
PowerLoomTM Manual

Powerful knowledge representation and reasoning with
delivery in Common-Lisp, Java, and C++

This manual describes
PowerLoom 3.0 or later.

30 September 2003

The PowerLoom development team
Hans Chalupsky

Robert M. MacGregor
Thomas Russ

{hans,tar}@isi.edu

Copyright c© 2003 University of Southern California, Information Sciences Institute, 4676
Admiralty Way, Marina Del Rey, CA 90292, USA
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
PowerLoom is a trademark of the University of Southern California.

Chapter 1: Introduction 1

1 Introduction

This document describes the PowerLoom knowledge representation and reasoning system.
PowerLoom is the successor to the Loom knowledge representation system. It provides
a language and environment for constructing intelligent applications. PowerLoom uses a
fully expressive, logic-based representation language (a variant of KIF). It uses a Prolog-
technology backward chainer as its deductive component. The backward chainer is not (yet)
a complete theorem prover, but it can handle Horn rules, negation, and simple equality
reasoning. Contrary to Prolog, it also handles recursive rules without the risk of infinite
recursion. An alternative reasoner, PowerLoom’s description classifier, uses technology
derived from the Loom classifier to classify descriptions expressed in full first order predicate
calculus. PowerLoom uses modules as a structuring device for knowledge bases, and ultra-
lightweight worlds to support hypothetical reasoning.

To implement PowerLoom we developed a new programming language called STELLA,
which is a Strongly Typed, Lisp-like LAnguage that can be translated into Lisp, Java, and
C++. STELLA tries to preserve those features of Lisp that facilitate symbolic programming
and rapid prototyping, while still allowing translation into readable as well as efficient Java
and C++ code. Because PowerLoom in written STELLA, we are able to deliver it in all
three languages.

Chapter 2: Powerloom History 2

2 Powerloom History

<to be written>

Chapter 3: Installation 3

3 Installation

3.1 System Requirements

To install and use PowerLoom you’ll approximately need the following amounts of disk
space:
• 15 MB for the tar-red or zip-ped archive file
• 60 MB for the untarred sources, tanslations, compiled Java files and documentation
• 14 MB to compile a Lisp version
• 15 MB to compile the C++ version (without -g)
• 4 MB to compile the Java version (already included)

This means that you will need approximately 90 MB to work with one Lisp, one C++ and
one Java version of PowerLoom in parallel. If you also want to experiment with the Lisp
translation variant that uses structures instead of CLOS instances to implement STELLA
objects, then you will need an extra 15 MB to compile that.

The full PowerLoom development tree is quite large, since for every STELLA source file
there are three to four translated versions and as many or more compiled versions thereof.
The actual PowerLoom libraries that you have to ship with an application, however, are
quite small. For example, the Java jar file ‘powerloom.jar’ is only 2.2 MB (4 MB including
Java sources). The dynamic C++ libraries ‘libstella.so’ and ‘liblogic.so’ compiled on
a Linux platform are about 7 MB total. Additionally, if you don’t need all the different
translations of PowerLoom, you can delete some of the versions to keep your development
tree smaller See Section 3.6 [Removing Unneeded Files], page 6.

To run the Lisp version of PowerLoom you need an ANSI Common-Lisp (or at least one
that supports CLOS and logical pathnames). We have successfully tested PowerLoom with
Allegro-CL 4.2, 4.3, 5.0, 6.0 and 6.1, Macintosh CL 3.0 and 4.0, Lucid CL 4.1 (plus the
necessary ANSI extensions and Mark Kantrowitz’s logical pathnames implementation) and
the freely available CMUCL 18c. Our main development platform is Allegro CL running
under Sun Solaris and Linux RedHat, so, the closer your environment is to ours, the higher
are the chances that everything will work right out of the box. Lisp development under
Windows is also not a problem.

To run the C++ version of PowerLoom you need a C++ compiler such as g++ that supports
templates and exception handling. We have successfully compiled and run PowerLoom
with g++ 3.2 under Linux Redhat 8.0, and with CygWin 5.0 under Windows 2000 (CygWin
provides a very Unix-like environment). We have not yet tried to run the C++ version fully
natively under Windows. The main portability issue is the garbage collector. It is supposed
to be very portable and run natively on Windows platforms, but we have never verified
that.

For the Java version you will need Java JDK 1.2 or later. To get reasonable performance,
you should use JDK 1.3 or later. We’ve run the Java version of PowerLoom on a variety of
platforms without any problems.

Any one of the Lisp, C++ or Java implementations of PowerLoom can be used to develop
your own PowerLoom-based applications. Which one you choose is primarily a matter of

Chapter 3: Installation 4

your application and programming environment. The Lisp and Java versions are comparable
in speed, the C++ version is usually a factor of 2-3 faster than Lisp or Java.

3.2 Unpacking the Sources

Uncompress and untar the file ‘powerloom-X.Y.Z.tar.gz’ (or unzip the file
‘powerloom-X.Y.Z.zip’) in the parent directory of where you want to install PowerLoom
(‘X.Y.Z’ are place holders for the actual version numbers). This will create the PowerLoom
tree in the directory ‘powerloom-X.Y.Z/’ (we will use Unix syntax for pathnames). All
pathnames mentioned below will be relative to that directory which we will usually refer
to as the "PowerLoom directory".

3.3 Lisp Installation

To install the Lisp version of PowerLoom startup Lisp and load the file
‘load-powerloom.lisp’ with:

(CL:load "load-powerloom.lisp")

The first time around this will compile all Lisp-translated STELLA files before they are
loaded. During subsequent sessions the compiled files will be loaded right away.

If you want to use the version that uses Lisp structs instead of CLOS objects to implement
STELLA objects do the following:

(CL:setq cl-user::*load-cl-struct-stella?* CL:t)
(CL:load "load-powerloom.lisp")

Alternatively, you can edit the initial value of the variable *load-cl-struct-stella?*
in the file ‘load-stella.lisp’. Using structs instead of CLOS objects greatly improves
slot access speed, however, it may cause problems with incremental re-definition of STELLA
classes (this is only an issue if you are developing your application code in the STELLA
language. In that case it is recommended to only use the struct option for systems that are
in or near the production stage).

Once all the files are loaded, you should see a message similar to this:

PowerLoom 3.0.0 loaded.
Type ‘(powerloom)’ to get started.
Type ‘(in-package "STELLA")’ to run PowerLoom commands directly

from the Lisp top level.
USER(2):

To reduce startup time, you might want to create a Lisp image that has all of PowerLoom
preloaded.

Now type

(in-package "STELLA")

to enter the STELLA Lisp package where all the PowerLoom code resides. Alternatively,
you can type

(powerloom)

Chapter 3: Installation 5

which will bring up a PowerLoom listener that will allow you to execute PowerLoom
commands.

IMPORTANT: All unqualified Lisp symbols in this document are assumed to be in the
STELLA Lisp package. Moreover, the STELLA package does NOT inherit anything from the
COMMON-LISP package (see the file ‘sources/stella/cl-lib/cl-setup.lisp’ for the few
exceptions), hence, you have to explicitly qualify every Lisp symbol you want to use with
CL:. For example, to get the result of the previous evaluation you have to type CL:* instead
of *.

3.4 C++ Installation

To compile the C++ version of PowerLoom change to the native C++ directory and run
make:

% cd native/cpp/logic
% make

This will compile all PowerLoom and STELLA files, the C++ garbage collector and
generate static or dynamic ‘libstella’ and ‘liblogic’ library files in the directory
‘native/cpp/lib’ which can later be linked with your own C++-translated PowerLoom (or
other) code. To test whether the compilation was successful you can run PowerLoom from
the top-level PowerLoom directory like this:

% ./native/cpp/logic/logic
Initializing STELLA...
Initializing PowerLoom...

Welcome to PowerLoom 3.0.0

Copyright (C) USC Information Sciences Institute, 1997-2003.
PowerLoom comes with ABSOLUTELY NO WARRANTY!
Type ‘(copyright)’ for detailed copyright information.
Type ‘(help)’ for a list of available commands.
Type ‘(demo)’ for a list of example applications.
Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

|=

This will run various PowerLoom startup code and then bring up a PowerLoom command
loop where you can execute commands. Type

(demo)

to bring up a menu of available demos, type

(run-powerloom-tests)

to run the PowerLoom test suite, or type

exit

to exit PowerLoom.

Chapter 3: Installation 6

3.5 Java Installation

Nothing needs to be done to install the Java version. Since Java class files are platform
independent, they are already shipped with the PowerLoom distribution and can be found in
the directory ‘native/java’ and its subdirectories. Additionally, they have been collected
into the file ‘powerloom.jar’ in the PowerLoom directory. To try out the Java version of
PowerLoom run the following in the PowerLoom directory:

% java -jar powerloom.jar
Initializing STELLA...
Initializing PowerLoom...

