
Discovering and Learning Semantic Models of Online Sources
for Information Integration

José Luis Ambite1, Bora Gazen2, Craig A. Knoblock1, Kristina Lerman1, Thomas Russ1

1 University of Southern California 2 Fetch Technologies
4676 Admiralty Way 841 Apollo Street, Suite 400

Marina del Rey, CA 90292 El Segundo, CA 90245
{ambite,knoblock,lerman,tar}@isi.edu gazen@fetch.com

Abstract

Much work in Information Integration and the Se-
mantic Web assumes that rich semantic models of
sources exist. In practice, there is a tremendous
amount of data on the Web, but it is typically hard
to find, has little or no explicit structure, and there
is rarely any semantic description of the data. We
describe an integrated end-to-end system that can
automatically discover web sources, invoke and ex-
tract the data from them, and build their semantic
models. We describe the challenges in integrating
the component technologies into a unified approach
to discovering, extracting and modeling new online
sources. We evaluate the integrated system in three
different domains and demonstrate that it can auto-
matically discover and model new data sources.

1 Introduction
Information integration applications combine data from mul-
tiple sources to answer user queries or complete a task. A
common assumption is that a person must first find and model
the data sources, which an automated system would then use
programmatically. This first step can require significant effort
and must be repeated for each new data source. While vari-
ous technologies, most notably the Semantic Web, have been
proposed to enable programmatic access to new sources, they
are slow to be adopted, and at best will offer only a partial
solution because information providers will not always agree
on a common schema. We have developed an alternative ap-
proach that exploits background knowledge and data seman-
tics to automatically discover and model new data sources.

We assume we start with a set of example sources and their
semantic descriptions. These sources could be Web services
with well-defined inputs and outputs or even Web forms that
take a specific input and generate a result page as the output.
The system is then given the task of finding additional sources
that are similar, but not necessarily identical, to the known
source. For example, the system may already know about
several weather services and then be given the task of finding
new ones that provide additional coverage for the world and
building a semantic description of these new weather services
that makes it possible to exploit them for additional analysis.

This problem can be broken down into the following sub-
tasks. First, given an example source, find other similar
sources. Second, once we have found such a source, extract
data from it. For a web service, this is not an issue, but for a
Web site with a form-based interface, the source might simply
return an HTML page from which the data has to be extracted.
Third, given the syntactic structure of a source (i.e., the inputs
and outputs), identify the semantics of the inputs and outputs
of that source. Fourth, given the inputs and outputs, find the
function that maps the inputs to the outputs.

We have previously developed solutions for each subtask
separately. Plangprasopchok & Lerman [2007] showed that
social bookmarking sites, such as del.icio.us, can be used to
identify sources similar to a given source. For example, given
a geocoder that maps street addresses to their geographic co-
ordinates, the system can identify other geocoders by exploit-
ing the keywords used to describe such sources on del.icio.us.
Gazen & Minton [2005] developed an approach to automati-
cally structure web sources without any previous knowledge
of the source. Lerman et al. [2007] developed an approach to
semantically label online data that uses sources with a known
semantic model to then learn to label the inputs and outputs
of a previously unknown source. Carman & Knoblock [2007]
developed an approach to learn a semantic description, i.e., a
Datalog rule that precisely describes the relationship between
the inputs and outputs of a source, in terms of known sources.

In all previous work, each problem was solved indepen-
dently. Here, we describe the integration of these four sep-
arate components into a single unified approach to discov-
ering, extracting from and semantically modeling new on-
line sources. In the previous work each of these components
made assumptions that were not completely consistent with
the other components. We had to address these issues to build
an end-to-end system. This work provides the first general ap-
proach to automatically discover and model new sources of
data. Previous work, such as the ShopBot system [Perkowitz
et al., 1999], has only done this in a domain-specific way
where a significant amount of knowledge was encoded into
the problem (e.g., shopping knowledge in the case of Shop-
bot).

2 End-to-end Discovery, Extraction, Modeling
Our end-to-end approach finds sources, invokes them and
extracts the data, determines the semantic types of the out-

Figure 1: DEIMOS system architecture

puts, and builds the source models. The overall DEIMOS
architecture is shown in Figure 1. The system starts with a
known source and background knowledge about this source.
It then invokes each module to discover and model new re-
lated sources. Our techniques are domain-independent, but
we will illustrate them with weather domain examples.

