Automatic Extraction of Road Intersections from Raster Maps

Yao-Yi Chiang, Craig A. Knoblock
and Ching-Chien Chen

University of Southern California
Department of Computer Science and Information Sciences
Institute
Outline

- Introduction and Motivation
- Approach and Algorithm
- Experimental Results
- Related Work
- Conclusion and Future Work
Introduction and Motivation

• Numerous raster maps are on the Internet
 – Online map provider:
 • Google Map, Yahoo Map, USGS Topographic Map, Map24
 – Image Search Engine:
 • Google Image, MSN Image
• The georeferencing information of them are often unknown
Introduction and Motivation

• In our previous work: Automatically and Accurately Conflating Orthoimagery and Street Maps (Chen et al.)
 – We utilize the layout of the road intersections within a local area to
 • Integrate imagery, raster maps and vector data
 – Align street lines from each source
 – Georeference raster map
Introduction and Motivation

• The correct road intersection pattern is important!
• More information about the road intersection is important!
• In this work:
 – The average precision of intersection extraction is improved from 76% to 92%.
 – Extract road information around each intersection point
 – Handle more types of map
Found the map location!!

TIGER/Line Vector Data with Geo-coordinate Information
Outline

• Introduction and Motivation
• Approach and Algorithm
• Experimental Results
• Related Work
• Conclusion and Future Work
Approach and Algorithm

• For automatic road intersection extraction, we have to:
 – separate the road layer
 – extract road intersections
Module 1: Automatic Segmentation

Module 2: Pre-Processing: Extract and Rebuild Road Layer

- Double-Line Map Detection
- Parallel-Pattern Tracing
- Text/Graphic Separation
- Morphological Operations

Module 3: Determine Road Intersections and Extract Connectivity with Road Orientation

- Detect Road Intersection Candidates
- Extract Connectivity of Road Intersection Candidates
- Extract Orientation

Identify Road Intersections and Extract Road Information
Remove Background

- Use Triangle method (Zack, 1977) to locate **luminosity clusters** in the histogram
- Remove the dominate cluster
Remove Noise & Rebuild Road Layer

• Before we extract the intersections, we need to separate the road layer
Remove Noise & Rebuild Road Layer

• Double-line road layers provide us more information to separate the road layer with other linear structure

• We utilize Parallel Pattern Tracing to find parallel road lines
Parallel Pattern Tracing

• Zoom in to pixel level:
 – 8 directions connect to one pixel
 – 4 possible straight lines
• If a pixel in on a double line layer with \textit{road width=3 pixels}, we should be able to find:
 – At least 1 pixel on the original road line
 – At least 1 corresponding pixel on the other road line

[Diagram of pixel grid and corresponding line segments]
Parallel Pattern Tracing

- Detect the type of road layer, the road width
- Remove linear structures other than parallel roads

USGS Topographic Map

Road Layer after PPT
Remove Noise & Rebuild Road Layer

- Text/Graphics Separation (Cao et. al 2001)
 - Separate linear structures with other objects

Find small connected objects - character
Grouping small connected objects - string
Remove small connected object groups

After the removal of objects touching road lines, the road network is broken
Rebuild Road Layer

• General Dilation operator
 – Reconnect the broken road layer

After 2 iterations

Generalized Dilation

For every foreground pixel, fill up it’s eight neighborhood pixels.
Rebuild Road Layer

• General Erosion operator
 – Thinner road lines and maintain the original orientation

Generalized Erosion

For every foreground pixel, erase itself if any neighborhood pixel is white.