Welcome to PowerLoom 3.0.0

Copyright (C) USC Information Sciences Institute, 1997-2003.
PowerLoom comes with ABSOLUTELY NO WARRANTY!
Type ‘(copyright)’ for detailed copyright information.
Type ‘(help)’ for a list of available commands.
Type ‘(demo)’ for a list of example applications.
Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

|=

Similar to the C++ executable, this will run various PowerLoom startup code and then
bring up a PowerLoom command loop where you can execute commands. Type

(demo)

to bring up a menu of available demos, type
(run-powerloom-tests)

to run the PowerLoom test suite, or type
exit

to exit PowerLoom.

3.6 Removing Unneeded Files

To save disk space you can remove files that you don’t need. For example, if you are not
interested in the C++ version of PowerLoom, you can delete the directory ‘native/cpp’.
Similarly, you can remove ‘native/java’ to eliminate all Java-related files. You could do the
same thing for the Lisp directory ‘native/lisp’, but (in our opinion) that would make it less
convenient for you to develop new PowerLoom code that is written in STELLA. Finally, if
you don’t need any of the STELLA sources, you can delete the directory ‘sources/stella’.
If you don’t need local copies of the STELLA and PowerLoom documentation, you can delete
parts or all of the directories ‘sources/stella/doc’ and ‘sources/logic/doc’.

Chapter 4: Conceptual Framework 7

4 Conceptual Framework

This chapter presents the fundamental conceptual building blocks that are used to construct
PowerLoom knowledge bases. The PowerLoom language is based on KIF, which provides a
syntax and a declarative semantics for first-order predicate calculus expressions. KIF is a
proposed ANSII standard language used by a variety of knowledge representation systems.
Practical knowledge representation systems necessarily add a procedural semantics that
defines the interpretation of knowledge structures when definitions and facts are retracted
or modified. This chapter assumes that the reader has some familiarity with the semantics
of the predicate calculus, and instead focuses on aspects of the semantics that go beyond
the traditional (KIF) semantics.

A PowerLoom knowledge base is constructed by first defining the terminology (concepts
and relations) for a domain, and then asserting additional rules and facts about that domain.
Facts can be asserted and later retracted, so the answers returned by queries may change
over time. The knowledge structures are organized into logical containers called “modules”.
The division into modules means that in general, facts are not asserted globally, but instead
hold only within a specific context. For example, a logical proposition may evaluate as true
within one module, and evaluate as false within a different one.

The discussion below uses some examples of actual PowerLoom syntax to illustrate
certain points. However, we gloss over the fine points of syntax, and instead focus on
semantic issues. The next chapter reverses that emphasis, and presents a series of examples
that illustrate the breadth of syntactic constructs implemented for the PowerLoom language.

4.1 Terms and Propositions

A knowledge base attempts to capture in abstract (machine interpretable) form a useful
representation of a physical or virtual world. The entities in that world are modeled in the
knowledge base by objects we call terms. Examples of terms are “Georgia” (denoting the
U.S., state), “BenjaminFranklin” (denoting the historical person by that name), the number
three, the string "abc", and the concept “Person”. Unlike objects in an object-oriented
programming language, the terms in a PowerLoom knowledge base usually have distinct
names (unless there are sufficiently many that naming them all becomes impractical).

Terms are categorized or related to one another by objects called relations. Examples of
relations are “has age”, “greater than”, “is married to”, “plus”. Concepts such as “Person”,
“State”, “Company”, and “Number” are considered a subcategory of relations.

A proposition is a logical sentence that has an associated truth value. Examples are
“Ben Franklin is a person”, “Bill is married to Hillary”, “Two plus three equals six”. Pow-
erLoom follows KIF in adopting a prefix notation for the predicate calculus to represent
propositions. Possible representations of the three propositions just mentioned are (person
ben-franklin), (married-to Bill Hillary), and (= (+ 2 3) 6). These three proposi-
tions make reference to relations named person, married-to, plus, and =.

The predicate calculus constructs complex sentences out of simpler ones using the logical
connectives and, or, not, <=, =>, and <=>, and the quantifiers exists and forall. Some
examples are (not (crook richard)) “Richard is not a crook”, and (forall ?p (person
?p) (exists ?m (has-mother ?p ?m))) “every person has a mother”.

Chapter 4: Conceptual Framework 8

4.2 Definitions

PowerLoom requires that relations are defined before they are used within assertions and
queries. The commands defconcept, defrelation, and deffunction are used to define
concepts, relations, and functions, respectively. The definitions

(defconcept person)
(defrelation married-to ((?p1 person) (?p2 person))
(deffunction + ((?n1 number) (?n2 number)) :-> (?sum number))

declare that person is a concept, that married-to is a binary relation that takes ar-
guments of type person, and that + is a function that takes arguments of type number1.
The requirement that relations be defined before they are referenced can be inconvenient
at times. For example, suppose we wish to define parent as “a person who is the parent of
another person” and we also wish to state that the first argument to the parent-of relation
has type parent:

(defconcept parent (?p)
:<=> (and (person ?p) (exists ?c (parent-of ?p ?c))))

(defrelation parent-of ((?p parent) (?c person)))

In this example, the first reference to parent-of occurs before it is defined. PowerLoom
permits circular references such as these as long as they occur within definitions. It does so
by deferring evaluation of rules that occur within definitions. Here is a specification that is
logically equivalent, but is not legal because the parent-of relation appears in an assertion
before it is defined:

(defconcept parent (?p))
(assert (forall (?p) (<=> (parent ?p)

(and (person ?p) (exists ?c (parent-of ?p ?c))))))
(defrelation parent-of ((?p parent) (?c person)))

So when does the rule inside of the first parent definition get defined? All axioms (facts
and rules) that appear within the boundaries of a definition are evaluated just prior to
the next occurrence of a PowerLoom query. Hence, in the example above where the rule
occurred within the definition, there was no error because evaluation of that rule occured
sometime after the second definition (which defines the otherwise problematic reference to
parent-of).

One will sometimes see the command (process-definitions) appearing at intervals
within a file containing PowerLoom commands. Each such appearance forces the definitions
that preceed it to be fully-evaluated. This is done so that the interval between a definition
and its evaluation not be too great; it can get confusing if PowerLoom reports a semantic
violation long after the origin of the conflict.

PowerLoom definitions commands (those prefixed by “def”) have one other semantic
property that distinguishes them from ordinary assertions. Any axioms that appear within
a definition are tied to that definition. If a definition is modified and then reevaluated,
axioms that don’t survive the modification are retracted. For example, suppose we evaluate
the following two commands.

1 The function + and the concept number are predefined in PowerLoom.

Chapter 4: Conceptual Framework 9

(defrelation parent-of ((?p1 person) (?p2 person))
:=> (relative-of ?p1 ?p2))

(defrelation parent-of ((?p1 person) (?p2 person)))

The first definition defines person as a binary relation, and also states a rule that
“parent-of implies relative-of”. The second definitions erases that rule, i.e., the cumu-
lative effect is as if the first definition did not appear. In contrast, consider the following
commands:

(defrelation parent-of ((?p1 person) (?p2 person)))
(assert (=> (parent-of ?p1 ?p2) (relative-of ?p1 ?p2)))
(defrelation parent-of ((?p1 person) (?p2 person)))

The assertion in this latter sequence is logically equivalent to the axiom introduced by
the :=> keyword in the former sequence. However, at the end of this sequence, the “parent-
of implies relative-of” rule is still in effect, since it appeared on its own, outside of a
definition.

4.3 Truth Values

A PowerLoom proposition is tagged with a truth value that has one of five different
settings—true, false, default-true, default-false, or unknown. The most common
setting is true; when we make an assertion as in (assert (Person Bill)), the propo-
sition (Person Bill) is assigned the truth value true. To assign the value false to a
proposition, one asserts that it is not true, e.g., (assert (not (crook Richard))). The
command presume is used to assign a proposition the value default-true, as in (presume
(weather-in Los-Angeles Sunny)). Presuming a negated proposition assigns it the value
default-false.

The assignment of a truth value to a proposition via assert or presume can upgrade the
“strength” of a proposition, but it cannot downgrade it. Hence, if a proposition currently
has the value unknown, then it may be assigned any of the other four values. If the value
is default-true or default-false, an assertion that assigns the value true or false will
overwrite the existing value. However, if the truth value of a proposition is either true or
false, assigning it the value default-true or default-false will have no effect.

If a proposition is asserted to be true and subsequently is asserted to be false (or
vice-versa), a clash (or contradiction) results. When a clash is detected by PowerLoom, a
clash-exception is thrown. The system’s default behavior is for the exception to be caught
and ignored, with the result that an assertion that would otherwise cause a clash never
takes effect. Applications that execute commands slightly below the top-level (i.e., below
the clash exception catcher) can catch the exception themselves and perform a specialized
response. PowerLoom’s proof-by-contradiction specialist catches clashes to determine that
a contradiction has occurred.