The background knowledge required for each domain con-
sists of the semantic types, sample values for each type, a do-
main input model, the known sources (seeds), and the seman-
tic description of each seed source. For the weather domain,
the background knowledge consists of: (1) Semantic types:
e.g., TempF, Humidity, Zip; (2) Sample values for each type:
e.g., “88 F” for TempF, and “90292” for Zip; (3) Domain in-
put model: a weather source may accept Zip or a combina-
tion of City and State as input; (4) Known sources (seeds):
e.g., http://wunderground.com; (5) Source descriptions: spec-
ifications of the functionality of the source in a formal lan-
guage of the kind used by data integration systems [Levy,
2000]. The following Local-as-View [Levy, 2000] Datalog
rule specifies that wunderground returns current weather con-
ditions and five day forecast for a given zip code:

wunderground($Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0,
FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,
FL4,FH4,S4,FL5,FH5,S5) :-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)
weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),
weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),
weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),
weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),
weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_).

with an input attribute (denoted by “$”) Z (Zip) and outputs
CS (CityState), T (Time), FLi and FHi low and high tempera-
tures in degF (TempInF) on the ith forecast day (0= today, 1=
tomorrow, . . .), D (Date), S (Sky conditions), Hu (Humidity),
WS (Wind speed in MPH), WD (WindDir), P (Pressure in
inches), and V (Visibility in miles).

DEIMOS first uses the discovery module to identify ser-
vices that are likely to provide functionality similar to the
seed. Once a promising set of target sources has been iden-
tified, DEIMOS uses the invocation and extraction module to
determine what inputs are needed on Web forms, and how to

extract the returned values. DEIMOS then invokes the seman-
tic typing module to automatically infer the semantic types of
the output data. Once DEIMOS constructs a type signature for
a new source, it then invokes the source modeling module to
learn its source description. We will describe each of these
modules in turn and then describe some of the challenges in
building an end-to-end solution.

2.1 Source Discovery
This module identifies sources likely to provide similar
functionality as the seed. To do this, we mine a cor-
pus of tagged documents from the social bookmarking site
del.icio.us [Plangprasopchok and Lerman, 2007]. When a
user bookmarks a Web source, she selects a keyword, a tag,
from an uncontrolled personal vocabulary to describe it. Tag-
ging enables the user to organize her bookmarks and effi-
ciently find them later. For example, as of October 2008,
http://wunderground.com has been tagged by over 3,200 peo-
ple. Among the popular tags are useful descriptors such as
“weather,” “forecast,” “meteo,” as well as more general terms
such as “travel” and “tools.”

We can use tags to categorize Web sources, similar to the
way documents are categorized using their text. The usual
problems of sparseness (few unique keywords per document),
synonymy (different keywords with the same meaning) and
polysemy (same keyword with multiple related meanings),
will also be present in this domain. Dimensionality reduc-
tion techniques, such as document topic modeling [Hofmann,
1999], were developed for text categorization domain to al-
leviate some of these problems. These techniques project
documents from a multi-dimensional word space to a dense
topic space. One such technique, Latent Dirichlet Allocation
(LDA) [Blei et al., 2003], is a probabilistic generative model
in which a distribution of a document over a set of topics is
first sampled from a Dirichlet prior. To generate each word in
the document, a topic is first sampled from the distribution,
then a word is selected from the distribution of topics over
words. The parameters are learned using Gibbs sampling.

We use LDA to learn a compressed description, or the
‘latent topics’, of a collection of tagged Web sources. By
analogy to document topic modeling, we view a source on
del.icio.us as a document, and treat the tags across all users
who bookmarked it as words. The compressed description
forms the basis for comparing similarity between sources. If
a source’s learned topic distribution is similar to the seed’s, it
is likely to provide similar functionality.

To gather sources possibly related to the seed, we first col-
lect the tags annotating the seed, and then retrieve all other
sources which were annotated with those tags. After learning
the latent topics, the retrieved sources are ranked according
to how similar they are to the seed in the topic space.

2.2 Source Invocation and Extraction
To retrieve data from Web sources, DEIMOS has to figure
out how to invoke the source. DEIMOS relies on background
knowledge to constrain the search for valid inputs. The back-
ground knowledge contains information about the possible
types of inputs expected by sources in the domain and ex-
ample values of these types. In the weather domain, some

sources may expect a single input, e.g., zipcode, while others
require the city and state in separate fields.

