Wrapper Learning

Craig Knoblock
University of Southern California

This presentation is based on slides prepared by Ion Muslea

Wrapper Induction

Problem description:
- Web sources present data in human-readable format
 - take user query
 - apply it to data base
 - present results in "template" HTML page
- To integrate data from multiple sources, one must first extract relevant information from Web pages
- Task: learn extraction rules based on labeled examples
 - Hand-writing rules is tedious, error prone, and time consuming

Example of Extraction Task

NAME: Casablanca Restaurant
STREET: 220 Lincoln Boulevard
CITY: Venice
PHONE: (310) 392-5751

In this part of the lecture ...

- Wrapper Induction Systems
 - WIEN:
 - The rules
 - Learning WIEN rules
 - SoftMealy
- The STALKER approach to wrapper induction
 - The rules
 - The ECTs
 - Learning the rules
- Wrapper validation and maintenance

WIEN [Kushmerick et al ‘97, ‘00]

- Assumes: items are always in fixed, known order
 ... Name: J. Doe; Address: 1 Main; Phone: 111-111. <p>
 ... Name: E. Poe; Address: 10 Pico; Phone: 777-1111. <p>
- Introduces several types of wrappers
 - LR:
 Name: ... Addr: ... Phone: ...
Wrapper Types

- LR
 - L and R delimit each of the k attributes
- HLRT
 - Two additional strings:
 - H marks the end of the header
 - T marks the beginning of the tail
- BELR
 - B & E mark the beginning and end of each tuple
- HBELRT
 - ??

Rule Learning

- Machine learning:
 - Goal: Find an instance of the given wrapper type that covers the given examples
- INPUT:
 - Labeled examples: training & testing data
 - Admissible rules (hypotheses space)
 - Search strategy
- Desired output:
 - Rule that performs well both on training and testing data
- Termination
 - Train on sufficient data to be provably approximately correct (PAC)

Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest
- Search strategy:
 - start with shortest prefix & suffix, and expand until correct

Learning LR extraction rules

- Admissible rules:
 - prefixes & suffixes of items of interest
- Search strategy:
 - start with shortest prefix & suffix, and expand until correct
Learning LR extraction rules

• Admissible rules:
 • prefixes & suffixes of items of interest
• Search strategy:
 • start with shortest prefix & suffix, and expand until correct

Labeling Data

• Instead of labeling all of the data, use recognizers to find instances of a particular attribute
• Recognizers may be:
 • Perfect
 • Accept all positive instances and reject all negatives
 • Incomplete
 • Reject all negative instances but reject some positives
 • Unsound
 • Accept all positive, but accept some negatives
 • Unreliable
 • Reject some positive instances and accept some negatives
• Combine the constraints on the ordering of attributes with the information on the type of recognizer
 • E.g., if a perfect recognizer says that position 15-19 is the year and an unsound recognizer says that 18-19 is the age, then the later information would be considered a false positive

Summary

• Advantages:
 • Fast to learn & extract
 • Some sources could be labeled automatically given an appropriate set of recognizers
• Drawbacks:
 • Cannot handle permutations and missing items
 • Entire page must be labeled
 • Requires large number of examples

In this part of the lecture ...

• Wrapper Induction Systems
 • WIEN:
 • The rules
 • Learning WIEN rules
 • The STALKER approach to wrapper induction
 • The rules
 • The ECTs
 • Learning the rules
• Wrapper validation and maintenance

STALKER [Muslea et al, ’98 ’99 ’01]

• Hierarchical wrapper induction
 • Decomposes a hard problem in several easier ones
 • Extracts items independently of each other
 • Each rule is a finite automaton
STALKER: The Wrapper Architecture

STALKER: The Wrapper Architecture

1. **Information Extractor**
 - Query
 - Data

2. **EC Tree**

3. **Extraction Rules**

Extraction Rules

Extraction rule: sequence of *landmarks*

- \(\text{SkipTo(Phone)} \) \(\text{SkipTo(} <i> \text{)} \) \(\text{SkipTo(} </i> \text{)} \)

Name: Joel’s
- **Phone**: \((310) 777-1111 \)
- **Review**: …

More about Extraction Rules

- **Name: Joel’s**
 - **Phone**: \((310) 777-1111 \)

Name: Kim’s
- **Phone (toll free)**: \((800) 757-1111 \)
- **Review**: …

- **Name: Joel’s**
 - **Phone**: \((310) 777-1111 \)

Start: EITHER
- \(\text{SkipTo(Phone): } <i> \) \)
- OR \(\text{SkipTo(Phone): } </i> \)

Learning the Extraction Rules

Example of Rule Induction

Training Examples:

- **Name: Del Taco**
 - **Phone (toll free)**: \((800) 123-4567 \)
- **Cuisine**: …
- **Name: Burger King**
 - **Phone**: \((310) 987-9876 \)
 - **Cuisine**: …

The Embedded Catalog Tree (ECT)

- **Name: KFC**
- **Cuisine**: Fast Food

- **Locations**:
 - **Venice**: \((310) 123-4567 \)
 - \((800) 888-4412 \)
 - **City**: L.A.
 - \((213) 987-6543 \)
 - **Encino**: \((818) 999-4567 \)
 - \((888) 727-3331 \)

Inductive Learning System

EC Tree
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free): (800) 123-4567 <p>Cuisine: ...