If a user or application wants to assign a proposition a truth value that isn’t stronger
than the current value, it must first retract the current value. The PowerLoom retract
operator has the effect of undoing a prior assertion. For example, if we assert that Mary is
a parent of Fred, and then retract that assertion, the value of the proposition (parent-of
Mary Fred) becomes unknown. The proposition can then be assigned any other truth value.

Chapter 4: Conceptual Framework 10

We should note that executing a retraction does not necessarily cause a proposition to
cease being true. Consider the following sequence:

(defconcept Person)
(defconcept Employee (?e)
:=> (Person ?e))

(assert (Person Mary))
(assert (Employee Mary))
(retract (Person Mary))

If we now ask PowerLoom whether or not Mary is a person, the answer will be yes
(TRUE) because Mary is asserted to be an employee, and membership in employee implies
membership in person. In other words, although the direct assertion that Mary is a person
is not present in the knowledge base, a logical proof exists that the proposition “Mary is a
person” is true.

4.4 Modules

The knowledge loaded into an executing PowerLoom system is divided into logical partitions
called “modules”. The modules are arranged into a hierarchy; knowledge inherits down the
hierarchy from parents to children. A convenient way to organize knowledge is to put
definitional knowledge higher up in the module hierarchy, and factual knowledge lower
down. For example, suppose we want to build a knowledge base that defines a business
domain, and include a substantial number of facts about individual companies. We might
use one or a few modules to define terminology that relates to the business domain, and
then places the set of facts about each company in its own module. If we were querying
the knowledge base about one or a few companies, it would not be necessary to load the
modules for the remaining companies into the system.

Facts asserted within a module are not visible in sibling modules, or in ancestor modules.
Thus, if we enter into PowerLoom an assertion that“Georgia is a state”, we are not asserting
that Georgia is a state in all possible worlds, but that, from the vantage point of the current
module and those modules below, it is the case that Georgia is a state. If we want the fact
that Georgia is a state to be recognized as true in many or most other modules, then we
should make our assertion in a module that is relatively high up in the hierarchy, so that is
visible to (inherited by) the other modules.

The inheritance of facts is not monotonic—a child module can retract or override facts
inherited from its ancestors. For example, suppose we have two modules, called above
and below such that the below module is below (inherits from) the above module. Next,
suppose we make an assertion within the above module that “Joel is a duck”, and then
we shift to the below module and retract the proposition that “Joel is a duck”. From the
vantage point of the below module, if we now ask if Joel is a duck, we will get back the
value unknown. However, if we switch to the above module and ask the same question, we
get back the answer true This occurs because the effect of the retraction operation that
was applied to the below module is not “visible” to modules above it (or to any sibling
modules). Hence, when module hierarchies are involved, it is oversimplifying to state that
a retraction has the effect of erasing a prior assertion.

Chapter 4: Conceptual Framework 11

The PowerLoom execution process maintains a pointer to the current module, and all
asserions, queries, etc. are made relative to that module. Hence, when we talk about
“switching” from one module to another, we are speaking literally—a change-module com-
mand (or one of its equivalents) is invoked to switch from one module to another.2

PowerLoom comes with some modules already built-in. The module named PL-KERNEL
contains a set of general-purpose concept and relation definitions that collectively form
the foundation for constructing application-specific knowledge bases. PowerLoom attaches
specialized reasoners to many of the relations in PL-KERNEL. The command interpreter
starts up in a module named PL-USER. That module is initially empty, and is intended as
a convenient place to experiment with PowerLoom.

2 Many of the Powerloom API procedures take a module argument that causes a temporary switch to a
different module within the scope of that procedure.

Chapter 5: Annotated Example 12

5 Annotated Example

The section presents a small example of a PowerLoom knowledge base. It introduces the
fundamental PowerLoom modelling concepts and illustrates the syntax of basic PowerLoom
declarations, assertions, and commands. This section can be read stand-alone, but readers
who intend to use PowerLoom to create their own models are encouraged to load the demo
file ???, and run the examples “live”.

The conceptual terms introduced in this section include modules, concepts, relations,
functions, instances, propositions, assertions, queries, retraction, positive and negative facts,
clipping, rules, and contexts.

5.1 Using Modules

We begin by creating a PowerLoom “module”, which is a logical container that holds the
term definitions, rules, facts, etc. that make up all or a portion of a domain model. We
will call our module business. The defmodule command defines a new module. The
:includes option within the defmodule tells PowerLoom that the business module in-
herits all definitions and assertions present in the PL-USER module, or in ancestor modules
inherited by the PL-USER module. In particular, by inheriting pl-user, we indirectly in-
herit the pl-kernel module that contains all of the built-in concepts and relations. The
in-module command tells the PowerLoom system to make business the current module.
Until the current module is changed again, all new introductions of terms and facts will be
placed in the business module.

(defmodule "business"
:includes ("PL-USER"))

(in-module "business")

The basic building blocks of a model are its concepts, relations, and instances.1 A concept
defines classes/categories of entities that populate the domain model. A relation defines
attributes and relationships that allow the declaration of facts about an entity. Instances
are members of concepts. They appear as arguments to propositional assertions.

5.2 Concepts

Concepts are defined using the defconcept command. Here we define the concepts company
and corporation:

(defconcept company)
(defconcept corporation (?c company))

The first definition tells the system that company is a concept (in the business module).
The second definition defines a concept corporation. The type declaration (?c company)
indicates that corporation is a subconcept of company, i.e., all instances of corporation
are also instances of company. Let us now create a couple of companies:

1 PowerLoom modules are case-insensitive by default. This means, for example, that a logical constant
named "Foo" may be referenced by any of the symbols ’FOO’, ’foo’, ’foO’ etc.

Chapter 5: Annotated Example 13

(assert (company ACME-cleaners))
(assert (corporation megasoft))

These two assertions create two new entities denoted by the terms ACME-cleaners and
megasoft. Both of these entities are members of the concept company. megasoft is also
a member of the concept corporation. We can test this by executing some PowerLoom
queries:

(retrieve all ?x (company ?x))
⇒
There are 2 solutions:
#1: ?X=ACME-CLEANERS
#2: ?X=MEGASOFT

(retrieve all ?x (corporation ?x))
⇒
There is 1 solution:
#1: ?X=MEGASOFT

5.3 Relations

So far, our two companies aren’t very interesting. In order to say more about them, we can
define some relations and functions using the declarations defrelation and deffunction:

(defrelation company-name ((?c company) (?name STRING)))

This declaration defines a binary relation company-name. The first value in a company-
name tuple must be an instance of type company, while the second value must be a string.
We can now give our companies names, using the command assert:

(assert (company-name ACME-cleaners "ACME Cleaners, LTD"))
(assert (company-name megasoft "MegaSoft, Inc."))

We can retrieve pairs of companies and their names with the following query:
(retrieve all (?x ?y) (company-name ?x ?y))
⇒
There are 2 solutions:
#1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
#2: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"

5.4 Relation Hierarchies

PowerLoom permits the specification of hierarchies both for concepts and relations. Previ-
ously , we defined a small concept hierarchy with company on top and corporation below it.
We now define a subrelation of the relation company-name called fictitious-business-
name:

(defrelation fictitious-business-name ((?c company) (?name STRING))
:=> (company-name ?c ?name))

PowerLoom defines a subconcept/subrelation relationship between a pair of concepts
or a pair of relations by asserting an “implication” relation between them. The above

Chapter 5: Annotated Example 14

implication expands into the assertion “for all values of ?c and ?name, if the fictitious-
business-name relation holds for ?c and?name, then the company-name relation also holds
for ?c and ?name”. This is equivalent to the assertion

(forall (?c ?name) (=> (fictitious-business-name ?c ?name)
(company-name ?c ?name)))

Since implication relationships occur very commonly, PowerLoom provides several syntactic
shortcuts for defining them. We have seen one such shortcut earlier; our definition of
corporation included the clause “(company ?c)”, which specified that corporation is
a subconcept of company. In our definition of fictitious-business-name, the keyword
:=> introduces a similar shortcut, which tells us that fictitious-business-name is a
subrelation of company-name. Let us assert a fictious business name for MegaSoft:

(assert (fictitious-business-name megasoft "MegaSoft"))

If we query for the company names of MegaSoft, we get two names, one of them asserted
directly, and one of them infered by the subrelation rule:

(retrieve all ?x (company-name megasoft ?x))
⇒
There are 2 solutions:

#1: ?X="MegaSoft"
#2: ?X="MegaSoft, Inc."