DEIMOS repeatedly invokes the source with different per-
mutations of possible domain input values, looking for a set
of mappings that yields results pages from which it can suc-
cessfully extract data. This brute force approach works as
long as Web services have a small number of fields.

Web sources that generate pages dynamically in response
to a query specify the organization of the page through a page
template, which is then filled with results of a database query.
The page template is therefore shared by all pages returned by
the source. Given two or more sample pages, we can derive
the page template and use it to extract data from the pages.

We define a template as a sequence of alternating stripes
and slots. Stripes are the common substrings and slots are
placeholders for data. We use the Longest Common Sub-
sequence algorithm (LCS) [Gazen and Minton, 2005] to in-
duce a template from sample pages. The common substrings
are the template stripes and the gaps between stripes are
the slots. Given the following snippets from two pages,
“HI:65
LO:50” and “HI:73
LO:61”, we can in-
duce the template “HI:*
LO:*” where “*” marks a slot.

The induced template can be used to extract data from new
pages that share the same template. This involves locating
the stripes of the template on the new page. Substrings that
lie between the stripes are extracted as field values. Applying
the template above to the snippet “HI:50
LO:33” results
in two values: “50” and “33”.

To extend the template idea to pages that contain lists of
values, we assume that items in a list are formatted using an
item template. Inducing item templates is more difficult than
inducing page templates because unlike the boundaries of a
page, the boundaries of items in a list are unknown. To re-
duce the complexity of finding item templates, we take ad-
vantage of the HTML structure and limit the search for list
items to sibling nodes in the HTML parse tree. The output of
the extraction step is a table of data fields.

2.3 Semantic Typing of Sources
We use background knowledge to semantically type the data
fields extracted from Web sources. We have developed a
content-based classification method that learns the structure
of data and uses it to recognize new examples of the same se-
mantic type. Our method is based on the domain-independent
approach developed by Lerman et al. [2003] to represent the
structure of data as a sequence of tokens and token types,
called a pattern. Since tokens are strings that contain different
character types: alphabetic, numeric, punctuation, etc, we use
the token’s character types to assign it to one or more general
types, such as alphabetic, all-capitalized, numeric, one-digit,
etc., which have regular expression-like recognizers.

The patterns associated with a semantic type can be ef-
ficiently learned from example values of the type. We use
learned patterns to recognize new instances of a semantic
type by evaluating how well the patterns describe the new
data. We developed a set of heuristics to evaluate the qual-
ity of the match. These heuristics include how many of the
learned learned patterns match data, how specific they are,
and how many tokens in the examples are matched [Lerman

et al., 2007]. For example, a subset of the type signature-
learned for source weather.unisys.com is:

unisys($Zip,TempF,TempC,Sky,Humidity, ...)

2.4 Source Modeling
Up to this stage, DEIMOS has learned a typed input/output
signature for a novel source. However, a typed signature is
only a partial description of the source’s behavior. What we
need is a semantic characterization of its functionality—the
relationship between its input and output parameters. Such
functionality can be declaratively described as a logical rule
in a relational query language such as Datalog. Mediators
can use Datalog source descriptions to access and integrate
the data provided by the sources [Levy, 2000]. Specifi-
cally, DEIMOS infers a Local-as-View (LAV) description.
The inference algorithm is described in detail in Carman &
Knoblock [2007]. Here, we illustrate the main ideas using our
running example. Consider the following conjunctive source
description for weather.unisys.com:

unisys($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,
FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,
FL4,FH4,S4,FL5,FH5,S5):-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)
weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),
weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),
weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),
weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),
weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_),
centigrade2farenheit(C0,F0).

A domain model, consisting of predicates such as weather and
centigrade2farenheit, assigns precise semantics to sources in
an application domain.

