Record Linkage – Finding Matches

Census Data

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Phone</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>555-5555</td>
<td>12345</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
<td>555-1111</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smith</td>
<td>555-0011</td>
<td>12345</td>
</tr>
</tbody>
</table>

A.I. Researchers

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Phone</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelson</td>
<td>555-5555</td>
<td>12345</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
<td>555-1111</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smeth</td>
<td>555-0011</td>
<td>12345</td>
</tr>
</tbody>
</table>
Record Linkage – Finding Matches

- Can’t compare all records!
 - Just 5,000 to 5,000 \(\rightarrow \) 25,000,000 comparisons!
 - At 0.01s/comparison \(\rightarrow \) 250,000 s \(\rightarrow \) \(\sim \) 3 days!

- Need to use a subset of comparisons
 - “Candidate matches”
 - Want to cover true matches
 - Want to throw away non-matches
Blocking – Generating Candidates

\[(token, last name) \text{ AND } (1^{st} \text{ letter, first name}) = \text{ block-key}\]

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelson</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
</tr>
</tbody>
</table>

- **(token, zip)**

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
</tbody>
</table>

- **(token, zip)**

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smeth</td>
<td>12345</td>
</tr>
</tbody>
</table>
Blocking - Intuition

Census Data

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smith</td>
<td>12345</td>
</tr>
</tbody>
</table>

\[\text{Zip} = '12345' \]

1 Block of 12345 Zips

→ Compare to the “block-key”

Group & Check to reduce Checks
Blocking – Multi-pass

- Sort neighborhoods on block keys
- Multiple independent runs using keys
 - runs capture different match candidates
- Attributed to (Hernandez & Stolfo, 1998)
- E.g.) 1st \rightarrow (token, last name)
 2nd \rightarrow (token, first name) & (token, phone)
Blocking – Multi-pass

- Can we make blocks without sorting?
 - Yes! We can cluster…
Blocking – Canopies Method

McCallum, Nigam, Ungar, Efficient Clustering of High-Dimensional Data Sets with Application to Reference Matching, 2000, KDD

Idea: form clusters around certain key values, within some threshold value
Blocking – Canopies Method

1. Start with 2 threshold values, T1 and T2, s.t. T1 > T2
 1. based on similarity function, hand picked or learned thresholds
2. Select a random record from list of records and calculate it’s similarity to all other records
 1. Very cheap in some cases: inverted index
3. Create “Canopy” for all records where similarity less than T1
4. Remove all records form the list of records where similarity less than T2
5. Repeat 1-4 until your list is empty
Blocking – Canopies Method

- Sim. function = abs. zip distance, T1 = 6, T2 = 3

List of records: 90001, 90002, 90006, 88181, 90292, 90293
Blocking – Multi-pass

- Back to the world of multi-pass…
- Terminology:
 - Each pass is a “conjunction”
 - (token, first) AND (token, phone)
 - Combine passes to form “disjunction”
 - [(token, last)] OR [(token, first) AND (token, phone)]
 - Disjunctive Normal Form rules
 - form “Blocking Schemes”
Blocking Effectiveness

- Determined by rules
 - Determined by choices for attributes and methods
 - (token, zip) captures all matches, but all pairs too
 - (token, first) AND (token, phone) gets half the matches, and only 1 candidate generated
 - Which is better? Why?
 - How to quantify??
Blocking Effectiveness

Reduction Ratio (RR) = 1 – ||C|| / (||S|| * ||T||)

S, T are data sets; C is the set of candidates

Pairs Completeness (PC) [Recall] = S_m / N_m

S_m = # true matches in candidates,
N_m = # true matches between S and T

Examples:
(token, last name) AND (1st letter, first name)

RR = 1 – 2/9 ≈ 0.78
PC = 1 / 2 = 0.50

(token, zip)

RR = 1 – 9/9 = 0.0
PC = 2 / 2 = 1.0
Multi-Pass Blocking Schemes

Old Techniques: Ad-hoc rules
New Techniques: Learn rules!