5.5 Functions

This illustrates another point: A PowerLoom relation is by default “multi-valued”, which in
the case of a binary relation means that a single first value can be mapped by the relation
to more than one second value. In the present case, our model permits a company entity to
have more than one company-name. If a (binary) relation always maps its first argument to
exactly one value (i.e., if it it “single-valued”) we can specify it as a function instead of a
relation. For example, we can use a function to indicate the number of employees for a
company:

(deffunction number-of-employees ((?c company)) :-> (?n INTEGER))

When defining a function, all arguments but the last appear just as they do for a relation.
The last argument (and its type) appears by itself following the keyword :->. Defining a
single-valued relation as a function allows us to refer to it using a functional syntax within
a logical sentence, as in the following:

(assert (= (number-of-employees acme-cleaners) 8))
(assert (= (number-of-employees megasoft) 10000))

The functional syntax often results in shorter expressions than equivalents that use
relational syntax. For example to retrieve all companies with fewer than 50 employees, we
can simply write:

(retrieve all ?x (and (company ?x) (< (number-of-employees ?x) 50)))
⇒
There is 1 solution:
#1: ?X=ACME-CLEANERS

Chapter 5: Annotated Example 15

Using the syntax for relations, the same query would require the introduction of an
existential quantifier, as in:

(retrieve ?x (and (company ?x)
(exists ?n (and (number-of-employees ?x ?n)

(< ?n 50)))))
⇒
There is 1 solution so far:

#1: ?X=ACME-CLEANERS

To repeat ourselves slightly, Powerloom allows users the choice of using either relational
or functional syntax when using a function in predicate position. For example, if f is a
function, then the expressions (f ?x ?y) and (= (f ?x) ?y) are equivalent.

5.6 Defined Concepts

If we find ourselves writing the same query (or subexpression) repeatedly, we may wish to
define a name for the concept embodying that expression. For example, below we define the
term small-company to represent the class of all companies with fewer than 50 employees:

(defconcept small-company ((?c company))
:<=> (and (Company ?c)

(< (number-of-employees ?c) 50)))

Notice that we have used a new keyword, :<=>. This keyword defines a bidirectional
implication called “if-and-only-if”. Formally it is equivalent to the following pair of asser-
tions:

(assert (forall ?c (=> (and (Company ?c)
(< (number-of-employees ?c) 50))

(small-company ?c))))
(assert (forall ?c (=> (small-company ?c)

(and (Company ?c)
(< (number-of-employees ?c) 50)))))

In other words, the :<=> keyword is a shortcut for an assertion that uses the <=> relation,
which itself is a shortcut representing the conjunction of two single arrow implications.
For example, (<=> P Q) is equivalent to (and (<= P Q) (=> P Q)), where the <= relation is
defined to be the inverse of the relation =>.

Its not necessary that we exactly specify the number of employees in a company. Below,
all we know about ZZ Productions is that they have fewer than 20 employees:

(assert (and (company zz-productions)
(< (number-of-employees zz-productions) 20)))

These facts are sufficient to classify ZZ Productions as a small business:

(retrieve all ?x (small-company ?x))
⇒
There are 2 solutions:

#1: ?X=ZZ-PRODUCTIONS
#2: ?X=ACME-CLEANERS

Chapter 5: Annotated Example 16

5.7 Negation and Open and Closed World Semantics

PowerLoom implements a three-valued logic—the truth value of each proposition entered
into a PowerLoom knowledge base is recorded as being either true, false, or unknown.2

Many other systems (e.g., relational DBMSs) implement a two-valued logic, wherein if a
fact is not asserted to be true, it is assumed to be false. The PowerLoom command ask
returns one of three (five) values: true if it can prove the truth of a proposition, false if it
can easily prove the falsity of a proposition3 and otherwise it returns unknown. (The values
default-true and default-false are also possible if defaults are used).

Below, PowerLoom knows nothing about a newly-introduced concept s-corporation,
so ask returns unknown to both a positive query and its negation:

(defconcept s-corporation (?c corporation))
(ask (s-corporation zz-productions))
⇒
UNKNOWN
(ask (not (s-corporation zz-productions)))
⇒
UNKNOWN

If we assert that ZZ Productions is not an S-corporation, then PowerLoom knows that
the proposition in question is false:

(assert (not (s-corporation zz-productions)))
(ask (s-corporation zz-productions))
⇒
FALSE
(ask (not (s-corporation zz-productions)))
⇒
TRUE

After asserting that ZZ Productions is not an S-corporation, a repeat of the query asking
if it is one will now return false, because the explicit assertion of the negation allows a
quick disproof of the positive query.
Note: PowerLoom uses all its effort to prove that the proposition in question is true, and
only uses some effort to prove that it is false. Therefore, only falsities that are discovered
"on the way" or with shallow inference strategies will be found (which was the case above).
If you want to check whether a proposition is false with maximum effort, simply ask the
negated proposition by wrapping an explicit not arount it. The reason for this asymmetry
is that checking for truth and falsity really amounts to asking two separate and possibly
expensive queries, and the user or programmer should decide whether the effort should be
expended to ask both queries instead of just one.

PowerLoom can sometimes infer a negative fact without the necessity of a direct asser-
tion. For example:

2 Actually, PowerLoom implements a five-valued logic — the remaining two values are “default true” and
“default false”. However, the present discussion defers the subject of default truth values.

3 Because proving negations can be very difficult, PowerLoom will only conduct a very quick and shallow
search for a disproof. More extensive reasoning is used if a negation is asked about explicitly, thus it
may be the case that PowerLoom will return unknown if asked about P, but true if asked about (not P).

Chapter 5: Annotated Example 17

(ask (= (number-of-employees acme-cleaners) 8))
⇒
TRUE
(ask (= (number-of-employees acme-cleaners) 10))
⇒
FALSE
(ask (not (= (number-of-employees acme-cleaners) 10)))
⇒
TRUE

PowerLoom can infer the second and third answers because it knows that the function
number-of-employees can return only one value, and if that value is the number eight, it
cannot also be something else (in this case, ten).

Many systems, in particular, database systems and Prolog, make the assumptions that
if a proposition cannot be proved true, then it must be false. This is called the “closed
world assumption”. By default, PowerLoom makes an open-world assumption, but for
specific relations it can be instructed to assume a closed world if a user wants closed world
semantics. For example, suppose we introduce a relation works-for, and we assume that
all works-for facts have been entered in our knowledge base:

(defrelation works-for (?p (?c Company)))
(assert (works-for shirly ACME-cleaners))
(assert (works-for jerome zz-productions))

If we ask PowerLoom whether Jerome does NOT work for MegaSoft, it will return
unknown. But if we assert that the relation works-for is closed, then PowerLoom will
assume that Jerome only works for ZZ Productions:

(ask (not (works-for jerome megasoft)))
⇒
UNKNOWN

(assert (closed works-for))
(ask (not (works-for jerome megasoft)))
⇒
TRUE

The reasoning employed to achieve the above result (that Jerome does not work for
MegaSoft) is called “negation as failure”, which means that if a proof of a proposition fails,
then one may assume that the proposition is false. We can achieve a negation-as-failure
result a second way (i.e., other than by using a closed world assumption) by employing the
query operator fail. Here we retract the closure assumption for works-for and achieve
the desired result using fail:

(retract (closed works-for))
(ask (not (works-for jerome megasoft)))
⇒
UNKNOWN

(ask (fail (works-for jerome megasoft)))
⇒

Chapter 5: Annotated Example 18

TRUE

When you see the operator “not” in an SQL query or a Prolog program, it really stands
for “fail”.

5.8 Retraction

Below, we introduce a few new terms for defining geographic information. We define a
relation called contains to assert that one geographic location (the second argument to
contains) is located within another:

(defconcept geographic-location)
(defconcept country (?l geographic-location))
(defconcept state (?l geographic-location))
(defconcept city (?l geographic-location))
(defrelation contains ((?l1 geographic-location) (?l2 geographic-location)))

Now, we can assert some facts about U.S. geography (including one deliberate mistake):

(assert (and
(country united-states)
(geographic-location eastern-us) (contains united-states eastern-us)
(state georgia) (contains eastern-us georgia)
(city atlanta) (contains georgia atlanta)
(geographic-location southern-us) (contains united-states southern-us)
(state texas) (contains eastern-us texas)
(city dallas) (contains texas dallas)
(city austin) (contains texas austin)
))

We would like to repair the incorrect assertion (contains eastern-us texas). The
PowerLoom command retract allows us to erase assertions that should not be true:

(ask (contains eastern-us texas))
⇒
TRUE

(retract (contains eastern-us texas))
(assert (contains southern-us texas))

(ask (contains eastern-us texas))
⇒
UNKNOWN

Retraction should not be confused with assertion of negative propositions. For example,
asserting that Texas is not a state would not retract the assertion that it is (a state). Instead,
an evident logical contradiction is detected as a “clash”, and the clashing proposition is
disallowed:

(assert (not (state texas)))
⇒
Derived both TRUE and FALSE for the proposition ‘|P|(STATE TEXAS)’.

Chapter 5: Annotated Example 19

Clash occurred in module ‘‘|MDL|/PL-KERNEL-KB/business’.

(ask (not (state texas)))
⇒
FALSE

5.9 Clipping of Values

Programmers are accustomed to changing the values of attributes for program objects just
by overwriting previous values. PowerLoom implements a similar semantics for the special
case of functions and single-valued relations. When a second value is asserted for one of
these relations the previous value is automatically retracted. We call this clipping.

