Automatic Wrapper Generation and Data Extraction

Kristina Lerman
University of Southern California
Overview

- Methods for automatic wrapper creation and data extraction
 - Grammar Induction approach
 - *Towards Automatic Data Extraction from Large Web Sites*
 - Website structure-based approach
 - *AutoFeed: An Unsupervised Learning System for Generating Webfeeds*
 - *Using the Structure of Web Sites for Automatic Segmentation of Tables*
 - Rule-based extraction from natural language text
 - *KnowItAll*

- No hand-labeled training examples are required!
 - Scaled to the size of the Web
Data-intensive Web sites present results in dynamically generated pages.

Web sites are highly *structured* in terms of:
- Organization of the site
- Layout of pages
- Content of data

Exploit this structure for automatic information extraction.
Using the Structure of Web Sites for Automatic Segmentation of Tables
Structure of Web Sites

Entry page → List pages → Detail pages
Data in the same "column" is of the same type

- Each listing starts with NAME, followed by ADDRESS, CITY, STATE, etc.
Underlying Structure is not Always Clear

- Variability of real-world data may obscure the underlying structure
 - Missing columns
 - “List Price” and “You save”
 - Formatting
 - Content
Automatically, efficiently extract records from Web tables

Given a set of list and detail pages...
- Segment list data using information from detail pages
 - Logic based approach
 - Based on Constraint Satisfaction Problems (CSP)
 - Encode relations between data on list and detail pages as logical constraints and solve them
 - Probabilistic inference approach
 - Learns a model from data
 - Record segmentation is an assignment that maximizes the likelihood of data given the model
Identify Table and Extract Data

- Page template
 - Sequence of tokens shared by all pages
- Deduce page template
 - Given two or more example pages, derive the page template used to generate them
- Table data and formatting tags are not part of the template
- Find table
 - Extract contiguous sequences of tokens from the largest page slot
Record Segmentation Basics (1)

- List and detail pages present two views of the same record
 - Some overlapping fields
- Each detail page is a distinct record
- Assumption: Web tables are laid out horizontally
 - Each record is in a separate row
 - Order in which extracts appear in the text stream of list page is the same order they appear in the table
For each extract E_i, record all detail pages on which it appears:

- E_1: John Smith
 Pages: r1, r2

- E_2: 221 Waterloo
 Pages: r1

- E_3: New Holland
 Pages: r1

- E_4: (740) 335-5555
 Pages: r1, r2

- E_5: John Smith
 Pages: r1, r2

- E_6: 221R Waterloo
 Pages: r2

- E_7: Washington
 Pages: r2

- E_8: (740) 335-5555
 Pages: r1, r2

- E_9: George W. Smith
 Pages: r3

- E_{10}: Findlay, OH 45840
 Pages: r3

- E_{11}: (419) 423-1212
 Pages: r3
Observations of extracts on detail pages add valuable information for record segmentation.

Second record can be

- $E_4E_5E_6E_7E_8$
- $E_4E_5E_6E_7$
- $E_5E_6E_7$
- $E_5E_6E_7E_8$
- $E_6E_7E_8$
- E_6E_7
CSP Approach to Record Segmentation

- In CSP, problems are stated as logical expressions over variables
 - Pseudo-boolean (PB) representation
 - Variables are 0-1, constraints can be inequalities
 - Solution is assignment that minimizes inequality constraints
- Encode record segmentation problem in PB representation
 - Assignment variable x_{ij}
 - $x_{ij}=1$ when E_i is assigned to r_j
 - $x_{ij}=0$ when E_i is no part of r_j
- Information from detail pages imposes constraints
 - Structure constraints
 - Position constraints
Structure Constraints

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>E_9</th>
<th>E_{10}</th>
<th>E_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Uniqueness constraint**
 - Every extract E_i belongs to exactly one record r_j

 \[\sum_j x_{ij} = 1 \]

