Select most informative examples to get to 100% accuracy
Training Examples

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joel’s</td>
<td>(310) 777-1111</td>
<td>The chef…</td>
</tr>
<tr>
<td>Kim’s</td>
<td>(213) 757-1111</td>
<td>Korean…</td>
</tr>
</tbody>
</table>

Unlabeled Examples

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chez Jean</td>
<td>(310) 666-1111</td>
<td>…</td>
</tr>
<tr>
<td>Burger King</td>
<td>(818) 789-1211</td>
<td>…</td>
</tr>
<tr>
<td>Café del Rey</td>
<td>(310) 111-1111</td>
<td>…</td>
</tr>
<tr>
<td>KFC</td>
<td>(800) 111-7171</td>
<td>…</td>
</tr>
</tbody>
</table>
Two ways to find start of the phone number:

SkipTo(Phone:) BackTo(Number)

Name: KFC <p> Phone: (310) 111-1111 <p> Review: Fried chicken …
Co-Testing

RULE 1

RULE 2

Labeled data

Unlabeled data
<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joel’s</td>
<td>(310) 777-1111</td>
<td>...</td>
</tr>
<tr>
<td>Kim’s</td>
<td>(213) 757-1111</td>
<td>...</td>
</tr>
<tr>
<td>Chez Jean</td>
<td>(310) 666-1111</td>
<td>...</td>
</tr>
<tr>
<td>Burger King</td>
<td>(818) 789-1211</td>
<td>...</td>
</tr>
<tr>
<td>Café del Rey</td>
<td>(310) 111-1111</td>
<td>...</td>
</tr>
<tr>
<td>KFC</td>
<td>(800) 111-7171</td>
<td>...</td>
</tr>
</tbody>
</table>
Not all queries are equally informative

... Phone: (800) 171-1771 <p> Fax: (111) 111-1111 <p> Review: ...

... Phone: <i>-</i> Review: Founded a century ago (1891), this...
Weak Views

- Learn “content description” for item to be extracted
 - Too general for extraction
 - (Nmb) Nmb–Nmb can’t tell a phone number from a fax number
 - Useful at discriminating among query candidates
- Learned field description
 - Starts with: (Nmb)
 - Ends with: Nmb–Nmb
 - Contains: Nmb Punct
 - Length: [6,6]
Naïve & Aggressive Co-Testing

• Naïve Co-Testing:
 • Query: randomly chosen contention point
 • Output: rule with fewest mistakes on queries

• Aggressive Co-Testing:
 • Query: contention point that most violates weak view
 • Output: committee vote (2 rules + weak view)
Empirical Results: 33 Difficult Tasks

- **33 most difficult** of the 140 extraction tasks
 - Each view: > 7 labeled examples for best accuracy
 - At least 100 examples for task
Results in 33 Difficult Domains

Extraction Tasks

Examples to 100% accuracy

USC Information Sciences Institute
Results in 33 Difficult Domains

Extraction Tasks

Examples to 100% accuracy

- Naïve Co-Testing
- Random sampling
Results in 33 Difficult Domains

Extraction Tasks

Examples to 100% accuracy
Summary

• Advantages:
 • Powerful extraction language (e.g., embedded list)
 • One hard-to-extract item does not affect others

• Disadvantage:
 • Does not exploit item order (sometimes may help)
Discussion

• Basic problem is to learn how to extract the data from a page

• Range of techniques that vary in the
 • Learning approach
 • Rules that can be learned
 • Efficiency of the learning
 • Number of examples required to learn

• Regardless, all approaches
 • Require labeled examples
 • Are sensitive to changes to sources
In this part of the lecture …

- Wrapper Induction Systems
 - WIEN:
 - The rules
 - Learning WIEN rules
- The STALKER approach to wrapper induction
 - The rules
 - The ECTs
 - Learning the rules
- Wrapper validation and maintenance
Wrapper Maintenance

Problem

• Landmark-based extraction rules are fast and efficient…but they rely on stable Web Page layout.
• If the page layout changes, the wrapper fails!
• Unfortunately, the average site on the Web changes layout more than twice a year.
• Requirement: Need to detect changes and automatically re-induce extraction rules when layout changes
Learning Regular Expressions
[Goan, Benson, & Etzioni, 1996]