To illustrate this behavior for both kinds of relations (a function is considered a kind of
relation), we will define a mapping from a company to a city that contains its headquarters
in two different ways:

(deffunction headquarters ((?c company)) :-> (?city city))
(defrelation headquartered-in ((?c company) (?city city))
:axioms (single-valued headquartered-in))

The clause ":axioms (single-valued headquartered-in)" tells PowerLoom that the
headquartered-in relation is single-valued, i.e., that it can map a company to at most
one city. This makes its behavior similar to that of the function headquarters. Here is an
example of clipping for the function headquarters:

(assert (= (headquarters zz-productions) atlanta))
(retrieve all ?x (= ?x (headquarters zz-productions)))
⇒
There is 1 solution:
#1: ?X=ATLANTA

(assert (= (headquarters zz-productions) dallas))
(retrieve all ?x (= ?x (headquarters zz-productions)))
⇒
There is 1 solution:
#1: ?X=DALLAS

Here is the same kind of clipping using a single-valued relation:
(assert (headquartered-in megasoft atlanta))
(retrieve all ?x (headquartered-in megasoft ?x))
⇒
There is 1 solution:
#1: ?X=ATLANTA

(assert (headquartered-in megasoft dallas))
(retrieve all ?x (headquartered-in megasoft ?x))
⇒
There is 1 solution:
#1: ?X=DALLAS

Chapter 5: Annotated Example 20

5.10 Rule-based Inference

Suppose that we want to retrieve all geographic locations that are contained in the Southern
US, based on the set of assertions about geography that we entered in earlier. The following
query returns only one of such location:

(retrieve all ?x (contains southern-us ?x))
⇒
There is 1 solution:
#1: ?X=TEXAS

We would like the cities Austin and Dallas to be retrieved as well. To do this, we can
assert a rule that states that contains is a transitive relation:

(defrule transitive-contains
(<= (contains ?l1 ?l3)

(and (contains ?l1 ?l2)
(contains ?l2 ?l3))))

The defrule declaration does two things—it asserts a proposition, and it associates a
name with that proposition (in the above case, the name is transitive-contains). This
name is used by the system in displaying traces of its inferencing. It also makes redefinition
of the proposition easier. If we wish to retract an unnamed proposition, it is necessary to
explicitly retract that proposition using a syntax identical to the assertion4 If on the other
hand, a proposition has a name, then a new defrule declaration that uses the same name
will automatically retract any existing proposition having the same name.

Our transitive closure rule failed to include any logical quantifiers for the variables ?l1,
?l2, and ?l3. When PowerLoom parses a top-level proposition, it automatically supplies
universal quantifiers for any unquantified variables. So, the above rule is equivalent to the
rule:

(defrule transitive-contains
(forall (?l1 ?l2 ?l3)

(<= (contains ?l1 ?l3)
(and (contains ?l1 ?l2)

(contains ?l2 ?l3)))))

Note: Instead of defining a transitive-contains rule, we could have achieved the same
effect by asserting that the contains relation is transitive, e.g., by stating (assert
(transitive contains)).

Now that we have told the system that our contains relation is transitive, let us rerun
our query:

(retrieve all ?x (contains southern-us ?x))
⇒
There are 3 solutions:
#1: ?X=TEXAS
#2: ?X=AUSTIN
#3: ?X=DALLAS

4 Actually, PowerLoom isn’t quite as strict as just stated–its search for an identical proposition can acco-
modate changes in the names of variables.

Chapter 5: Annotated Example 21

5.11 Explanation

PowerLoom provides a command called why that you can use to get an explanation of the
logic behind one of its answers. The why command explains the last query entered into the
system, i.e., it should invoked after one has submitted a retrieve or an ask command.
Before asking a why command, you must enable the justifications feature:

(set-feature justifications)

Queries execute a bit more slowly with jusifications enabled, which is why it is disabled
by default. Having enabled justifications, we must (re)run a query. Here is how we can ask
why Dallas is contained in the Southern US:

(ask (contains southern-us dallas))
⇒
TRUE
(why)
⇒
1 (CONTAINS SOUTHERN-US DALLAS)

follows by Modus Ponens
and substitution {?l3/DALLAS, ?l2/TEXAS, ?l1/SOUTHERN-US}
since 1.1 ! (forall (?l1 ?l3)

(<= (CONTAINS ?l1 ?l3)
(exists (?l2)

(and (CONTAINS ?l1 ?l2)
(CONTAINS ?l2 ?l3)))))

and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
and 1.3 ! (CONTAINS TEXAS DALLAS)

The above explanation tells us that a rule (our transitivity rule) was invoked during
the proof, and that two ground assertions (CONTAINS SOUTHERN-US TEXAS) and (CONTAINS
TEXAS DALLAS) were accessed to supply preconditions for the rule. These combined as-
sertions lead to the conclusion (CONTAINS SOUTHERN-US DALLAS). Within an explanation,
directly asserted propositions are indicated with the prefix ‘!’.

We can also ask why after a retrieve query. However, if the query has multiple solutions,
each one has a separate explanation. In order to ask why, we need to ask for one solution
at a time. This can be done by omitting the word all from the retrieve query, and
subsequently calling (retrieve) to obtain results one-at-a-time.5

(retrieve ?x (contains southern-us ?x))
⇒
#1: ?X=DALLAS

(retrieve)
⇒
There are 2 solutions so far:
#1: ?X=DALLAS
#2: ?X=TEXAS

(retrieve)

5 Note: The order of solutions will not necessarily be the same as shown here.

Chapter 5: Annotated Example 22

⇒
There are 3 solutions so far:

#1: ?X=DALLAS
#2: ?X=TEXAS
#3: ?X=AUSTIN

(why)
⇒
1 (CONTAINS SOUTHERN-US AUSTIN)

follows by Modus Ponens
with substitution {?l1/SOUTHERN-US, ?l3/AUSTIN, ?l2/TEXAS}
since 1.1 ! (FORALL (?l1 ?l3)

(<= (CONTAINS ?l1 ?l3)
(EXISTS (?l2)

(AND (CONTAINS ?l1 ?l2)
(CONTAINS ?l2 ?l3)))))

and 1.2 ! (CONTAINS SOUTHERN-US TEXAS)
and 1.3 ! (CONTAINS TEXAS AUSTIN)

The following query combines a variety of relations that have been entered into the
business modules. It retrieves names of companies whose headquarters are in the southern
US. Note that query variables that do not appear in the output (i.e., variables not listed
after the all

(retrieve ?name (exists (?city ?company)
(and (contains southern-us ?city)

(headquartered-in ?company ?city)
(company-name ?company ?name))))

⇒
There is 1 solution so far:

#1: ?NAME="MegaSoft, Inc."

(why)
⇒
1 (and (COMPANY-NAME MEGASOFT MegaSoft, Inc.)

(HEADQUARTERED-IN MEGASOFT DALLAS)
(CONTAINS SOUTHERN-US DALLAS))

follows by And-Introduction
since 1.1 ! (COMPANY-NAME MEGASOFT MegaSoft, Inc.)
and 1.2 ! (HEADQUARTERED-IN MEGASOFT DALLAS)
and 1.3 (CONTAINS SOUTHERN-US DALLAS)

1.3 (CONTAINS SOUTHERN-US DALLAS)
follows by Modus Ponens
and substitution {?l3/DALLAS, ?l2/TEXAS, ?l1/SOUTHERN-US}
since 1.3.1 ! (forall (?l1 ?l3)

(<= (CONTAINS ?l1 ?l3)
(exists (?l2)

(and (CONTAINS ?l1 ?l2)

Chapter 5: Annotated Example 23

(CONTAINS ?l2 ?l3)))))
and 1.3.2 ! (CONTAINS SOUTHERN-US TEXAS)
and 1.3.3 ! (CONTAINS TEXAS DALLAS)

5.12 Contexts and Modules

The final feature that we will illustrate in this section is the PowerLoom context mechanism.
PowerLoom organizes its knowledge into a hierarchy of logical containers called “contexts”.
A PowerLoom context is either a “module”, a somewhat heavyweight object that includes
its own symbol table, or a “world”, a very lightweight object designed for fast switching
from one world to another. All contexts inherit from a single root context. The most
important feature of a context is that a fact asserted into it is inherited by all contexts
below it. However, a “parent” context is unaware of any knowledge entered into one of its
descendants.

Here we concern ourselves only with modules. We first define a second module, called
alternate-business, to be a subcontext of our business module, and then we switch into
the new module:

(defmodule "alternate-business"
:includes ("business"))

(in-module "alternate-business")

Next, within the scope of the alternate-business module, we will create a new com-
pany. And just for good measure, we will change the name of MegaSoft while we are at
it:

(assert (and (Company web-phantoms)
(company-name web-phantoms "Web Phantoms, Inc.")))

