Predicting Influentials in Online Social Networks

Rumi Ghosh
Kristina Lerman
USC Information Sciences Institute
- WHO is IMPORTANT?
 - Characteristics
 - Topology
 - Dynamic Processes / Nature of flow
- What are the suitable METRICS that can be used to PREDICT influentials in social network?
 - Characteristics
 - Dynamic Process
- How do we EVALUATE predictive models of influence?
Contributions

• **Prediction of Influence**
 • Classification of influence models:
 • *Conservative and Non-conservative*
 • *The details of the underlying dynamic process on a network should match those of the influence model.*
 - *Page Rank is not always the best!*

• **Evaluation of Influence**
 • Empirical Measure of Influence (Statistically Significant)
 • *Social News Aggregator Digg*
 • *Dynamic Process-Information propagation*
 • First work evaluating predictive models of influence, using the actual dynamic process, occurring in a social network

• **Mathematical formulation and analytical proofs**
 • Normalized α-Centrality
Dynamic Processes

- Classification of Dynamic Processes on Networks
 - Conservative
 - Non-conservative
Conservative Process

Blue Bags in the network=8
Conservative Process

Blue Bags in the network=8
Conservative Process

Blue Bags in the network=8

Social Web
Non-Conservative Process

Social Web

On Twitter
Spain Win

Posts in the network=1
Non-Conservative Process

Social Web

On Twitter Spain Win

On Twitter Spain Win

On Twitter Spain Win

Posts in the network=3
Non-Conservative Process

Social Web

On Twitter Spain Win
Posts in the network=5
• Exists empirical studies, structural models

• Two ways to quantify influence
 1. Empirically measure online social behavior or dynamic processes to *estimate* influence [Lee, Cha]
 2. Use influence models (centrality metrics) based on the structure of the underlying social network to *predict* influence.

• We evaluate predictive influence models using empirical measures of influence.
Predictive Influence Models

- Geodesic Path Based ranking measures
 - *Closeness centrality* [Hakimi, Sabidussi, Wassermann et al., Lin]
 - *Graph centrality* [Hage et al.]
 - *Betweenness centrality* [Freeman]

- Topological ranking measures
 - *Markov Process Based Ranking Measures*
 - *Page Rank* [Brin et al.]
 - Hubbel’s Model
 - *Degree Centrality*
 - In-degree
 - Out-degree Centrality
 - *Path-Based Ranking Measures*
 - α-centrality [Bonacich]
 - Normalized α-centrality
 - Katz score [Katz]
 - SenderRank [Kiss et al.]
 - *EigenVector centrality* [Bonacich]
Classification of Influence Models

Non-Conservative

Topological Ranking Measures

- Degree Centrality
 - In-degree Centrality
 - Out-degree Centrality
- Path-Based Ranking Measures
 - α-centrality
 - Normalized α-centrality
 - Katz Score
 - SenderRank
 - Eigenvector Centrality

Conservative

Geodesic Path-Based Ranking Measures

- Closeness Centrality
- Graph Centrality
- Betweenness Centrality

Topological Ranking Measures

- Markov Process Based Ranking Measures
 - Page Rank
 - Hubbel’s Model
Page Rank

\[
C_{pr, \alpha}(i) = (1 - \alpha) \frac{1}{n} + \alpha \sum_{j \in \text{fan}(i)} \frac{C_{pr, \alpha}(j)}{d_j^{\text{out}}}
\]

[Brin]
Degree Centrality

\[C_{d_{in}}(i) = d_{in}(i) \]
\[C_{d_{out}}(i) = d_{out}(i) \]
\[C_{d_{in-out}}(i) = d_{in}(i) + d_{out}(i) \]
$C_{\alpha,k \to \infty} = A + \alpha A^2 + \ldots + \alpha^n A^{n+1} + \ldots = \sum_{i=0}^{k \to \infty} \alpha^i A^i \text{ where } \alpha < \frac{1}{|\lambda_1|}$

Parameter α sets the length scale of interactions

Mean path length=$\frac{1}{1-\alpha}$
Normalized α-centrality

\[C_{\alpha,k \to \infty} = \sum_{i=0}^{k \to \infty} \alpha^i A^i \]

\[NC_{\alpha,k \to \infty} = \frac{1}{\sum_{i,j}(C_{\alpha,k \to \infty})_{i,j}} C_{\alpha,k \to \infty} \]

