Blocking Schemes for Record Linkage

Matthew Michelson
CSCI 548
2006
Record Linkage – Finding Matches

Census Data

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Phone</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>555-5555</td>
<td>12345</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
<td>555-1111</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smith</td>
<td>555-0011</td>
<td>12345</td>
</tr>
</tbody>
</table>

A.I. Researchers

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Phone</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelson</td>
<td>555-5555</td>
<td>12345</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
<td>555-1111</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smeth</td>
<td>555-0011</td>
<td>12345</td>
</tr>
</tbody>
</table>
Record Linkage – Finding Matches

- Can’t compare all records!
 - Just 5,000 to 5,000 \rightarrow 25,000,000 comparisons!
 - At 0.01s/comparison \rightarrow 250,000 s \rightarrow ~3 days!
- Need to use a subset of comparisons
 - “Candidate matches”
 - Want to cover true matches
 - Want to throw away non-matches
Blocking – Generating Candidates

\[(\text{token, last name}) \text{ AND } (1^{\text{st}} \text{ letter, first name}) = \text{block-key}\]

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelso</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelso</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
</tr>
</tbody>
</table>

\[(\text{token, zip})\]

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Matt</td>
<td>Michelson</td>
<td>12345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Michelson</td>
<td>12345</td>
</tr>
<tr>
<td>Jim</td>
<td>Jones</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smeth</td>
<td>12345</td>
</tr>
</tbody>
</table>

...
Blocking - Intuition

<table>
<thead>
<tr>
<th>First</th>
<th>Last Name</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt</td>
<td>Michelso</td>
<td>12345</td>
</tr>
<tr>
<td>Jane</td>
<td>Jones</td>
<td>12345</td>
</tr>
<tr>
<td>Joe</td>
<td>Smith</td>
<td>12345</td>
</tr>
</tbody>
</table>

Census Data

1 Block of 12345 Zips

→ Compare to the “block-key”

Group & Check to reduce Checks
Bi-Gram Indexing

- Can we use a better blocking key than tokens?
 - What about “fuzzy” tokens?
 - Matt → Matthew, William → Bill? (similarity)
 - Michael → Mychael (spelling)

- Bi-Gram Indexing
Bi-Gram indexing

- **Step 1**: Take token and break it into bigrams
 - Token: matt
 - (‘ma,’ ‘at,’ ‘tt,’)

- **Step 2**: Generate all sub-lists
 - (# bigrams) x (threshold) = sub-list length
 - 3 x .7 = 2

- **Step 3**: Sort sub-lists and put them into inverted index
 - (‘at’ ‘ma’) (‘at’ ‘tt’) (‘ma’ ‘tt’) \(\rightarrow\) record w/ matt
 - Block key
BiGram Indexing: Properties

- Threshold properties
 - lower = shorter sub-lists → more lists
 - higher = longer sub-lists → less lists, less matches

- Now we can find spelling mistakes, close matches, etc…
Blocking – Multi-pass

- Sort neighborhoods on block keys
- Multiple independent runs using keys
 - runs capture different match candidates
- Attributed to (Hernandez & Stolfo, 1998)
- E.g.) 1st \rightarrow (token, last name)
 2nd \rightarrow (token, first name) &
 (token, phone)
Blocking – Multi-pass

- Can we make blocks without sorting?
 - Yes! We can cluster…
Blocking – Canopies Method

McCallum, Nigam, Ungar, Efficient Clustering of High-Dimensional Data Sets with Application to Reference Matching, 2000, KDD

Idea: form clusters around certain key values, within some threshold value
Blocking – Canopies Method

1. Start with 2 threshold values, T1 and T2, s.t. T1 > T2
 - based on similarity function, hand picked or learned thresholds
2. Select a random record from list of records and calculate it’s similarity to all other records
 - Very cheap in some cases: inverted index
3. Create “Canopy” for all records where similarity less than T1
4. Remove all records from the list of records where similarity less than T2
5. Repeat 1-4 until your list is empty
Blocking – Canopies Method

- Sim. function = abs. zip distance, $T_1 = 6$, $T_2 = 3$

List of records: 90001, 90002, 90006, 88181, 90292, 90293
Blocking – Multi-pass

- Back to the world of multi-pass…
- Terminology:
 - Each pass is a “conjunction”
 - (token, first) AND (token, phone)
 - Combine passes to form “disjunction”
 - [(token, last)] OR [(token, first) AND (token, phone)]
 - Disjunctive Normal Form rules
 - form “Blocking Schemes”
Blocking Effectiveness

- Determined by rules
 - Determined by choices for attributes and methods
 - (token, zip) captures all matches, but all pairs too
 - (token, first) AND (token, phone) gets half the matches, and only 1 candidate generated
 - Which is better? Why?
 - How to quantify??
Blocking Effectiveness

Reduction Ratio (RR) = 1 − ||C|| / (||S|| * ||T||)

S, T are data sets; C is the set of candidates

Pairs Completeness (PC) [Recall] = \(S_m / N_m \)

S_m = # true matches in candidates,
N_m = # true matches between S and T

Examples:
(token, last name) AND (1st letter, first name)

RR = 1 − 2/9 ≈ 0.78
PC = 1 / 2 = 0.50

(token, zip)

RR = 1 − 9/9 = 0.0
PC = 2 / 2 = 1.0
Multi-Pass Blocking Schemes

Old Techniques: Ad-hoc rules
New Techniques: Learn rules!

