Interactive Data Integration through Smart Copy and Paste

Zachary G. Ives Craig A. Knoblock Steven Minton
Marie Jacob Partha Pratim Talukdar Rattapoom Tuchinda
Jose Luis Ambite Maria Muslea Cenk Gazen

Univ. Pennsylvania USC ISI Fetch Technologies

Funded in part by NSF IIS-0477972, 0513778, 0415810,
DARPA DIESEL seedling, DARPA contract FA8750-07-D-0815/0004

CIDR 2009
Jan 4, 2009
Sometimes We Need to *Rapidly* and *Iteratively* Integrate Data

- Combining information on-site for a FEMA emergency response effort, e.g., hurricane or earthquake…

 How do we cobble together info about resources, contacts… *rapidly*? *(time critical)*

- Gathering data relating to a specific gene sequence…

 May *change our integration operations* as we see more data *(evolving understanding of data)*

- Assembling a list of features and prices for smartphones…

 As we see new phones and features, we *change our schema* *(evolving understanding of domain)*

- Data is spread across many heterogeneous sources –Web pages, Excel, Word – that we are seeing for the *first time*!

- A particular kind of “dataspace” (see Franklin+ VLDB 08 tutorial)
Standard Data Integration Is Too Loosely Coupled, Non-Interactive

First: data design
- Learn the domain space
- Create a global schema
- Find sources
- Define extractors/wrappers
- Define schema mappings between extracted tables and global schema

(Design-time)
Consult experts
Tool #1 (ER/UML, DDL)
Tool #2 (Word of mouth, Google)
Tool #3 (Wrapper induction)
Tool #4 (Mapping)

Then: can finally query the system! (Runtime)

Nontrivial to work under this model:
- Long development time (and learning curve!)
- Iterating from design \(\rightarrow\) query \(\rightarrow\) design is complex

May be faster to just manually copy & paste data into Excel…
Can We Make this Process Easier and Faster?

Integration should be as easy as manual (copy & paste) integration – “spreadsheet of data integration”

Suppose our goal is to answer a single question (query)
- May not need a full-blown integrated schema

Everything needs to be interactive, iterative:
- Discover new sources & attributes as we’re going
- Change our query as we understand the data
A New Integration Metaphor: Smart Copy and Paste

- User sees spreadsheet-like workspace for assembling tables
- We use this as a seamless environment for design & runtime

- System watches what user pastes, proposes “auto-completions”
 - Extracts more data from a source
 - Determines potential join query explanations for rows
 - Suggests new attributes

- User sees immediate results, explanations for what was done

- User gives feedback:
 - Accepts/rejects/corrects auto-completions
 - Pastes more data

- System learns, adjusts auto-completions
The Challenge: Realizing an Integrated Smart Copy and Paste System

Integration becomes “programming by demonstration,” requires learning about data sources, integration ops

- Build upon established learning techniques used in different data integration sub-components (e.g., source extraction)
- Novelty: “integrated learning” to form a seamless cycle between design, query answers, and learning from feedback
 - User directly manipulates the output data to change the design
 - Data provenance is key to going from answers → sources

- Subtleties in user interaction: what is the meaning of feedback on a tuple, how do we allocate among learners? source data, selection conditions, join conditions, dirty data, …
Demonstration: The CopyCat System

- Scenario: Hurricane relief effort in Florida, where our goal is to assemble a list of shelters and how to contact them

- Three sources:
 - Web source with shelter names (many are schools)
 - Another Web source with school contact info
 - Zip code resolution (simulated due to lack of connectivity)
Learning a Source (Details in Paper)

Source Document

Row feedback

Source App

Paste
Learning a Source (Details in Paper)

- Structure learner combines results from ensemble of sub-learners
Learning a Source (Details in Paper)

- Structure learner combines results from ensemble of sub-learners
- Source model learner uses logistic regression to classify datatypes
Learning a Source (Details in Paper)

- **Structure learner** combines results from ensemble of sub-learners
- **Source model learner** uses logistic regression to classify datatypes

Source Document

- Paste to Structure learner
- Paste to Model learner
- Row feedback
- Schema feedback

Datatype patterns

Source App
Learning / Suggesting a Query (Details in Paper)

Columns pasted from different sources

Top-k generator

Paste

Column (join query) auto-complete

Graph of potential joins & costs
Learning / Suggesting a Query (Details in Paper)

Columns pasted from different sources

Top-k generator

Paste

Column (join query) auto-complete

Graph of potential joins & costs

Adjusted weights

MIRA-based cost learner

Feedback based on tuple provenance
Related Work

Programming by demonstration [Cypher+93], [Lau 01]
 - esp. Karma [Tucinda+07]

Dataspaces, best-effort integration
 - see Franklin, Halevy, Maier VLDB 08 survey

User-driven data integration
 - Potluck [Huynh+07], Q [Talukdar+08]

Wrapper induction (source extraction)
 - Lixto, [Ashish+97], [Kushmerick+97], [Muslea+01], [Gazen&Minton 06]

Provenance / lineage [Cui 01], [Buneman+01], [Green+07]
 - for debugging [Chiticariu & Tan 06]
Conclusions & Future Work

Smart copy and paste is a new way of thinking about task-driven data integration

- Lightweight, seamless combination of design-time and runtime components – “spreadsheet of integration”
- Learns source structure, model
- Suggests and learns the integration query through feedback
- Knits together data and queries/sources via provenance

CopyCat validates basic architecture, but still much to be done!

- Scale-up – how do the UI, feedback process scale to many alternatives?
- Complex functions – how to easily incorporate?
- Data cleaning
- Directly integrating visualization (cf. Jeff Heer’s keynote talk)