Learned rules justified by quantitative effectiveness

Bilenko, et. al.

A blocking function is a set of (method, attribute) pairs (scheme) that cover records i and j.

What does it mean?

Select the set of blocking functions that minimize the coverage of non-matches, such that we cover as many true matches as we can, leaving only epsilon true matches behind!

\[
\begin{align*}
 f_p^* &= \arg \min_{f_p} \sum_{(x_i, x_j) \in R} f_p(x_i, x_j) \\
 \text{s.t.} \quad |B| - \sum_{(x_i, x_j) \in B} f_p(x_i, x_j) < \varepsilon
\end{align*}
\]

Where:
- \(f_p \) is the blocking function
- \(R \) is the set of non-matches
- \(B \) is the set of matches
- \(|B| \) is the number of matches
- \(\varepsilon \) is a small error threshold
Algorithm: APPROXDNF

Input: Training set $\mathcal{B} = \{b_1, \ldots, b_\beta\}$ and $\mathcal{R} = \{r_1, \ldots, r_\rho\}$ where each b_i is a pair of coreferent records (x_{i_1}, x_{i_2}) s.t. $y_{i_1} = y_{i_2}$
each r_i is a pair of non-coreferent records (x_{i_1}, x_{i_2}) s.t. $y_{i_1} \neq y_{i_2}$
Set of blocking predicates $\mathcal{P} = \{p_1, \ldots, p_t\}$
Maximum number of coreferent pairs allowed to be uncovered ε
Maximum number of pairs that any predicate may cover η
Maximum conjunction length, k

Output: A DNF blocking function based on \mathcal{P}:
$$(p_{i_1} \wedge \cdots \wedge p_{i_1}') \vee \cdots \vee (p_{i_n} \wedge \cdots \wedge p_{i_n}')$$
each $i_j \leq k$

Method:
1. Discard from \mathcal{P} all predicates p_i for which $r(p_i) \geq \eta$:
 $\mathcal{P} \leftarrow \{p_i \in \mathcal{P} | r(p_i) \leq \eta\}$.
2. $\mathcal{P}^{(c)} = \emptyset$
3. For each $p_i \in \mathcal{P}$
4. Construct $k - 1$ candidate conjunctions $p_i^{(c)} = p_i \wedge \cdots \wedge p_{i_k}$
 by iteratively selecting p_{i_j} that maximizes cover $b(p_i^{(c)})/r(p_i^{(c)})$,
 adding each $p_i^{(c)}$ to $\mathcal{P}^{(c)}$.
5. Return APPROXRBSETCOVER($\mathcal{R}, \mathcal{B}, \mathcal{P} \cup \mathcal{P}^{(c)}, \varepsilon, \eta$).
Bilenko, et. al. – DNF Blocking

- ApproxRBSetCover = Red/Blue Set Cover

Optimal RB Covering = selecting subset of predicate vertices s.t.
at least (B-e) blue vertices have 1 incident edge with predicates AND
number of red vertices with 1 incident edge is minimized
Bilenko, et. al. – DNF Blocking

Figure 5. Blocking results for the Cora dataset

Figure 6. Blocking results for the Addresses dataset
Multi-Pass Blocking Schemes

Michelson & Knoblock, Learning Blocking Schemes for Record Linkage, 2006, AAAI
How to choose methods and attributes?

- **Blocking Goals:**
 - Small number of candidates (High RR)
 - Don’t leave any true matches behind! (High PC)

- **Previous approaches:**
 - Ad-hoc by researchers or domain experts

- **New Approach:**
 - **Blocking Scheme Learner (BSL) – modified Sequential Covering Algorithm**
Learning Schemes – Intuition

- Learn restrictive conjunctions
 - partition the space \rightarrow minimize False Positives

- Union restrictive conjunctions
 - Cover all training matches
 - Since minimized FPs, conjunctions should not contribute many FPs to the disjunction
Example to clear things up!