(retract (company-name megasoft "MegaSoft, Inc."))
(assert (company-name megasoft "MegaZorch, Inc."))

First, here are pairs of companies and company names from the vantage point of the
Business module:

(in-module "business")
(retrieve all (?x ?y) (company-name ?x ?y))
⇒
There are 3 solutions:
#1: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
#2: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
#3: ?X=MEGASOFT, ?Y="MegaSoft"

Now observe the same query executed from within the alternate Business module:

(in-module "alternate-business")
(retrieve all (?x ?y) (company-name ?x ?y))
⇒
There are 4 solutions:
#1: ?X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
#2: ?X=MEGASOFT, ?Y="MegaZorch, Inc."
#3: ?X=WEB-PHANTOMS, ?Y="Web Phantoms, Inc."

Chapter 5: Annotated Example 24

#4: ?X=MEGASOFT, ?Y="MegaSoft"

We see that all facts pertaining to company names have inherited down from the Business
to the Alternate Business module, except for the name for MegaSoft that we explicitly
retracted. Also, the new facts asserted within the Alternate Business module appear mixed
in with the inherited facts.

5.13 Classification, Subsumption

5.14 Truth Maintenance

5.15 Inference Control

5.16 Keyword Axioms

5.17 Cardinality/Type Reasoning with Frame Predicates

5.18 Loom-to-PowerLoom

5.19 Deviations from KIF

5.20 Differences from Loom

5.21 Defaults

5.22 Sets, Lists, SETOFALL, KAPPA

Chapter 6: Communicating with PowerLoom 25

6 Communicating with PowerLoom

There are basically three modes that users can choose from for interacting with the Power-
Loom system. The simplest is to use the PowerLoom command interpreter. The interpreter
supports a type-in window that allows line-at-a-time entry of commands. You can use the
interpreter to load files of PowerLoom declarations, to create and edit knowledge base ob-
jects, to ask queries, and to modify settings in the execution environment.

The second mode of interaction involves writing an application that makes calls to the
PowerLoom API (see Chapter 8 [PowerLoom API], page 38). PowerLoom implements an
extensive list of procedures that can be called to control the logic system. These procedures
range from very specific procedures to assert or query a single fact, to general procedures
that interpret arbitrary queries. The STELLA translator offers users a choice of Common
Lisp, Java, or C++ -based versions of the PowerLoom system; users can choose whichever
is the best match for their language of choice for their applications.

Finally, the Ontosaurus Web Browser offers an ideal way to view the contents of Power-
Loom knowledge bases. The Ontosaurus Web server allows one to surf across a knowledge
base, offering several different kinds of views of the knowledge.

6.1 Command Interpreter

Currently, the primary means for interacting with PowerLoom is its command interpreter.
The command interpreter can be used either interactively, or it can be invoked directly from
a program to evaluate individual commands. All PowerLoom commands (see Chapter 7
[Commands], page 27) can be evaluated using the command interpreter.

The interactive command interpreter is invoked by calling the function powerloom with-
out any arguments. In the Java versions of PowerLoom, the interpreter in called by the main
routine in the class PowerLoom within the logic package. In the C++ versions of PowerLoom,
powerloom is also called within the main routine. In the Lisp version, (STELLA::powerloom)
has to be called explicitly. However, in Lisp it is not really necessary to use the command
interpreter, since all commands can also be executed directly at the Lisp top level1.

The interactive command interpreter functions as a simple read/eval/print loop that
prompts for input with a |= prompt, reads a user command from standard input, evaluates
it, and prints the result to standard output. To exit the command interpreter, type quit
or stop.

To evaluate commands directly from a program, the PowerLoom API provides the fol-
lowing evaluator functions:

[Function]evaluate ((command object) (module module) (environment object))
: object

Evaluate the command command within module and return the result. Currently,
only the evaluation of (possibly nested) commands and global variables is supported.
Commands are simple to program in Common Lisp, since they are built into the
language, and relatively awkward in Java and C++. Users of either of those languages
are more likely to want to call s-evaluate.

1 If you are executing within a case sensitive module, then you may see some differences in behavior between
commands evaluated by the command interpreter and commands invoked from the Lisp Listener.

Chapter 6: Communicating with PowerLoom 26

[Function]evaluate-string ((expression string)) : object
Evaluate the expression represented by expression and return the result. This is
equivalent to (evaluate (unstringify expression)).

6.2 Persistent Knowledge Bases

Serious users of PowerLoom will want to construct knowledge bases that persist between
sessions. PowerLoom’s primary medium of persistence is file-based; users construct their
knowledge bases by entering PowerLoom statements into ASCII-formatted files, and then
using the load command to load them into PowerLoom. There is also a save-module
command that saves the current assertions of a module to a file. Large-scale persistence via
a backend database is currently under development and will become available in one of the
next releases.

Chapter 7: Commands 27

7 Commands

This chapter lists all available PowerLoom commands alphabetically. Each command is doc-
umented with its name, a (possibly empty) list of parameters specified as (<name> <type>)
pairs, its return type, and its category (Command). Almost all of the commands implic-
itly quote their arguments, meaning that when calling them, you don’t need to add any
quotation yourself. For example, the command all-facts-of is defined as follows:

[Command]all-facts-of ((instanceRef name)) : (cons of proposition)
Return a cons list of all definite (TRUE or FALSE) propositions that
reference the instance instanceRef.

The all-facts-of command has one parameter called instanceRef of type name, and
returns a STELLA list containing zero or more objects of type proposition as its result.
The type name subsumes the types symbol, surrogate, string, and keyword. Unless
you are in a case-sensitive module, the following four commands are equivalent:

(all-facts-of Merryweather)
(all-facts-of :MERRYWEATHER)
(all-facts-of "merryweather")
(all-facts-of @MerryWeather)

Commands can also have &rest parameters (similar to Lisp functions). These are either
used to allow a variable number of arguments, or to handle optional arguments, since
STELLA does not directly support optional arguments.

Here is a list of important parameter types used in the command specifications below:
• generalized-symbol: A generalized symbol is either a plain symbol (similar to a

Lisp symbol) such as Merryweather, a keyword (similar to a Lisp keyword) such as
:KIF, or a STELLA surrogate which is a symbol starting with an at-sign, e.g., @CONS.
STELLA surrogates are used as names for objects of arbitrary types.

• name: Names can be either a string, or a generalized-symbol (i.e., a symbol,
a keyword, or a surrogate). If a symbol is supplied, only its symbol-name is used.
Commands that take names as arguments usually coerce whatever argument is entered
into a string, but by allowing a name they make it a little bit more convenient to type
a name in an interactive invocation.1

• parse-tree: A parse tree is similar to a Lisp s-expression, i.e., it can either be an
atom such as a symbol, number, or a string, or a list of zero or more parse trees. For
example, the expression (happy Fred) is a parse tree, and so are its components happy
and Fred.

Here is the list of all available PowerLoom commands:

[Command]all-facts-of ((instanceRef name)) : (cons of proposition)
Return a cons list of all definite (TRUE or FALSE) propositions that reference the
instance instanceRef. This includes propositions asserted to be true by default, but it
does not include propositions that are found to be TRUE only by running the query

1 Lisp programmers are typically spoiled, and find it inconvenient to wrap double-quotes around their
arguments.

Chapter 7: Commands 28

engine. Facts inferred to be TRUE by the forward chainer will be included. Hence,
the returned list of facts may be longer in a context where the forward chainer has
been run then in one where it has not (see run-forward-rules).

[Command]ask (&rest (proposition&options parse-tree)) : truth-value
Perform inference to determine whether the proposition specified in proposi-
tion&options is true. Return the truth-value found. ask will spend most of its
effort to determine whether the proposition is true and only a little effort via
shallow inference strategies to determine whether it is false. To find out whether a
proposition is false with full inference effort ask its negation.

KIF example: (ask (happy Fred)) will return TRUE if Fred was indeed found to
be happy. Note, that for this query to run, the logic constant Fred and the relation
happy must already be defined (see assert). Use (set/unset-feature goal-trace)
to en/disable goal tracing of the inference engine.

The ask command supports two options, declared with the keywords :TIMEOUT and
:DONT-OPTIMIZE. The argument to :TIMEOUT is an integer or floating point time limit,
specified in seconds. For example, the command (ask (nervous Fred) :timeout
2.0) will cease inference after two seconds if a proof has not been found by then.
The argument to :DONT-OPTIMIZE? is the constant TRUE, which tells PowerLoom
not to optimize the query before evaluating it.

[Command]assert ((proposition parse-tree)) : object
Assert the truth of proposition. Return the asserted proposition object. KIF example:
"(assert (happy Fred))" asserts that Fred is indeed happy. Note that for this assertion
to succeed, the relation happy must already be defined. If the constant Fred has not
yet been created, it is automatically created as a side-effect of calling assert.