After 2 iterations

2nd iteration
Rebuild Road Layer

• Thinning operator
 – Produce **one pixel width** road lines

Thinning

Thinner each road line until they are all one pixel width.
Identify Road Intersections and Extract Road Information

- Corner detector (OpenCV)
 - Find intersection candidates
- Compute the connectivity and orientation to determine correct intersections

Connectivity\(\geq 3\), compute road orientations
Connectivity\(<3\), discard

Road Intersection!!
Outline

• Introduction and Motivation
• Approach and Algorithm
• Experimental Results
• Related Work
• Conclusion and Future Work
Experimental Results

- Correctly extracted intersection point:
 - Within 5 pixels around an intersection point on the original map

![Diagram showing double-line and single-line road layers with 5 pixel markers around intersections.](image-url)
Experimental Results

- CorrectINT - Correctly extracted road intersections
- AllExtractedINT - All extracted road intersections
- TotalINT – Actual road intersections on the raster map

- Precision: $P = \frac{\text{CorrectINT}}{\text{AllExtractedINT}}$
- Recall: $R = \frac{\text{CorrectINT}}{\text{TotalINT}}$

- Positional accuracy:
 - The distance in pixels between the correctly extracted intersection and the corresponding intersection on the original map
Experimental Results – Precision and Recall

Total 56 raster maps from 6 different sources with various resolution.

<table>
<thead>
<tr>
<th>(%): ESRI Map</th>
<th>MapQuest Map</th>
<th>TIGER/Line Map</th>
<th>USGS Topographic Map</th>
<th>Yahoo Map</th>
<th>Thomas Brother Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (%)</td>
<td>Recall (%)</td>
<td>Precision (%)</td>
<td>Recall (%)</td>
<td>Precision (%)</td>
<td>Recall (%)</td>
</tr>
</tbody>
</table>

- ESRI Map: Precision 90%, Recall 80%
- MapQuest Map: Precision 80%, Recall 70%
- TIGER/Line Map: Precision 95%, Recall 90%
- USGS Topographic Map: Precision 85%, Recall 80%
- Yahoo Map: Precision 90%, Recall 85%
- Thomas Brother Map: Precision 95%, Recall 90%
Experimental Results – Positional Accuracy

Total 56 raster maps from 6 different sources with various resolution.
Experimental Results - Performance

• Computation time:
 – Platform/Machine: Windows 2000 Server, Intel Xeon 1.8 GHZ Dual-Processor with 1 GB memory
 – 800x600 topographic map with resolution 2m/pixel: less than 1 minutes
 – Other simpler maps: less than 20 seconds
Outline

• Introduction and Motivation
• Approach and Algorithm
• Experimental Results
• Related Work
• Conclusion and Future Work
Related Work

• Contour line recognition from scanned topographic maps (Salvatore et. al 2001)
 – Use color classification to separate contour lines and use global topology information to reconstruct the broken lines
 – Require prior knowledge of the line color

• A legend-driven geographic symbol recognition system. (Samet et. al 1994)
 – Use the legend layer in a learning process to identify labels on the raster maps
 – Require legend layer and training
Related Work

• Automatic extraction of primitives for conflation of raster maps. (Habib et. al 1999)
 – Automatically extract primitives on raster maps
 – Require the input raster maps have only road layer and apply edge detector

• Verification-based approach for automated text and feature extraction from raster-scanned maps. (Myers et. Al 1996)
 – Use a verification based approach to extract data on raster maps
 – Require map specifications, legend layer and training
Outline

• Introduction and Motivation
• Approach and Algorithm
• Experimental Results
• Related Work
• Conclusion and Future Work
Conclusion and Future Work

• We achieved average 92% precision and 77% recall
 – Compared to 76% precision in previous work
 – Automatically extracting intersection points
 – Without prior information
• Efficient
• In our recent work, Automatically Identifying and Georeferencing Street Maps on the Web (Sneha et al. 2005):
 – Found road intersections on automatically returned maps from image search engines
 – Identify the geocoordinates
 – Align the maps
Conclusion and Future Work

- Low-resolution maps:
 - many overlapped labels and lines
 - below average precision (66%) and low recall (27%)
Conclusion and Future Work

• Enhance the pre-processing modules to handle low-quality scanned map, more complex maps
• Combine Character Recognition module to “read” the map
Conclusion and Future Work

Thank YOU

Yao-Yi Chiang yaoyichi@isi.edu

University of Southern California
Information Sciences Institute