The Source Modeling module of DEIMOS learns these
definitions by combining known sources to emulate the in-
put/output values of a new unknown source. For example,
assume that from previous learning or from human input, the
system already knows the description of wunderground (cf.
Section 2) and the following temperature conversion service:

convertC2F(C,F) :- centigrade2farenheit(C,F)

Intuitively, the following join of the known sources should
yield a good approximation for the input/output values of our
unknown source. Replacing the known sources by their defi-
nitions yields the LAV source description shown above.

unisys($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,
FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,
FL4,FH4,S4,FL5,FH5,S5) :-

wunderground(Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0,
FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,
FL4,FH4,S4,FL5,FH5,S5),

convertC2F(C0,F0)

Learning this definition involves searching the space of
possible hypotheses (Datalog conjunctive rules) that could
explain the observed inputs and outputs. DEIMOS uses Induc-
tive Logic Programming to enumerate the search space in an
efficient, best-first manner and finds the most specific rule that
best explains the observed data. During this search the system
uses the learned semantic types (for the unknown source) and
the already known types of the background sources to prune
candidate hypotheses. The system considers only conjunctive
queries that join on variables of compatible types.

DEIMOS evaluates each candidate hypothesis (conjunctive
query) over a set of sample input tuples, generating a set of

predicted output tuples. It then compares the generated out-
put tuples with those actually produced by the source being
modeled to see if the predicted and actual outputs are similar.
As part of its background knowledge, DEIMOS associates a
similarity function with each semantic type. For numbers, the
similarity is an absolute or a relative (percent) difference. For
text fields, it uses string similarity metrics (i.e., Levenshtein
distance). DEIMOS uses the Jaccard similarity to rank differ-
ent hypotheses according to the amount of overlap between
the predicted output tuples and the observed ones.

2.5 Challenges in an End-to-End Solution
We briefly describe the primary challenges in building the
end-to-end solution and how we addressed them. The first
step is taking the URLs from the source discovery module
and attempting to automatically invoke these sources and run
the extraction module. One issue is that in many cases the
system could not find the correct form to invoke on a page
with multiple forms. Many sources now have a search form
as the first form on the page and this is not the one that typ-
ically produces the relevant data. This was easily fixed by
attempting to invoke all forms in the underlying HTML page.
This allows us to find many more sources, especially in the
weather domain.

Once the system invoked a source, several problems could
arise in the extraction step. The extraction system did well on
non-numeric fields, but it did not have a good model of num-
bers and often failed to extract them in a way that allowed
the later components to recognize the types of the data. For
example, a longitude value of “-38.524953” was divided into
four tokens: “-”, “38”, “.”, “524953”. The system would then
find that all of the pages had both the “-” and “.” in them, and
it built a template that only extracted the integer and decimal
portions of the data. The next step would then fail to rec-
ognize that these numbers comprised a longitude value. We
addressed this problem by rewriting the page tokenizer so that
it correctly extracts numbers as “-38.524953”.

In the semantic typing module, the most significant chal-
lenge relates to numeric values. The problem is that a temper-
ature such as “10C” looks a lot like a wind speed of “10 mph”
once you remove the units. Recall that the extraction mod-
ule finds the values that change across pages. In structured
sources such as these the units rarely change and are thus not
extracted. Since units are typically a single token that comes
immediately following the value, we built a post-processor
that generated additional candidates for semantic typing that
included that tokens that were most likely to capture unit in-
formation or other context. This is done by checking the doc-
ument object model (DOM) of the page and appending tokens
immediately following a value if it occurs at the same level in
the DOM tree, which means that it likely occurs immediately
after the value on the page. For “10 mph”, the system would
generate both “10” and “10 mph” and attempt to determine
the semantic type of each of them.

Once the semantic types are assigned, the source model-
ing module attempts to learn a semantic description. A criti-
cal challenge is that there are often synonyms for values that
are critical to invoking sources and comparing results. For
example, in the flight domain some sources are invoked by

the airline name and others are invoked using the correspond-
ing 3-letter airline code. Likewise, some sources might re-
port “Arrived” and others use “Landed”. For such synonyms,
we provided synonym tables as additional sources that can be
used in the source modeling step.

3 Experimental Evaluation
We performed an end-to-end evaluation of DEIMOS on the
geospatial, weather, and flight domains. The seeds for these
domains are: geocoder.us, which returns geographic coordi-
nates of a specified address, wunderground.com, which re-
turns weather conditions for a specified location, and fly-
tecomm.com, which returns the status of a specified flight.