Learned rules justified by quantitative effectiveness

How to choose methods and attributes?

- **Blocking Goals:**
 - Small number of candidates (High RR)
 - Don’t leave any true matches behind! (High PC)

- **Previous approaches:**
 - Ad-hoc by researchers or domain experts

- **New Approach:**
 - Blocking Scheme Learner (BSL) – modified Sequential Covering Algorithm
Learning Schemes – Intuition

- Learn restrictive conjunctions
 - partition the space \rightarrow minimize False Positives

- Union restrictive conjunctions
 - Cover all training matches
 - Since minimized FPs, conjunctions should not contribute many FPs to the disjunction
Example to clear things up!

Space of training examples

Rule 1 :- \((\text{zip|token}) \& (\text{first|token})\)

Final Rule :- \([(\text{zip|token}) \& (\text{first|token})] \cup [(\text{last|1}\text{st Letter}) \& (\text{first|1}\text{st Letter})]\)

- = Not match
- = Match
SCA: propositional rules

- Multi-pass blocking = disjunction of conjunctions
- Learn conjunctions and union them together!
- Cover all training matches to maximize PC

SEQUENTIAL-COVERING(class, attributes, examples, threshold)

| LearnedRules ← {} |
| Rule ← LEARN-ONE-RULE(class, attributes, examples) |
| While examples left to cover, do |
| LearnedRules ← LearnedRules U Rule |
| Examples ← Examples – {Examples covered by Rule} |
| Rule ← LEARN-ONE-RULE(class, attributes, examples) |
| If Rule contains any previously learned rules, remove them |
| Return LearnedRules |
SCA: propositional rules

- LEARN-ONE-RULE is greedy
 - rule containment as you go, instead of comparison afterward
 - Ex) rule: \((\text{token|zip}) \& (\text{token|first})\)

 \((\text{token|zip}) \text{ CONTAINS } (\text{token|zip}) \& (\text{token|first})\)
 - Guarantee later rule is less restrictive – If not how are there examples left to cover?
Learn-One-Rule

- Learn conjunction that maximizes RR
- General-to-specific beam search
 - Keep adding/intersecting (attribute, method) pairs
 - Until can’t improve RR
 - Must satisfy minimum PC
Experiments

HFM = \{(\text{token, make}) \cap \{\text{token, year}\} \cap \{\text{token, trim}\}\)
\bigcup \{(\text{1st letter, make}) \cap \{\text{1st letter, year}\} \cap \{\text{1st letter, trim}\}\)
\bigcup \{\text{synonym, trim}\}

BSL = \{(\text{token, model}) \cap \{\text{token, year}\} \cap \{\text{token, trim}\}\)
\bigcup \{\text{token, model}\} \cap \{\text{token, year}\} \cap \{\text{synonym, trim}\}\)

<table>
<thead>
<tr>
<th>Cars</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFM</td>
<td>47.92</td>
<td>99.97</td>
</tr>
<tr>
<td>BSL</td>
<td>99.86</td>
<td>99.92</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.87</td>
<td>99.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best 5 Winkler</td>
<td>99.52</td>
<td>99.16</td>
</tr>
<tr>
<td>Adaptive</td>
<td>99.9</td>
<td>92.7</td>
</tr>
<tr>
<td>BSL</td>
<td>98.12</td>
<td>99.85</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.50</td>
<td>99.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restaurants</th>
<th>RR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marlin</td>
<td>55.35</td>
<td>100.00</td>
</tr>
<tr>
<td>BSL</td>
<td>99.26</td>
<td>98.16</td>
</tr>
<tr>
<td>BSL (10%)</td>
<td>99.57</td>
<td>93.48</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Attr,</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopie Ad-hoc</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bi-Gram Ad-hoc</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BSL Learn</td>
<td>SCA</td>
<td></td>
</tr>
</tbody>
</table>

Tradeoffs: Learning vs. Non
- Need to label (but already labeled for RL!), but get well justified, productive blocking

Choice: Choose a learning method!
- Maybe use canopies within a learning method!
Conclusions

- Automatic Blocking Schemes using Machine Learning
 - Not created by hand
 - cheaper
 - easily justified
 - Better than non-experts ad-hoc and comparable to domain expert’s rules
 - Nice reductions – scalable record linkage
 - High coverage – don’t hinder record linkage