Space of training examples

Rule 1: \[(zip|token) \& (first|token)\]

Final Rule: \[([(zip|token) \& (first|token)] \cup [(last|1^{st} \text{ Letter}) \& (first|1^{st} \text{ Letter})]) \]

\[= \text{Not match}\]

\[= \text{Match}\]
SCA: propositional rules

- Multi-pass blocking = disjunction of conjunctions
- Learn conjunctions and union them together!
- Cover all training matches to maximize PC

```
SEQUENTIAL-COVERING( class, attributes, examples, threshold)
LearnedRules ← {}  
Rule ← LEARN-ONE-RULE(class, attributes, examples)  
While examples left to cover, do
    LearnedRules ← LearnedRules U Rule  
    Examples ← Examples – {Examples covered by Rule}  
    Rule ← LEARN-ONE-RULE(class, attributes, examples)  
    If Rule contains any previously learned rules, remove them
Return LearnedRules
```
SCA: propositional rules

- LEARN-ONE-RULE is greedy
 - rule containment as you go, instead of comparison afterward
 - Ex) rule: (token|zip) & (token|first)
 (token|zip) CONTAINS (token|zip) & (token|first)
 - Guarantee later rule is less restrictive – If not how are there examples left to cover?
Learn-One-Rule

- Learn conjunction that maximizes RR
- General-to-specific beam search
 - Keep adding/intersecting (attribute, method) pairs
 - Until can’t improve RR
 - Must satisfy minimum PC

```
(token, zip)
  └── (token, last name) ── (1st letter, last name) ── (token, first name) ── ...
     └── (1st letter, last name) ── (token, first name) ── ...
```
Experiments

\[
\text{HFM} = (\{\text{token, make} \} \cap \{\text{token, year} \} \cap \{\text{token, trim}\}) \\
U (\{1^{\text{st}} \text{ letter, make} \} \cap \{1^{\text{st}} \text{ letter, year} \} \cap \{1^{\text{st}} \text{ letter, trim}\}) \\
U (\{\text{synonym, trim}\})
\]

\[
\text{BSL} = (\{\text{token, model} \} \cap \{\text{token, year} \} \cap \{\text{token, trim}\}) \\
U (\{\text{token, model} \} \cap \{\text{token, year} \} \cap \{\text{synonym, trim}\})
\]

<table>
<thead>
<tr>
<th>Cars</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFM</td>
<td>47.92</td>
<td>99.97</td>
</tr>
<tr>
<td>BSL</td>
<td>99.86</td>
<td>99.92</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.87</td>
<td>99.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best 5 Winkler</td>
<td>99.52</td>
<td>99.16</td>
</tr>
<tr>
<td>Adaptive Filtering</td>
<td>99.9</td>
<td>92.7</td>
</tr>
<tr>
<td>BSL</td>
<td>98.12</td>
<td>99.85</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.50</td>
<td>99.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restaurants</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marlin</td>
<td>55.35</td>
<td>100.00</td>
</tr>
<tr>
<td>BSL</td>
<td>99.26</td>
<td>98.16</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.57</td>
<td>93.48</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Attr, Method</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopies</td>
<td>Ad-hoc</td>
</tr>
<tr>
<td>Bilenko</td>
<td>Learn</td>
</tr>
<tr>
<td>BSL</td>
<td>Learn</td>
</tr>
</tbody>
</table>

- **Tradeoffs:** Learning vs. Non
 - Need to label (but already labeled for RL!), but get well justified, productive blocking
 - Bilenko/BSL essentially the same
 - (developed independently at same time.)

- **Choice:** Choose a learning method!
 - Maybe use canopies within a learning method!
Conclusions

- Automatic Blocking Schemes using Machine Learning (Bilenko, et. al. & BSL)
 - Not created by hand
 - cheaper
 - easily justified
 - Better than non-experts ad-hoc and comparable to domain expert’s rules
 - Nice reductions – scalable record linkage
 - High coverage – don’t hinder record linkage