Wrapper Learning

Kristina Lerman
University of Southern California

This presentation is based in part on slides prepared by Ion Muslea
Web Wrappers

GIVE ME:
Thai food
< $20
“A”-rated

Thai
< $20

“A” rated
Example of Extraction Task

Wrapper is a procedure that translates a Web page to tuple(s)

NAME: Casablanca Restaurant
STREET: 220 Lincoln Boulevard
CITY: Venice
PHONE: (310) 392-5751
Wrapper Induction

Problem description:

• Web sources present data in *human-readable format*
 • take user query
 • apply it to data base
 • present results in “template” HTML page

• To integrate data from multiple sources, one must first *extract relevant information* from Web pages

• Task: learn extraction rules based on labeled examples
 • Hand-writing rules is tedious, error prone, and time consuming
In this lecture ...

- **Wrapper Induction System** [STALKER, Muslea et al, ’99, ’01,’06]
 - Input
 - Manually labeled Web pages
 - Data schema
 - Output
 - Extraction rules

- **Wrapper Maintenance** [Lerman et al., ’03]
 - Monitors wrappers to see if they are working correctly
Wrapper Learning and Maintenance

GUI

To be labeled

Wrapper Induction System

Web pages

Wrapper

Extracted data

Automatic Re-labeling

Wrapper Verification
STALKER [Muslea et al, ’98 ’99 ’01]

- Hierarchical wrapper induction
 - Decomposes a hard problem in several easier ones
 - Extracts items independently of each other
 - Each extraction rule is a finite automaton

- Benefits
 - Can handle pages with many different structures
 - Lists, embedded lists
 - Can efficiently learn wrappers from few labeled examples
STALKER: The Wrapper Architecture

Query ——— Data

Information Extractor

EC Tree

Extraction Rules
Extraction Rules

- Extraction rule: sequence of *landmarks*
- Landmarks are tokens that help locate information on the page

 E.g. to extract a Phone number from Web page

Name: Joel’s <p> Phone: <i> (310) 777-1111 </i><p> Review: ...
More about Extraction Rules

Extraction rules can handle variability on pages

Name: Joel’s Phone: <i>(310) 777-1111</i> Review: ...

Name: Kim’s Phone (toll free): (800) 757-1111 …

Name: Kim’s Phone: (888) 111-1111 Review: ...

Start: EITHER SkipTo(Phone: <i>)
OR SkipTo(Phone) SkipTo(:)
The Embedded Catalog Tree (ECT)

ECT describes the structure of the page

Name: KFC
Cuisine: Fast Food
Locations:
- **Venice**
 - (310) 123-4567,
 - (800) 888-4412.
- **L.A.**
 - (213) 987-6543.
- **Encino**
 - (818) 999-4567,
 - (888) 727-3131.
Learning the Extraction Rules

GUI

Labeled Pages

EC Tree

Inductive Learning System

Extraction Rules
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free): (800) 123-4567 <p>Cuisine ...

Name: Burger King <p> Phone: (310) 987-9876 <p>Cuisine: ...
Example of Rule Induction

Training Examples:

- Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p>Cuisine ...

- Name: Burger King <p> Phone : (310) 987-9876 <p>Cuisine: ...

Initial candidate:

SkipTo()
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p> Cuisine ...

Name: Burger King <p> Phone : (310) 987-9876 <p> Cuisine: ...

Initial candidate:

```
SkipTo( ()

SkipTo( <b> ( )

SkipTo(Phone) SkipTo( ()

... SkipTo(:) SkipTo()
```
Example of Rule Induction

Training Examples:

Name: Del Taco <p> Phone (toll free) : (800) 123-4567 <p>Cuisine ...

Name: Burger King <p> Phone : (310) 987-9876 <p>Cuisine: ...

Initial candidate:

SkipTo(()

SkipTo(() … SkipTo(Phone) SkipTo(() … SkipTo(:) SkipTo(()

… SkipTo(Phone) SkipTo(:) SkipTo(() …

USC Information Sciences Institute /ISI
Active Learning [Muslea et al., 2006]

- Why stop at 95-99% accuracy?
 - Select most informative examples to get to 100% accuracy

- Active Learning
 - **Idea:** system selects most informative exs. to label
 - **Advantage:** fewer examples to reach same accuracy
Multi-view Learning

Two ways to find start of the phone number:

SkipTo(**Phone:**)

BackTo(**Number**)

Name: KFC <p> Phone: (310) 111-1111 <p> Review: Fried chicken …
Which example should be labeled next?

Training Examples

Name: Joel’s <p> Phone: (310) 777-1111 <p>Review: The chef...
Name: Kim’s <p> Phone: (213) 757-1111 <p>Review: Korean ...

Unlabeled Examples

Name: Chez Jean <p> Phone: (310) 666-1111 <p> Review: ...
Name: Burger King <p> Phone: (818) 789-1211 <p> Review: ...
Name: Café del Rey <p> Phone: (310) 111-1111 <p> Review: ...
Name: KFC <p> Phone: (800) 111-7171 <p> Review: ...