- **Consecutiveness constraint**
 - Only contiguous blocks of extracts can be assigned to the same record
Structure Constraints

- **Uniqueness constraint**
 - Every extract E_i belongs to exactly one record r_j

- **Consecutiveness constraint**
 - Only contiguous blocks of extracts can be assigned to the same record

 \[x_{ij} + x_{kj} \leq 1 \text{ when there is } n, \ k < n < i, \ \text{s.t. } x_{nj} = 0 \]
Position Constraints

- Position constraint
 - No two extracts assigned to same record can appear in the same position on the detail page
 - \(\text{pos}_j(E_i) = \text{pos}_j(E_k) \), then \(E_i \) and \(E_k \) cannot be assigned to same record \(j \)
- Constraints are expressed mathematically and solved using integer optimization

<table>
<thead>
<tr>
<th></th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(E_8)</th>
<th>(E_9)</th>
<th>(E_{10})</th>
<th>(E_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^{730}_1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{772}_1)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{812}_1)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{846}_1)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>(p^{536}_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{578}_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{608}_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p^{642}_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Approach to Record Segmentation

- Record segmentation as probabilistic inference
 - No labeled training examples
 - **Factor** the problem for efficient learning
 - **Bootstrap** the learning algorithm with information from detail pages
 - **Structure** constrain the problem further with global parameters such as record length
Probabilistic Model for Record Extraction: Variables

- **Observed variables**
 - $T = \{T_1, \ldots, T_n\}$ token types of extract E_i
 - $D = \{D_1, \ldots, D_n\}$ detail pages on which E_i was observed

- **Unobserved variables**
 - $R = \{R_1, \ldots, R_n\}$ record id
 - $C = \{C_1, \ldots, C_n\}$ column label
 - $S = \{S_1, \ldots, S_n\}: S_i = \text{true if } E_i \text{ is the start of a new record; false otherwise}$

- **Dependencies**
 - Given by arrows, eg, $P(C_i | C_{i-1})$

- **Segmentation**
 - find values for R and C given T, D variables: $\arg\max P(R, C | T, D)$
Probabilistic Model for Record Extraction: Dependencies

- $P(T_i|C_i)$: token type of E_i depends on column
- $P(C_i|C_{i-1})$: column label of E_i depends on previous column label (e.g., NAME followed by ADDRESS, sometimes by STATE)
- $P(S_i|C_i)$: new record starts with a given column (e.g., NAME)
- $P(R_i|R_{i-1},D_i,S_i)$: record number of E_i depends on record number of previous extract, whether it starts a new record, and detail pages on which it was observed.
Learning the Model

- **Constrain the problem further**
 - **Bootstrap**
 - Detail pages provide initial guesses for parameters
 - $P(R_i=r_i)$
 - Evidence about where records start: $P(S_i=true)=1$
 - Token types of columns $P(T_j|C_i)$
 - **Structure**
 - Table has π columns specified by the underlying database schema
 - However, not every record will have an attribute for every field, i.e., not every record has π fields
 - Number of fields in a record estimated from data
Learning the Model

Initial guess for record assignment \(P(R_i) \)

<table>
<thead>
<tr>
<th>(P(R_i=r_i))</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(E_8)</th>
<th>(E_9)</th>
<th>(E_{10})</th>
<th>(E_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_2)</td>
<td>1/2</td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Initial guess for record start \(P(S_i) \)

<table>
<thead>
<tr>
<th>(P(S_i))</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(E_8)</th>
<th>(E_9)</th>
<th>(E_{10})</th>
<th>(E_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Initial guess for length of records

<table>
<thead>
<tr>
<th>(\pi_k)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\pi_k))</td>
<td>2/14</td>
<td>6/14</td>
<td>4/14</td>
<td>2/14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning Algorithm