[Command]assert-from-query ((query cons) &rest (options object)) : (cons of
proposition)

Evaluate query, instantiate the query proposition for each generated solution and
assert the resulting propositions. The accepted syntax is as follows:

(assert-from-query <query-command>
[:relation <relation-name>]
[:pattern <description-term>]
[:module <module-name>])

<query-command> has to be a strict or partial retrieval command. If a :relation op-
tion is supplied, <relation-name> is used as the relation of the resulting propositions.
In this case the bindings of each solution will become arguments to the specified rela-
tion in the order of querys output variables (the arities have to match). The :pattern
option is a generalization of this mechanism that specifies an arbitrary proposition
pattern to be instantiated by the query’s solution. In this case <description-term>
has to be a SETOFALL or KAPPA expression whose IO-variables will be bound in
sequence to the bindings of a query solution to generate the resulting proposition. Fi-
nally, if a :module option is specified, the assertions will be generated in that module.
Note that for this to work the relations referenced in the query proposition or pattern
have to be visible in the module. Also, instances will not be copied to the target

Chapter 7: Commands 29

module, therefore, the resulting propositions might reference external out-of-module
objects in case they are not visible there. Here are some examples:

(assert-from-query (retrieve all (foo ?x ?y)))
(assert-from-query (retrieve all (?y ?x)

(exists ?z (and (foo ?x ?z) (foo ?z ?y))))
:relation bar :module other)

(assert-from-query
(retrieve all (and (relation ?x) (symmetric ?x)))
:pattern (kappa (?pred)

(forall (?x ?y)
(=> (holds ?pred ?x ?y)

(holds ?pred ?y ?x))))))

[Command]assert-rule ((ruleName name)) : proposition
Set the truth value of the rule named ruleName to TRUE. The proposition having
the name ruleName may be any arbitrary proposition, although we expect that it is
probably a material implication. (See retract-rule).

[Command]cc (&rest (name name)) : context
Change the current context to the one named name. Return the value of the new
current context. If no name is supplied, return the pre-existing value of the current
context. cc is a no-op if the context reference cannot be successfully evaluated.

[Command]classify-relations ((module name) (local? boolean)) :
Classify named relations visible in module. If local?, only classify descriptions defined
within module, i.e., don’t classify descriptions inherited from ancestor modules. If
module is NULL, classify relations in all modules.

Conceptually, the classifier operates by comparing each concept or relation with all
other concepts/relations, searching for a proof that a subsumption relation exists be-
tween each pair. Whenever a new subsumption relation is discovered, the classifier
adds an implication link between members of the pair, thereby augmenting the
structure of the concept or relation hierarchy. The implemented classification algo-
rithm is relatively efficient – it works hard at limiting the number of concepts or
relations that need to be checked for possible subsumption relationships.

[Command]classify-instances ((module name) (local? boolean)) :
Classify instances visible in module. If local?, only classify instances that belong to
module, i.e., don’t classify instances inherited from ancestor modules. If module is
NULL, classify instances in all modules.

Conceptually, the classifier operates by comparing each instance with all concepts
in the hierarchy, searching for a proof for each pairing indicating that the instance
belongs to the concept. Whenever a new is-a relation is discovered, the classifier adds
an is-a link between the instance and the concept, thereby recording an additional
fact about the instance. The implemented classification algorithm is relatively efficient
– it works hard at limiting the number of concepts or relations that need to be checked
for possible is-a relationships.

Chapter 7: Commands 30

[Command]clear-instances (&rest (name name)) :
Destroy all instances belonging to module name or any of its children. Leave meta-
objects, e.g., concepts and relations, alone. If no name is supplied, the current module
will be cleared after confirming with the user.

[Command]clear-module (&rest (name name)) :
Destroy all objects belonging to module name or any of its children. If no name is
supplied, the current module will be cleared after confirming with the user. Important
modules such as STELLA are protected against accidental clearing.

[Command]conceive ((formula parse-tree)) : object
Guess whether formula represents a term or a sentence/proposition. If we are not
sure, assume its a proposition. If its, a term, return its internal representation. If
a proposition, construct a proposition for formula without asserting its truth value.
Return the conceived proposition object. KIF example: "(conceive (happy Fred))"
builds the proposition expressing that Fred is happy without explictly asserting or
denying it. Note, that for this to succeed, the relation happy must already be defined
(see assert). If the logic constant Fred has not yet been created, it is automatically
created as a side-effect of calling conceive.

[Command]copyright () :
Print detailed PowerLoom copyright information.

[Command]defconcept (&rest (args parse-tree)) : named-description
Define (or redefine) a concept. The accepted syntax is:

(defconcept <conceptconst> [(<var> <parent>*)]
[:documentation <string>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
[:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)}] |
<keyword-option>*)

Declaration of a concept variable <var> is optional, unless any implication (arrow)
options are supplied that need to reference it. A possibly empty list of concept names
following <var> is taken as the list of parents of <conceptconst>. Alternatively,
parents can be specified via the :=> option. If no parents are specified, the parent
of <conceptconst> is taken to be THING. <keyword-option> represents a keyword
followed by a value that states an assertion about <conceptconst>. See defrelation
for a description of <keyword-option>s.

[Command]deffunction (&rest (args parse-tree)) : named-description
Define (or redefine) a logic function. The accepted syntax is:

(deffunction <funconst> (<vardecl>+) [:-> <vardecl>]
[:documentation <string>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] |

Chapter 7: Commands 31

[:<<=> <sentence>] | [:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)}]
[<keyword-option>*])

Function parameters can be typed or untyped. If the :-> option is supplied, it
specifies the output variable of the function. Otherwise, the last variable in the
parameter list is used as the output variable. See defrelation for a description of
<keyword-option>s.

[Command]definstance (&rest (args parse-tree)) : logic-object
Define (or redefine) a logic instance (definstance is an alias for defobject which
see).

[Command]defmodule ((name name) &rest (options object)) :
Define (or redefine) a module named name. The accepted syntax is:

(defmodule <module-name>
[:documentation <docstring>]
[:includes {<module-name> | (<module-name>*)}]
[:uses {<module-name> | (<module-name>*)}]
[:lisp-package <package-name-string>]
[:java-package <package-specification-string>]
[:cpp-namespace <namespace-name-string>]
[:java-catchall-class
[:api? {TRUE | FALSE}]
[:case-sensitive? {TRUE | FALSE}]
[:shadow (<symbol>*)]
[:java-catchall-class <class-name-string>]
[<other-options>*])

name can be a string or a symbol.
Modules include objects from other modules via two separate mechanisms: (1) they
inherit from their parents specified via the :includes option and/or a fully qualified
module name, and (2) they inherit from used modules specified via the :uses option.
The main difference between the two mechanisms is that inheritance from parents is
transitive, while uses-links are only followed one level deep. I.e., a module A that
uses B will see all objects of B (and any of B’s parents) but not see anything from
modules used by B. Another difference is that only objects declared as public can be
inherited via uses-links (this is not yet enforced). Note that - contrary to Lisp - there
are separate name spaces for classes, functions, and variables. For example, a module
could inherit the class CONS from the STELLA module, but shadow the function of the
same name.
The above discussion of :includes and :uses semantics keyed on the inheri-
tance/visibility of symbols. The PowerLoom system makes another very important
distinction: If a module A is inherited directly or indirectly via :includes
specification(s) by a submodule B, then all definitions and facts asserted in A are
visible in B. This is not the cases for :uses; the :uses options does not impact
inheritance of propositions at all.
The list of modules specified in the :includes option plus (if supplied) the parent in
the path used for name become the new module’s parents. If no :uses option was

Chapter 7: Commands 32

supplied, the new module will use the STELLA module by default, otherwise, it will
use the set of specified modules. If :case-sensitive? is supplied as TRUE, symbols
in the module will be interned case-sensitively, otherwise (the default), they will be
converted to uppercase before they get interned. Modules can shadow definitions of
functions and classes inherited from parents or used modules. Shadowing is done
automatically, but generates a warning unless the shadowed type or function name is
listed in the :shadow option of the module definition .

Examples:

(defmodule "PL-KERNEL/PL-USER"
:uses ("LOGIC" "STELLA")
:package "PL-USER")

(defmodule PL-USER/GENEALOGY)

The remaining options are relevant only for modules that contain STELLA code.
Modules used only to contain knowledge base definitions and assertions have no use
for them:

The keywords :lisp-package, :java-package, and :cpp-package specify the name
of a native package or name space in which symbols of the module should be allocated
when they get translated into one of Lisp, Java, or C++. By default, Lisp symbols are
allocated in the STELLA package, and C++ names are translated without any prefixes.
The rules that the STELLA translator uses to attach translated Java objects to classes
and packages are somewhat complex. Use :java-package option to specify a list of
package names (separated by periods) that prefix the Java object in this module. Use
:java-catchall-class to specify the name of the Java class to contain all global & special
variables, parameter-less functions and functions defined on arguments that are not
classes in the current module. The default value will be the name of the module.