- Character level description of extracted data
- Based on ALERGIA [Carrasco and Oncina, 1994]
 - Stochastic grammar induction algorithm
 - Merges too many states resulting in over-general grammar
- WIL reduced faulty merges by imposing syntactic categories:
 - Number, lower upper, and delim
- Only merges when nodes contain the same syntactic category
- Requires large number of examples to learn
- Computationally expensive
Learning Global Properties for Wrapper Verification [Kushmerick, 1999]

- Each data field described by global numeric features
 - Word count, average word length, HTML density, alphabetic density
- Computationally efficient learning
- HTML density alone could account for almost all changes on test set
- Large number of false negatives on real changes to web sources [Lerman, Knoblock, Minton, 2002]
Learning Data Prototypes
[Lerman & Minton, 2000]

• Approach to learning the structure of data
• Token level syntactic description
 • descriptive but compact
 • computationally efficient
• Structure is described by a sequence (pattern) of general and specific tokens.
• Data prototype = starting & ending patterns

STREET_ADDRESS
220 Lincoln Blvd
420 S Fairview Ave
2040 Sawtelle Blvd

start with:
_NUM _CAPS
_end with:
_CAPS Blvd
_CAPS _CAPS

STREET_ADDRESS
220 Lincoln Blvd
420 S Fairview Ave
2040 Sawtelle Blvd

start with:
_NUM _CAPS
_end with:
_CAPS Blvd
_CAPS _CAPS
Token Syntactic Hierarchy

- Tokens = words
- Syntactic types
 - e.g., NUMBER, ALPHA
- Hierarchy of types
 - allows generalization
- Extensible
 - new types
 - domain-specific information
Prototype Learning Algorithm

- No explicit negative examples
- Learn from positive examples of data
- Find patterns that
 - describe many of the positive examples of data
 - highly unlikely to describe a random token sequence (implicit negative examples)
- are statistically significant patterns at $\alpha=0.05$ significance level
- **DataPro** – efficient (greedy) algorithm
DataPro Algorithm

- Process examples
- Seed patterns
- Specialize patterns loop
 - Extend the pattern
 - find a more specific description
 - is the longer pattern significant given the shorter pattern?
 - Prune generalizations
 - is the pattern ending with general type significant given the patterns ending with specific tokens

Examples:
220 Lincoln Blvd
420 S Fairview Ave
2040 Sawtelle Blvd
Examples: PHONE

- starting patterns:
 (_NUM) _NUM - _NUM
- ending patterns:
 (_NUM) _NUM - _NUM

(310) 577 - 8182
(310) 652 - 9770
(310) 396 - 1179
(310) 477 - 7242
(626) 792 - 9779
(310) 823 - 4446
(323) 870 - 2872
(310) 855 - 9380
(310) 578 - 2293
(310) 392 - 5751
(805) 683 - 8864
(310) 301 - 1004
(626) 793 - 8123
(310) 822 - 1511
Example: STREET_ADDRESS

13455 Maxella Ave
903 N La Cienega Blvd
110 Navy St
2040 Sawtelle Blvd
87 E Colorado Blvd
4325 Glencoe Ave
2525 S Robertson Blvd
998 S Robertson Blvd
523 Washington Blvd
220 Lincoln Blvd
420 S Fairview Ave
13490 Maxella Ave
363 S Fair Oaks Ave
4676 Admiralty Way

• starting patterns:
 _NUM S _CAPS Blvd
 _NUM _CAPS Ave
 _NUM _CAPS

• ending patterns:
 _NUM _CAPS _CAPS
 _NUM S _CAPS Blvd
 _NUM _CAPS Ave
 _NUM _CAPS Blvd
Wrapper Verification

Data prototypes can be used for web wrapper maintenance applications.

• Automatically detect when the wrapper is no longer correctly extracting data from an information source
 • (Kushmerick 1999)
Wrapper Verification

Given

- Set of correct old examples of data
- Set of new examples
- Do the patterns describe the same proportions of new examples as old examples?
Wrapper Verification

Results

• Monitored 27 wrappers (23 distinct sources)
• There were 37 changes over ~ 1 year
• Algorithm discovered 35/37 changes with 15 mistakes
 • 13 false positives
• Overall:
 • Average precision = 73%
 • Average recall = 95%
 • Average accuracy = 97%
Wrapper Reinduction

• Rebuild the wrapper automatically if it is not extracting data correctly from new pages

• Data extraction step
 Identify correct examples of data on new pages

• Wrapper induction step
 Feed the examples, along with the new pages, to the wrapper induction algorithm to learn new extraction rules
The Lifecycle of A Wrapper