- Use EM to implement the inference algorithm
 1. Initial guess for π_k for each record j
 2. For each potential record, update $P(C_i | T_i, C_{i-1})$
 3. Update $P(S_i | C_i)$
 4. Update $P(R_i | R_{i-1}, D_i, S_i)$

Result is the most likely assignment of data to R and $C = \text{record segmentation}$.
Validation

- Input data
 - list and detail pages from 12 sites in domains: book sellers, property tax, white pages, corrections

- Metrics
 - \[P = \frac{Cor}{Cor + InCor + NonRecords} \]
 - \[R = \frac{Cor}{Cor + UnsegRecords} \]
 - \[F = \frac{2PR}{P + R} \]

- Results
 - CSP approach: P=0.85, R=0.84, F=0.84
 - Probabilistic approach: P=0.74, R=0.99, F=0.85
 - Good performance for an automatic algorithm!
Discussion of Results

- CSP approach is very reliable on clean data, but sensitive to errors in data source
 - Attribute has one value on list page and another on detail page
- Probabilistic approach tolerates inconsistencies and is more expressive
- Combination of two techniques may be more robust
Comparison with RoadRunner

- **RoadRunner System**
 - Automatically learns the page and table template by exploiting similarities in page layout (HTML tags)
 - Uses the template to automatically extract data
 - Does not allow for disjunctions
 - Disjunctions are necessary to represent alternative layout instructions for the same field
Discussion

- Domain-independent approach for automatically extracting and segmenting data from Web tables
 - Approach leverages additional information provided by Web site structure
 - Logic based approach
 - Information provided by detail pages encoded as constraints and solved to obtain record segmentation
 - Probabilistic inference approach
 - Information provided by detail pages and table structure represented as a probabilistic model
 - Use inference to learn proper segmentation
- Validated approach on 12 Web sites from diverse information domains
 - Efficient, accurate performance, F=0.85 and F=0.84
KnowI tAll: Methods for Domain-Independent Information Extraction from the Web
Automatic Data Extraction

- Extract data from the Web without hand-labeled training examples

Types of information extracted

- Data tuples

- Facts
 - Entities
 - ‘Los Angeles’, ‘Albert Einstein’
 - Classes and relations
 - Class instances:
 - ‘Los Angeles’ is a CITY
 - ‘Albert Einstein’ is a SCIENTIST
KnowItAll Approach

Two-stage approach to automatic data extraction

- Extraction patterns to generate candidate facts
 - Pattern “NP1 such as NP2”
 - “…tours in cities such as Paris and Berlin”
 - Extracts class CITY with instances Paris and Berlin

- Text candidate facts using Pointwise Mutual Information (PMI)
 - Statistics computed from all text on Web
 - Use existing Web search technology to efficiently compute statistics
 - Associates a probability with every fact it extracts
 - Automatically manage tradeoff between precision and recall
Extractor

- Extractor - natural language patterns to extract instances of classes
 NP1 "such as" NPList2
 & head(NP1) = plural(Class1)
 & properNoun(head(each(NPList2)))
 => instanceOf(Class1, head(each(NPList2)))
 keywords: "plural(Class1) such as"

- Uses part-of-speech tagger to identify Noun Phrases (NP)
Search Engine Interface

- Query search engine with phrases
 - “cities such as”
- Apply Extractor to all pages return by search
Assessor

- Uses statistics computed over all Web pages to assess the likelihood that extracted fact I is correct
 - Pointwise Mutual Information (PMI)
 \[PMI(I, D) = \frac{|\text{Hits}(D+I)|}{|\text{Hits}(I)|} \]
 - D is discriminator phrase: e.g., “city of”
 - Hits(x) = number of Web pages that contain x
 - PMI is a feature to Naïve Bayes Classifier
 - More likely classes get higher probabilities
 - Probability threshold tunable parameter to increase precision (at expense of recall)
Precision and Recall – a recap

Extracted facts about cities

Recall = E^R / R
Precision = E^R / E

Goal: Make the blue circle overlap more of the yellow circle!
Enhancements to KnowItAll