Normalized centrality score

![Graph showing normalized centrality scores for nodes 1 to 5.](image-url)
Normalized α-centrality

α-centrality Matrix:

$$C_{\alpha,k} = \sum_{t=0}^{k} \alpha^t A^t$$

α-centrality:

$$C_\alpha = vC_{\alpha,k \to \infty} = v(I - \alpha A)^{-1}$$

where $\alpha < \frac{1}{|\lambda_1|}$

Normalized α-centrality:

$$NC_{\alpha,k \to \infty} = \frac{vC_{\alpha,k \to \infty}}{\sum_{i,j} (C_{\alpha,k \to \infty})_{ij}}$$

- **Simple Algorithm**
- **Does not depend on eigenvalue computation (unlike α-centrality)**

We give analytical proofs and conditions for

- Equivalence of ranking due to normalized α-centrality and α-centrality
- Equivalence of ranking due to eigenvector centrality and normalized α-centrality
- Convergence of normalized α-centrality
- Criteria for parametric independence of normalized α-centrality
- Other analytical proofs for limiting conditions and boundary values.
Which model best predicts influentials?
Evaluation?
Information Flow on Digg
Information Flow on Digg

Post

submitter

fan

fan

fan

fan
Information Flow on Digg
Non-Conservative Information Propagation on Digg

Hypothesis: non-conservative influence model best predicts influentials
Data Collection-Digg

3553 stories
587 distinct submitters
139,410 distinct voters

Social network: voter connected to at one or more voters
69,524 connected voters

Of 574 connected submitters belonging to the friendship network, 504 submitters received at least 1 fan vote in first 100 votes (in at least 1 story).

574 connected submitters
3489 stories
Estimation of Influence

- **Probability of a fan vote**
 - Influence of Submitter
 - Quality of the story

- **Story Quality**
 - Random variable
 - Average out by aggregating fan votes over all stories submitted by the same submitter
 - 289 submitters at least 2 stories

- **Estimate of Influence**
 - Average fan votes

- **Rank Users**
Statistical Significance of Fan Votes as a Measure of Influence

URN MODEL

\[P(X = k | K, N, n) = \frac{\binom{K}{k} \binom{N - k}{n - k}}{\binom{N}{n}} \] (Hypergeometric Dist.)
Statistical Significance (Results)

\[<k> = 65 \left(1 - e^{-\left(0.001K + 0.0005\right)^{0.86}}\right) \]

Probability of \(<k>\) fan votes in first 100 votes, given the submitter has \(K\) fans, happening purely by chance is negligible.

\[P(X =<k> | K > 10,69524,100) < 0.00038 \]
Evaluation of Influence Predictions

Correlation with the empirical estimate of influence

Avg. # of fan votes in first 100 votes

α = damping (attenuation factor) in PageRank, (normalized) α-centrality, SenderRank
Evaluation of Influence Prediction

Top 100 users

Recall

Normalized alpha
In-degree
Page-Rank
Betweenness

\[emp(i) \in [1, 100] \]
\[pred(i) \in [169, 524] \]
\[R = \frac{|emp \cap pred|}{|emp|} \]
Results on Digg

• Results corroborate our hypothesis

Since underlying non-conservative dynamic process

of (normalized) α-centrality

most closely resembles

the dynamic process of information propagation on Digg

(normalized) α-centrality is a better predictor of influential users on Digg than other influence models.
Conclusion

• How to choose Prediction Models?
 • First work classifying influence models into conservative and non-conservative
 • To get the best predictions
 • choose that influence model whose the implicit dynamic process matches that on the network

• How to evaluate Influence Models?
 • First work evaluating predictive models of influence using the empirical measurements obtained from the network itself
 • Novel Method of evaluation
 • Evaluate using influence score estimated empirically from the network
 • Social News Aggregator Digg
 • Dynamic Process-Information propagation
 • Non-conservative influence models best predict influentials on Digg where the underlying dynamic process of information propagation is non-conservative in nature.

• Normalized α-Centrality
 • Mathematical formulation and analytical proofs