DEIMOS starts by crawling del.icio.us to gather sources
possibly related to each seed according to the following strat-
egy. For each seed we (i) retrieve the 20 most popular tags
users applied to this resource; (ii) for each of the tags, retrieve
other sources that have been annotated with that tag; and (iii)
collect all tags for each source. We removed low (< 10)
and high (> 10, 000) frequency tags, which left us with (a)
5,572 unique sources with 16,887 unique tags for geospatial;
(b) 7,176 unique sources with 77,056 tags for weather; and
(c) 3,562 unique sources and 14,297 tags for flight. Next,
for each domain, we apply LDA, with the number of topics
fixed at 80, to learn the hidden topics of the gathered sources.
We then rank them according to how similar their topic dis-
tributions are to the seed’s topic distribution, using Jensen-
Shannon Divergence [Lin, 1991].

The 100 top-ranked URLs from the discovery module are
passed to the invocation & extraction module, which tries to
(1) recognize the form input parameters and calling method
on each URL, and (2) extract the resulting output data. This
produces an input type signature for these web sites and al-
lows DEIMOS to treat them as web services. DEIMOS invoked
each target source with 10 sample inputs.

Figure 2 shows the number of target sources returned by
each phase. Filtering occurs at those points in the process
where we apply semantic information. The filtering is largely
effective. There is a sharp drop off at the Source Typing stage.
While the Invocation & Extraction module is able to build a
template, in many cases there is no useful data to extract. This
happens beneficially when it turns out the site really isn’t a
good domain source. It can also be an error if sample pages
from the site have some differences in the DOM structure that
cannot be handled with our current heuristics (for example, a
weather source which dynamically inserts a severe weather
alert into results for some queries). In these cases, the ex-
tracted data often contains chunks of HTML page, which the
the Source Typing module cannot recognize.

Another drop off occurs in the Semantic Modeling module.
The primary reasons for failing to find a source model are one
of following: (a) the source was not actually a domain source,
(b) the semantic typing module learned an incorrect type sig-
nature, (c) the source extraction module extracted extraneous
text following the extracted data value, or (d) there was a mis-
match in the attribute values (e.g., “Landed” vs. “Arrived”).

We use two check-points, at the first and last module’s out-
put, to evaluate the system by manually checking the retained

Number of URLs
Domain

Stage Directory Flight Geospatial Weather Stage
Discovery 101 101 101 101 Discovery
Invocation 94 97 90 96 Invocation
Typing 7 21 8 38 Source typing
Modeling 0 3 2 14 Source Model

co
...

ca
... ing ng

Directory

Weather

0

200

N
um

b
er
 o
f

U
RL
s

Processing Stage
Domain

URL Filtering by Processing Stage

URL Filtering by Module

1

10

100

Discovery Invocation Typing Modeling

N
um

be
r
of
 U
RL
s

Flight

Geospatial

Weather

Figure 2: URL filtering by module

Geospatial Weather Flight
PT PF

AT 8 8
AF 8 76

PT PF
AT 46 15
AF 15 24

PT PF
AT 4 10
AF 10 76

(a) Source Discovery

PT PF
AT 2 0
AF 0 6

PT PF
AT 15 4
AF 8 14

PT PF
AT 2 0
AF 5 6

(b) Source Modeling

Table 1: Confusion matrices (A= Actual, P= Predicted) for
each domain associated with (a) the top-ranked 100 URLs
produced by the discovery module, and (b) for the descrip-
tions learned by the semantic modeling module.

URLs. We judge the top-ranked 100 URLs produced by the
discovery module to be relevant if they provide an input form
that takes semantically-similar inputs as the seed and returns
domain-relevant outputs. The weather domain had 61 such
sources, geospatial had 16, and flight had 14.

Table 1(a) shows the confusion matrices associated with
the top-ranked 100 sources in each domain. The precision
for each domain is 50%, 75% and 29% (with the same re-
call values). Although there is a similar number of geospatial
sources among the top-100 results as the flights sources, there
were twice as many relevant geospatial sources among the
top-ranked results compared to the flight sources. We suspect
that the reason for this may be less consistency in the vocab-
ulary of users tagging the flights sources.

At the second check-point, we count the services where
DEIMOS learned a semantic description. Table 1(b) presents
confusion matrices for this test. In the geospatial domain
DEIMOS learned partial source descriptions for 2 out of the
8 semantically-typed sources, namely geocoder.ca and the
seed. We manually checked the remaining 6 sources and
found out that although some were related to geospatial top-
ics, they were not geocoders. Similarly, in the weather
domain DEIMOS correctly identified 15 true positives and
14 true negatives, it failed to recognize 4 weather sources
and proposed descriptions for 8 sources that were not ac-
tual weather sources. The false positives (where the system
found a description for a non-weather source) consisted of
very short descriptions, with only a few attributes modeled.