- Enhancements to increase precision & recall
 - Rule Learning
 - Learns domain specific rules and validates accuracy of instances they extract
 - Subclass Extraction
 - Automatically identify subclasses
 - Learn that physicists, geologists, etc. are subclasses of scientists
 - Rule “physicists such as …” will extract more scientists
 - List Extraction
 - Locate lists of class instances
 - Learns a wrapper for the list to extract instances
Enhancements: Rule Learning

- Learn domain-specific rules to increase KnowItAll’s precision and recall
 E.g., “… headquartered in <CITY> …”

1. Start with instances extracted by generic patterns
2. Query search engine with instances → pages
3. From each page, extract context string for instance
 - 4 words before, and after
4. ‘Best’ substrings of the ‘best’ context strings are converted to new Extraction Rules that extract new instances with high precision
 - Heuristic: Prefer substrings that appear in multiple pages
 - Heuristic: Penalize substrings that lead to many false positives
Examples of Rule Learning

Most productive rules learn for each class, with number of correct extractions and precision

1. the cities of `<city>` 5215 0.80
2. headquartered in `<city>` 4837 0.79
3. for the city of `<city>` 3138 0.79
4. in the movie `<film>` 1841 0.61
5. `<film>` the movie starring 957 0.64
6. movie review of `<film>` 860 0.64
7. and physicist `<scientist>` 89 0.61
8. physicist `<scientist>`, 87 0.59
9. `<scientist>`, a British scientist 77 0.65
Subclass Extraction

- Identify subclasses and instantiate new generic patterns
 - PHYSICIST is a subclass of SCIENTIST → new rule “physicists such as …”
 - Increases KnowItAll coverage
- Subclasses of SCIENTIST found by KnowItAll
 - biologist
 - zoologist
 - astronomer
 - meteorologist
 - mathematicia
 - n
 - economist
 - geologist
 - sociologist
 - chemist
 - oceanographer
 - anthropologist
 - pharmacist
 - psychologist
 - climatologist
 - paleontologist
 - neuropsychologist
 - engineer
 - microbiologist
Subclass Extraction

1. Apply Subclass Extraction rules to extract candidate subclasses
 - “… such C₁ as CN …” → CN is subclass of C₁.
 - “… CN and other C₁ …” → CN is subclass C₁.

2. Assess validity of candidate
 - Is subclass in a reference taxonomy (WordNet)?
 - Check word morphology → “microbiologist” is a subclass of “biologist”
List Extraction

- Extract information from formatted lists
- Approach
 - Query search engine with k random instances extracted by Knowl tAll
 - In each Web page, search for a list containing these keywords using HLRT-like wrapper induction algorithm*
 - Convert Web page to DOM tree
 - Select subtrees corresponding to positive examples
 - Finds greatest common prefixes (and suffixes) for these examples
 - Choose header and tail strings to limit extraction to good subtrees
 - *Can learn wrapper from few positive examples
 - Assess the likelihood of each extracted instance
 - Rank instances by the number of lists they appear in
Evaluation

- For classes CITY and FILM
 - Extracted >40k (compared to baseline 10k) at 90% precision
 - Most of the improvement due to List Extraction

- For class SCIENTIST
 - Extracted 40k instances (compared to baseline ~2k) at 90% precision
 - Most of the improvement due to Subclass Extraction
Discussion

- Automatic collection of large body of facts
- Extract facts (e.g., instances of classes) from text using generic NLP rules
- Heuristics added to KnowItAll (rule learning, subclass extraction, list extraction) greatly improve recall while maintaining high precision
Conclusion

- Covered method to automatically extract massive data sets from Web pages
 - Structured pages
 - Natural language text
- Extraction from structured Web pages
 - Exploit structure in pages (grammar)
 - Exploit structure of site
- Extraction from text
 - Exploit NLP rules and Web statistics to extract high quality facts