GUI -> To be labeled -> Wrapper Induction System

Web pages -> Wrapper

Automatic Re-labeling

Wrapper Verification

Extracted data
Phone Search Results

Showing 1 - 2 of 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif, Los Angeles, CA 90066</td>
<td>(310)822-9994</td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave, Los Angeles, CA 90036-3666</td>
<td>(323)936-5549</td>
</tr>
</tbody>
</table>

First | Prev | Next | Last | Search Again

Phone Search Results

Showing 1 - 1 of 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>(323)936-5549</td>
</tr>
</tbody>
</table>

First | Prev | Next | Last

USC Information Sciences Institute
Phone Search Results

Showing 1 – 2 of 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif Los Angeles, CA 90066</td>
<td>(310)822-9994</td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave Los Angeles, CA 90036-3666</td>
<td>(323)936-5549</td>
</tr>
</tbody>
</table>

NAME item

```html
  Begin_Rule
  __ST__  ___*__
  End_Rule
  __ST__  </td> <td nowrap >
```

ADDRESS item

```html
  ADDRESS item
  Begin_Rule
  __ST__  </td> <td nowrap >
  End_Rule
  __ST__  <br>
```

NAME	**ADDRESS**	**CITY**
Andrew Philpot | Mar Vista Calif | Los Angeles
Andrew Philpot | 600 S Curson Ave | Los Angeles
Wrapper Applied to Changed Source

Phone Search Results

Showing 1 - 1 of 1

<table>
<thead>
<tr>
<th>First</th>
<th>Prev</th>
<th>Next</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CITY</td>
<td></td>
</tr>
<tr>
<td>NIL</td>
<td>NIL</td>
<td>600 S Curson Ave</td>
<td>Los Angeles</td>
</tr>
</tbody>
</table>

...
NAME item
Begin_Rule
|ST|
End_Rule
|ST|
ADDRESS item
Begin_Rule
|ST|
End_Rule
|ST|
...
After Reinduction

Phone Search Results

Showing 1 - 1 of 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>(323)936-5549</td>
</tr>
</tbody>
</table>

NAME item

Begin_Rule

__ST__ *

End_Rule

__ST__

ADDRESS item

Begin_Rule

__ST__

End_Rule

__ST__

...
<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>TITLE</th>
<th>PRICE</th>
<th>AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scott Berg</td>
<td>Lindbergh</td>
<td>21.00</td>
<td>This title usually ships...</td>
</tr>
</tbody>
</table>
Changed Amazon Source

Lindbergh
by A. Scott Berg

List Price: $30.00
Our Price: $21.00
You Save: $9.00 (30%)

Availability: This title usually ships within 2-3 days

Need this by December 24? Select Next Day shipping method (U.S. addresses).

See larger photo

Hardcover - 623 pages (September 1998)
Putnam Pub Group (T); ISBN: 0399144408; Dimensions (in inches): 1.07 x 0.36 x 6.47
Other Editions: Paperback, Audio Cassette (Abridged)

Amazon.com Sales Rank: 3,711
Popular in: U.S. Senate (#5), Laguna Beach, CA (#12). See more

Avg. Customer Review:
Number of Reviews: 81
After Reinduction

A.Scott Berg Lindbergh

List Price: $30.00
Our Price: $21.00
You Save: $9.00 (30%)

Availability: This title usually ships within 2-3 days. Need this by December 24? Select Next Day shipping method (U.S. addresses).

See larger photo

Hardcover - 623 pages (September 1998)
Other Editions: Paperback, Audio Cassette (Abridged)

Amazon.com Sales Rank: 3,711
Popular in: U.S. Senate (#3), Laguna Beach, CA (#12). See more
Avg. Customer Review:
Number of Reviews: 81

Title: After Reinduction
Author: A. Scott Berg
Price: $21.00
Availability: This title usually ships...
Wrapper Reinduction

Results

- Monitored 10 distinct sources
- There were 8 changes over ~ 1 year
- Extracting examples:
 - 277/338 correct (82%)
 - 31 false positives/30 false negatives
- Reinduction:
 - Average recall = 90%
 - Average precision = 80%
Discussion

- Flexible data representation scheme
- Algorithm to learn description of data fields
- Used in wrapper maintenance applications

Limitations:
- Needs to be extended to lists and tables
- Excellent recall, but lower recall will precision in many false positives