Name: Burger King <p> Phone : (310) 987-9876 <p> Cuisine: ...

Initial candidate:

Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free): (800) 123-4567 <p>Cuisine: ...

Name: Burger King <p> Phone : (310) 987-9876 <p> Cuisine: ...

Initial candidate:

Active Learning & Information Agents

• Active Learning
 • Idea: system selects most informative exs. to label
 • Advantage: fewer examples to reach same accuracy

• Information Agents
 • One agent may use hundreds of extraction rules
 • Small reduction of examples per rule => big impact on user
 • Why stop at 95-99% accuracy?
 • Select most informative examples to get to 100% accuracy

Which example should be labeled next?

Training Examples

Name: Joel's <p> Phone: (310) 777-1111 <p>Review: The chef...

Name: Kim's <p> Phone: (213) 757-1111 <p>Review: Korean...

Multi-view Learning

Two ways to find start of the phone number:

SkipTo(Phone:)

Unlabeled Examples

Name: Chez Jean <p> Phone: (310) 666-1111 <p> Review: ...

Name: Burger King <p> Phone: (818) 789-1211 <p> Review: ...

Name: Café del Rey <p> Phone: (310) 111-1111 <p> Review: ...

Name: KFC <p> Phone: (800) 111-7171 <p> Review: Fried chicken...

SkipTo(Phone:)

BackTo((Number))

Name: KFC <p> Phone: (310) 111-1111 <p> Review: Fried chicken...
Co-Testing

- RULE 1
 - Labeled data
 - +
 - Unlabeled data

- RULE 2

Co-Testing for Wrapper Induction

<table>
<thead>
<tr>
<th>SkipTo(Phone:)</th>
<th>BackTo(Number:)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Joel’s</td>
<td>Phone: (310) 777-1111</td>
</tr>
<tr>
<td>Name: Kim’s</td>
<td>Phone: (213) 757-1111</td>
</tr>
<tr>
<td>Name: Chez Jean</td>
<td>Phone: (310) 666-1111</td>
</tr>
<tr>
<td>Name: Burger King</td>
<td>Phone: (818) 789-1211</td>
</tr>
<tr>
<td>Name: Café del Rey</td>
<td>Phone: (310) 111-1111</td>
</tr>
<tr>
<td>Name: KFC</td>
<td>Phone: (800) 111-7171</td>
</tr>
</tbody>
</table>

Not all queries are equally informative

- SkipTo(Phone:)
- BackTo(Number:)

Weak Views

- Learn "content description" for item to be extracted
 - Too general for extraction
 - (Nmb) Nmb - Nmb can’t tell a phone number from a fax number
 - Useful at discriminating among query candidates
- Learned field description
 - Starts with: (Nmb)
 - Ends with: Nmb - Nmb
 - Contains: Nmb Punct
 - Length: [6,6]

Naïve & Aggressive Co-Testing

- Naïve Co-Testing:
 - Query: randomly chosen contention point
 - Output: rule with fewest mistakes on queries

- Aggressive Co-Testing:
 - Query: contention point that most violates weak view
 - Output: committee vote (2 rules + weak view)

Empirical Results: 33 Difficult Tasks

- 33 most difficult of the 140 extraction tasks
 - Each view: > 7 labeled examples for best accuracy
 - At least 100 examples for task
Results in 33 Difficult Domains

Summary

- Advantages:
 - Powerful extraction language (e.g., embedded list)
 - One hard-to-extract item does not affect others
- Disadvantage:
 - Does not exploit item order (sometimes may help)

Discussion

- Basic problem is to learn how to extract the data from a page
- Range of techniques that vary in the
 - Learning approach
 - Rules that can be learned
 - Efficiency of the learning
 - Number of examples required to learn
- Regardless, all approaches
 - Require labeled examples
 - Are sensitive to changes to sources

In this part of the lecture ...