USC Information Sciences Institute
ISI
<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joel’s</td>
<td>(310) 777-1111</td>
<td>Review: ...</td>
</tr>
<tr>
<td>Kim’s</td>
<td>(213) 757-1111</td>
<td>Review: ...</td>
</tr>
<tr>
<td>Chez Jean</td>
<td>(310) 666-1111</td>
<td>Review: ...</td>
</tr>
<tr>
<td>Burger King</td>
<td>(818) 789-1211</td>
<td>Review: ...</td>
</tr>
<tr>
<td>Café del Rey</td>
<td>(310) 111-1111</td>
<td>Review: ...</td>
</tr>
<tr>
<td>KFC</td>
<td>(800) 111-7171</td>
<td>Review: ...</td>
</tr>
</tbody>
</table>
Discussion

• Wrapper Learning = basic problem is to learn how to extract the data from a page

• STALKER
 • Input: ECT (schema), labeled examples
 • Rules to extract data from pages
 • Active Learning can reduce the number of examples required to learn

• But approach
 • Requires labeled examples
 • Sensitive to changes to sources
Wrapper Maintenance

Problem

- Landmark-based extraction rules are fast and efficient…but they rely on stable Web Page layout.
 - If the page layout changes, the wrapper fails!
 - Unfortunately, the average site on the Web changes layout more than twice a year.
- Requirement: Need to detect changes and automatically re-induce extraction rules when layout changes
Phone Search Results

Showing 1 - 2 of 2

First | Prev | Next | Last | **Search Again**

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif</td>
<td>(310)822-9994</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90066</td>
<td></td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave</td>
<td>(323)936-5549</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90036-3666</td>
<td></td>
</tr>
</tbody>
</table>

First | Prev | Next | Last | **Search Again**
Phone Search Results

Showing 1 – 2 of 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif, Los Angeles, CA 90066</td>
<td>(310)822-9994</td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave, Los Angeles, CA 90036-3666</td>
<td>(323)936-5549</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave</td>
<td>Los Angeles</td>
</tr>
</tbody>
</table>
Phone Search Results

Showing 1 - 2 of 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>Mar Vista Calif</td>
<td>(310)822-9994</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>Andrew Philpot</td>
<td>600 S Curson Ave</td>
<td>(323)936-5549</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA</td>
<td></td>
</tr>
</tbody>
</table>

Search Again

Phone Search Results

Showing 1 - 1 of 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>(323)936-5549</td>
</tr>
<tr>
<td>600 S Curson Ave</td>
<td>Los Angeles, CA</td>
</tr>
</tbody>
</table>

Search Again

USC Information Sciences Institute
Wrapper Applied to Changed Source

Phone Search Results
Showing 1 - 1 of 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone (click to call)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Philpot</td>
<td>(323)936-5549</td>
</tr>
<tr>
<td>600 S Curson Ave</td>
<td>Los Angeles, CA</td>
</tr>
</tbody>
</table>

NAME item
Begin_Rule
__ST__ * *
End_Rule
__ST__ </td> <td nowrap >
ADDRESS item
Begin_Rule
__ST__ </td> <td nowrap >
End_Rule
__ST__

...

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIL</td>
<td>NIL</td>
<td>600 S Curson Ave
 Los Angeles</td>
</tr>
</tbody>
</table>
Wrapper Verification

- **Wrapper Verification**
 - Automatically detect when the wrapper is no longer correctly extracting data from an information source
 - [Kushmerick 1999]
 - [Lerman et al., 2003]

- **Wrapper Reinduction**
 - Rebuild the wrapper automatically if it is not extracting data correctly from new pages
 - [Lerman et al., 2003]
Learning Global Properties for Wrapper Verification [Kushmerick, 1999]

- Each data field described by global numeric features
 - Word count, average word length, HTML density, alphabetic density
- Computationally efficient learning
- HTML density alone could account for almost all changes on test set
- Large number of false negatives on real changes to web sources [Lerman et al. 2003]
Learning Data Structure [Lerman et al., ’00,’03]

- Approach to learning the structure of data
- Token level syntactic description
 - descriptive but compact
 - computationally efficient
- Structure is described by a sequence (pattern) of general and specific tokens.
- Data prototype = starting & ending patterns

STREET_ADDRESS
220 Lincoln Blvd
420 S Fairview Ave
2040 Sawtelle Blvd

start with:
_NUM _CAPS
_end with:
_CAPS Blvd
_CAPS _CAPS
Token Syntactic Hierarchy

- Tokens = words
- Syntactic types
 - e.g., NUMBER, ALPHA
- Hierarchy of types
 - allows generalization
- Extensible
 - new types
 - domain-specific information
Prototype Learning Algorithm

- No explicit negative examples
- Learn from positive examples of data
- Find patterns that
 - describe many of the positive examples of data
 - highly unlikely to describe a random token sequence (implicit negative examples)
- are statistically significant patterns at $\alpha=0.05$ significance level
- **DataPro** – efficient (greedy) algorithm
DataPro Algorithm

- Process examples
- Seed patterns
- Specialize patterns loop
 - Extend the pattern
 - find a more specific description
 - is the longer pattern significant given the shorter pattern?
 - Prune generalizations
 - is the pattern ending with general type significant given the patterns ending with specific tokens

Examples:

220 Lincoln Blvd
420 S Fairview Ave
2040 Sawtelle Blvd
Examples: PHONE

- starting patterns:
 (_NUM) _NUM - _NUM

- ending patterns:
 (_NUM) _NUM - _NUM
Wrapper Verification

Data prototypes can be used for web wrapper maintenance applications.

- Automatically detect when the wrapper is no longer correctly extracting data from an information source
 - (Kushmerick 1999)
Prototypes can be used for web wrapper verification. Given

- Set of correct old examples of data
- Set of new examples
- Do the patterns describe the same proportions of new examples as old examples?
Results

- Monitored 27 wrappers (23 distinct sources)
- There were 37 changes over ~ 1 year
- Algorithm discovered 35/37 changes with 15 mistakes
 - 13 false positives
- Overall:
 - Average precision = 73%
 - Average recall = 95%
 - Average accuracy = 97%
Discussion

- Flexible data representation scheme
- Algorithm to learn description of data fields
- Used in wrapper maintenance applications

Limitations:
- Needs to be extended to lists and tables
- Excellent recall, but lower recall will precision in many false positives