These were the result of invoking a search form, which re-
turned the input, and one of the numeric values on the page
randomly matched a seed attribute. We could possibly reduce
the number of false learned descriptions with a larger number
of queries.

We are ultimately interested in learning source descrip-
tions, not just identifying sources; therefore, next we evaluate
the quality of the learned semantic source descriptions. We
do this by comparing the learned description to the model a
user would write for the source. We report precision (how
many of the learned attributes were correct), and recall (how
many of the actual attributes were learned).

Consider the description learned for geocoder.ca:
geocoder.ca(A,_,SA,_,Z,S,_,La,Lo) :-

geocoder.us(A,S,C,SA,Z,La,Lo).

with attributes A (Address), S (Street), C (City), SA (State),
Z (ZIP), La (Latitude), and Lo (Longitude). Manually verify-
ing the attributes of geocoder.ca yields a precision of 100%
(6 correct attributes out of 6 learned) and recall of 86% (6
correct out of 7 present in the actual source). Similarly, the
conjunctive source description learned for unisys.com has a
precision of 64% (7/11) and a recall of 29% (7/24):

unisys($Z,_,_,_,_,_,_,_,F9,_,C,_,F13,F14,Hu,_,
F17,_,_,_,_,S22,_,S24,_,_,_,_,_,_,_,_,_,
,S35,S36,,_,_,_,_,_,_,_,_) :-

wunderground(Z,_,_,F9,_,Hu,_,_,_,_,F14,F17,
S24,_,_,S22,_,_,S35,_,_,S36,F13,_,_),

convertC2F(C,F9)

The average precision (Pr), recall (Re), and F1-measure
(F) of the attributes in the source descriptions learned by
DEIMOS for actual services in each domain were: Re = 86%,
Pr = 100% (F = 92%) for the geospatial domain; Re =
29%, Pr = 64% (F = 39%) for the weather domain; and
Re = 35%, Pr = 69% (F = 46%) for the flight domain.

We used strict criteria to judge whether a learned attribute
was correct. In one case, for example, the semantic typing
component mistakenly identified the field containing flight
identifiers such as “United 1174” as Airline, which led to a
description containing the Airline attribute. We labeled this
attribute as not correct, even though the first component was
the airline name. In the weather domain, DEIMOS incorrectly
labeled the 3rd-day forecast as a 5th-day forecast, because
the values of these attributes were sufficiently close. Learn-
ing using more sample inputs would reduce the chance of a
fortuitous value match.

Overall, we consider these results promising. DEIMOS was
able to discover Web sources, convert them into programmat-
ically accessible services and learn semantic descriptions of
these services in a completely automated fashion.

4 Related Work
Early work on using Inductive Logic Programming to learn
semantic definitions for Internet sources was the category
translation problem of Perkowitz et al. [1999]. That problem
can be seen as a simplification of the source induction prob-
lem, where the known sources have no binding constraints or
definitions, and provide data that does not change over time.
Furthermore, it is assumed that the new source takes a single
value as input and returns a single tuple as output.

More recently, there has been work on classifying web ser-
vices into different domains [Heß and Kushmerick, 2003] and
on clustering similar services [Dong et al., 2004]. These tech-
niques can indicate that a new service is probably a weather
service based on similarity to other weather services. This
knowledge is very useful for service discovery, but too ab-
stract for automating service integration. We learn more ex-
pressive descriptions of web services—view definitions that
describe how the attributes of a service relate to one another.

The schema integration system CLIO [Yan et al., 2001]
helps users build queries that map data from a source to a
target schema. If we view this source schema as the set of
known sources, and the target schema as a new source, then
our problems are similar. In CLIO, the integration rules are
generated semi-automatically with some help from the user.

The iMAP system [Dhamanka et al., 2004] tries to dis-
cover complex (many-to-one) mappings between attributes of
a source and target schema. It uses a set of special purpose
searchers to find different types of mappings. Our system
uses a general ILP-based framework to search for many-to-
many mappings.

5 Conclusion and Future Work
We presented a completely automatic approach to discover
new online sources, invoke and extract the data from those
sources, learn the semantic types of their inputs and outputs,
and learn a semantic description of the function performed
by the source. We also presented empirical results showing
that the system can learn semantic models for novel sources.
Our approach is general and only requires a small amount of
background knowledge for each domain. This work makes
it possible to automatically find new sources for information
integration tasks.