- Wrapper Induction Systems
 - WIEN:
 - The rules
 - Learning WIEN rules
- The STALKER approach to wrapper induction
 - The rules
 - The ECTs
 - Learning the rules
- Wrapper validation and maintenance
Wrapper Maintenance

Problem
- Landmark-based extraction rules are fast and efficient...but they rely on stable Web Page layout.
- If the page layout changes, the wrapper fails!
- Unfortunately, the average site on the Web changes layout more than twice a year.
- Requirement: Need to detect changes and automatically re-induce extraction rules when layout changes

Learning Regular Expressions [Goan, Benson, & Etzioni, 1996]
- Character level description of extracted data
- Based on ALERGIA [Carrasco and Oncina, 1994]
 - Stochastic grammar induction algorithm
 - Merges too many states resulting in over-general grammar
- WIL reduced faulty merges by imposing syntactic categories:
 - Number, lower upper, and delimit
 - Only merges when nodes contain the same syntactic category
 - Requires large number of examples to learn
 - Computationally expensive

Learning Global Properties for Wrapper Verification [Kushmerick, 1999]
- Each data field described by global numeric features
 - Word count, average word length, HTML density, alphabetic density
- Computationally efficient learning
- HTML density alone could account for almost all changes on test set
- Large number of false negatives on real changes to web sources [Lerman, Knoblock, Minton, 2002]

Learning Data Prototypes [Lerman & Minton, 2000]
- Approach to learning the structure of data
- Token level syntactic description
 - Descriptive but compact
 - Computationally efficient
- Structure is described by a sequence (pattern) of general and specific tokens.
- Data prototype = starting & ending patterns
 - STREET_ADDRESS
 - 220 Lincoln Blvd
 - 420 S Fairview Ave
 - 2040 Sawtelle Blvd
 - start with:
 - end with:
 - _NUM _CAPS Blvd
 - _CAPS _CAPS

Token Syntactic Hierarchy
- Tokens = words
- Syntactic types e.g., NUMBER, ALPHA
- Hierarchy of types allows generalization
- Extensible
 - new types
 - domain-specific information

Prototype Learning Algorithm
- No explicit negative examples
- Learn from positive examples of data
- Find patterns that
 - describe many of the positive examples of data
 - highly unlikely to describe a random token sequence (implicit negative examples)
 - are statistically significant patterns
- DataPro - efficient (greedy) algorithm
DataPro Algorithm

- Process examples
- Seed patterns
- Specialize patterns loop
 - Extend the pattern
 - find a more specific description
 - is the longer pattern significant given the shorter pattern?
 - Prune generalizations
 - is the pattern ending with general type significant given the patterns ending with specific tokens

Examples:
- 220 Lincoln Blvd
- 420 S Fairview Ave
- 2040 Sawtelle Blvd

Examples: PHONE

- starting patterns:
 - (_NUM) _NUM - _NUM
- ending patterns:
 - (_NUM) _NUM - _NUM

Examples:
- (310) 577 - 8182
- (310) 652 - 9770
- (310) 396 - 1179
- (310) 477 - 7242
- (626) 782 - 9779
- (310) 823 - 4446
- (323) 870 - 2872
- (310) 655 - 9380
- (310) 578 - 2293
- (310) 392 - 5751
- (805) 683 - 8864
- (310) 301 - 1004
- (626) 783 - 8123
- (310) 822 - 1513

Example: STREET_ADDRESS

- 13455 Maxella Ave
- 903 N La Cienega Blvd
- 110 Navy St
- 2040 Sawtelle Blvd
- 87 E Colorado Blvd
- 4325 Glencoe Ave
- 2525 S Robertson Blvd
- 998 S Robertson Blvd
- 523 Washington Blvd
- 220 Lincoln Blvd
- 420 S Fairview Ave
- 13490 Maxella Ave
- 363 S Fair Oaks Ave
- 4676 Admiralty Way

- starting patterns:
 - _NUM S _CAPS Blvd
 - _NUM _CAPS Ave
 - _NUM _CAPS
- ending patterns:
 - _NUM _CAPS _CAPS
 - _NUM S _CAPS Blvd
 - _NUM _CAPS Ave
 - _NUM _CAPS Blvd

Wrapper Verification

Data prototypes can be used for web wrapper maintenance applications.

- Automatically detect when the wrapper is no longer correctly extracting data from an information source
 - (Kushmerick 1999)

Results

- Monitored 27 wrappers (23 distinct sources)
- There were 37 changes over ~ 1 year
- Algorithm discovered 35/37 changes with 15 mistakes
 - 13 false positives
- Overall:
 - Average precision = 73%
 - Average recall = 95%
 - Average accuracy = 97%
Wrapper Reinduction

- Rebuild the wrapper automatically if it is not extracting data correctly from new pages
- Data extraction step
 Identify correct examples of data on new pages
- Wrapper induction step
 Feed the examples, along with the new pages, to the wrapper induction algorithm to learn new extraction rules

The Lifecycle of A Wrapper

Example Source Change

Whitepages Wrapper

Wrapper Applied to Changed Source

After Reinduction
Results

- Monitored 10 distinct sources
- There were 8 changes over ~ 1 year
- Extracting examples:
 - 277/338 correct (82%)
 - 31 false positives/30 false negatives
- Reinduction:
 - Average recall = 90%
 - Average precision = 80%

Discussion

- Flexible data representation scheme
- Algorithm to learn description of data fields
- Used in wrapper maintenance applications

Limitations:

- Needs to be extended to lists and tables
- Excellent recall, but lower recall will precision in many false positives