In future work, we plan to learn models of sources that
cover information for which the system has no previous
knowledge. In particular, we will focus on learning models
of sources for which the current system can already learn par-
tial models. For example, the system might only learn a small
subset of the attributes of a particular source. We will develop
an approach that can learn new semantic types (e.g., baromet-
ric pressure), new attributes (e.g., 2-day forecasted high tem-
perature), new relations that convert between new semantic
types and known types (e.g., converting Fahrenheit to Cel-
sius; converting state names to two-letter abbreviations), and
learning more accurate descriptions of the domain and ranges
of sources (e.g., distinguishing between a weather source that
provides information for the US versus one that provides in-
formation for the world). The ability to learn models of
sources that go beyond the current knowledge within a sys-
tem will greatly expand the range of sources that the system
can discover and model automatically.

Acknowledgments
We thank Sorin Ticrea for providing code for processing Web
forms, and Dipsy Kapoor for architecting the source invo-
cation and extraction system. This research is based upon
work supported in part by the National Science Foundation
under award numbers IIS-0324955 and IIS-0535182, in part

by the Air Force Office of Scientific Research under grant
number FA9550-07-1-0416, and in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. FA8750-07-D-0185/0004.

References
[Blei et al., 2003] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent

dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[Carman and Knoblock, 2007] M.J. Carman and C.A. Knoblock.
Learning semantic definitions of online information sources.
Journal of Artificial Intelligence Research (JAIR), 30:1–50, 2007.

[Dhamanka et al., 2004] R. Dhamanka, Y. Lee, A. Doan,
A. Halevy, and P. Domingos. IMAP: Discovering complex
semantic matches between database schemas. In Proceedings of
SIGMOD, 2004.

[Dong et al., 2004] X. Dong, A.Y. Halevy, J. Madhavan, E. Nemes,
and J. Zhang. Similarity search for web services. In Proceedings
of VLDB, 2004.

[Gazen and Minton, 2005] B. Gazen and S. Minton. Autofeed: an
unsupervised learning system for generating webfeeds. In K-
CAP ’05: Proceedings of the 3rd international conference on
Knowledge capture, 2005.

[Heß and Kushmerick, 2003] A. Heß and N. Kushmerick. Learn-
ing to attach semantic metadata to Web Services. In Proc. Int’l
Semantic Web Conference, 2003.

[Hofmann, 1999] T. Hofmann. Probabilistic latent semantic analy-
sis. In Proc. of UAI, 1999.

[Lerman et al., 2003] K. Lerman, S. Minton, and C.A. Knoblock.
Wrapper maintenance: A machine learning approach. Journal of
Artificial Intelligence Research, 18:149–181, 2003.

[Lerman et al., 2007] K. Lerman, A. Plangprasopchok, and
C.A. Knoblock. Semantic labeling of online information
sources. International Journal on Semantic Web and Informa-
tion Systems, Special Issue on Ontology Matching, 3(3):36–56,
2007.

[Levy, 2000] A.Y. Levy. Logic-based techniques in data integra-
tion. In Jack Minker, editor, Logic-Based Artificial Intelligence.
Kluwer Publishers, 2000.

[Lin, 1991] J. Lin. Divergence measures based on the shannon en-
tropy. IEEE Transactions on Information Theory, 37(1):145–
151, 1991.

[Martin et al., 2004] D. Martin, M. Paolucci, et al. Bringing seman-
tics to web services: The OWL-S approach. In Proceedings of
the First International Workshop on Semantic Web Services and
Web Process Composition, 2004.

[Perkowitz et al., 1999] M. Perkowitz, R.B. Doorenbos, O. Etzioni,
and D.S. Weld. Learning to understand information on the inter-
net: An example-based approach. Journal of Intelligent Informa-
tion Systems, 8:133–153, 1999.

[Plangprasopchok and Lerman, 2007] A. Plangprasopchok and
K. Lerman. Exploiting social annotation for resource discovery.
In AAAI workshop on Information Integration on the Web
(IIWeb07), 2007.

[Yan et al., 2001] L.L. Yan, R.J. Miller, L.M. Haas, and R. Fagin.
Data-driven understanding and refinement of schema mappings.
In Proceedings of SIGMOD, 2001.