When set to TRUE, the :api? option tells the PowerLoom User Manual generator
that all functions defined in this module should be included in the API section. Ad-
ditionally, the Java translator makes all API functions synchronized.

[Command]defobject (&rest (args parse-tree)) : logic-object
Define (or redefine) a logic instance. The accepted syntax is:

(defobject <constant>
[:documentation <string>]
[<keyword-option>*])

<keyword-option> represents a keyword followed by a value that states an assertion
about <constant>. See defrelation for a description of <keyword-option>s.

defobject provides a sugar-coated way to assert a collection of facts about a logic
constant, but otherwise adds nothing in terms of functionality.

[Command]defproposition (&rest (args parse-tree)) : proposition
Define (or redefine) a named proposition. The accepted syntax is:

(defproposition <name> <sentence>
[:documentation <string>]
[:forward-only? {true | false}]

Chapter 7: Commands 33

[:backward-only? {true | false}]
[:dont-optimize? {true | false}]
[:confidence-level {:strict | :default}]
[<keyword-option>*])

<sentence> can be any sentence that is legal as a top-level assertion. <name> can
be a string or symbol and will be bound to the asserted proposition represented by
<sentence>. After this definition every occurrence of <name> will be replaced by the
associated proposition.
The options :forward-only? and :backward-only? can be used to tell the inference
engine to only use the rule in forward or backward direction (this can also be achieved
by using the <<= or =>> implication arrows). :dont-optimize? tells the inference engine
to not rearrange the order of clauses in the antecedent of a rule and instead evaluate
them in their original order. :confidence-level can be used to mark a proposition as
default only.
<keyword-option> represents a keyword followed by a value that states an assertion
about the proposition <name>. See defrelation for a description of <keyword-
option>s.

[Command]defrelation (&rest (args parse-tree)) : named-description
Define (or redefine) a logic relation. The accepted syntax is:

(defrelation <relconst> (<vardecl>+)
[:documentation <string>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] |
[:<<=> <sentence>] | [:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)}]
[<keyword-option>*])

Relation parameters can be typed or untyped. <keyword-option> represents a key-
word followed by a value that states an assertion about <relconst>. For example,
including the option :foo bar states that the proposition (foo <relconst> bar) is
true. :foo (bar fum) states that both (foo <relconst> bar) and (foo <relconst>
fum) are true. :foo true states that (foo <relconst>) is true, :foo false states
that (not (foo <relconst>)) is true.

[Command]defrule (&rest (args parse-tree)) : proposition
Define (or redefine) a named rule (defrule is an alias for defproposition which
see).

[Command]delete-rules ((relation name)) :
Delete the list of rules associated with relation. This function is included mainly for
debugging purposes, when a user wants to verify the behavior of different sets of rules.

[Command]demo (&rest (fileandpause object)) :
Read logic commands from a file, echo them verbatimly to standard output, and
evaluate them just as if they had been typed in interactively. When called with no
arguments, present a menu of example demos, otherwise, use the first argument as

Chapter 7: Commands 34

the name of the file to demo. Pause for user confirmation after each expression has
been read but before it is evaluated. Pausing can be turned off by suppling FALSE
as the optional second argument, or by typing c at the pause prompt. Typing ? at
the pause prompt prints a list of available commands.

[Command]deny ((proposition parse-tree)) : object
Assert the falsity of proposition. Return the asserted proposition object. KIF exam-
ple: "(deny (happy Fred))" asserts that Fred is not happy, which could have been
done equivalently by "(assert (not (happy Fred)))". Note, that for this to succeed,
the relation happy must already be defined (see assert).

[Command]describe ((name object) &rest (mode object)) :
Print a description of an object in :verbose, :terse, or :source modes.

[Command]destroy ((objectSpec parse-tree)) : object
Find an object or proposition as specified by objectSpec, and destroy all propositions
and indices that reference it. objectSpec must be a name or a parse tree that evaluates
to a proposition. Return the deleted object, or NULL if no matching object was found.

[Command]get-rules ((relation name)) : (cons of proposition)
Return the list of rules associated with relation.

[Command]help (&rest (commands symbol)) :
Describe specific commands, or print a list of available commands.

[Command]in-module ((name name)) : module
Change the current module to the module named name.

[Command]load ((file string)) :
Read logic commands from file and evaluate them.

[Command]load-file ((file string)) :
Read STELLA commands from file and evaluate them. The file should begin with
an in-module declaration that specifies the module within which all remaining com-
mands are to be evaluated The remaining commands are evaluated one-by-one, ap-
plying the function evaluate to each of them.

[Command]presume ((proposition parse-tree)) : object
Presume the default truth of proposition. Return the presumed proposition object.
KIF example: "(presume (happy Fred))" states that Fred is most probably happy.
Note, that for this to succeed, the relation happy must already be defined (see assert).

[Command]print-features () :
Print the currently enabled and available PowerLoom environment features.

[Command]print-rules ((relation object)) :
Print the list of rules associated with relation.

[Command]process-definitions () :
Finish processing all definitions and assertions that have been evaluated/loaded since
that last call to process-definitions. PowerLoom defers complete processing of

Chapter 7: Commands 35

definitions to make it easier to support cyclic definitions. Following finalization of
definitions, this call performs semantic validation of any assertions evaluated since the
last call to process-definitions. PowerLoom calls this function internally before
each query; the primary reason to call it explicitly is to force the production of any
diagnostic information that results from the processing and validation.

[Command]propagate-constraints (&rest (name name)) :
Trigger constraint propagation over all propositions of module name. If no name is
supplied, the current module will be used. This also enables incremental constraint
propagation for future monotonic updates to the module. Once a non-monotonic
update is performed, i.e., a retraction or clipping of a function value, all cached
inferences will be discarded and constraint propagation will be turned off until this
function is called again.

[Command]repropagate-constraints (&rest (name name)) :
Force non-incremental constraint propagation over all propositions of module name.
If no name is supplied, the current module will be used. This also enables incre-
mental constraint propagation for future monotonic updates to the module similar to
propagate-constraints.

[Command]reset-features () : (list of keyword)
Reset the PowerLoom environment features to their default settings.

[Command]retract ((proposition parse-tree)) : object
Retract the truth of proposition. Return the retracted proposition object. KIF
example: "(retract (happy Fred))" retracts that Fred is happy. Note that for this
assertion to succeed, the relation happy must already be defined. If the constant
Fred has not yet been created, it is automatically created as a side-effect of calling
retract.

[Command]retract-facts-of ((instanceRef object)) :
Retract all definite (TRUE or FALSE) propositions that reference the instance in-
stanceRef.

[Command]retract-from-query ((query cons) &rest (options object)) : (cons
of proposition)

Evaluate query which has to be a strict or partial retrieval command, instantiate the
query proposition for each generated solution and retract the resulting propositions.
See assert-from-query for available command options.

[Command]retract-rule ((ruleName name)) : proposition
If it is currently TRUE, set the truth value of the rule named ruleName to UN-
KNOWN This command may be used alternately with assert-rule to observe the
effects of querying with or without a particular (named) rule being asserted within the
current context. The proposition having the name ruleName may be any arbitrary
proposition, although we expect that it is probably a material implication.

[Command]retrieve (&rest (query parse-tree)) : query-iterator
Retrieve elements of a relation (tuples) that satisfy a proposition. The accepted
syntax is:

Chapter 7: Commands 36

(retrieve [<integer> | all]
[[{<vardecl> | (<vardecl>+)}]
<proposition>])

The variables and proposition are similar to an exists sentence or kappa term without
the explicit quantifier. If variables are declared, they must match the free variables
referenced by <proposition>. Otherwise, the free variables referenced in <proposition>
will be used as the query variables. If <proposition> is omitted, the most recently
asked query will be continued.
A solution is a set of bindings for the listed variables for which <proposition> is true.
The optional first argument controls how many solutions should be generated before
control is returned. The keyword all indicates that all solutions should be generated.
By default, retrieve returns after it has found one new solution or if it cannot find
any more solutions.
retrieve returns an iterator which saves all the necessary state of a query and stores
all generated solutions. When used interactively, the returned iterator will print out
with the set of solutions collected so far. Calling retrieve without any arguments
(or only with the first argument) will generate one (or more) solutions to the most
recently asked query.
KIF examples:

(retrieve (?x Person) (happy ?x))

will try to find the next happy person and store it in the returned query iterator.
(retrieve 10 (?x Person) (happy ?x))

will try to find 10 happy people.
(retrieve 10)

will try to find the next 10 happy people.
(retrieve all (?x Person) (happy ?x))

will find all happy people.
(retrieve all (?x Person))

will find all people.
(retrieve (?x Person) (or (happy ?x) (parent-of Fred ?x)))

will try to find a person that is happy or has Fred as a parent.
(retrieve (or (happy ?x) (parent-of Fred ?x)))

will do the same in a more concise syntax by omitting the query variable declaration.
(retrieve ((?x Person) (?y Person)) (parent-of ?x ?y))

will try to find the next pair of parent/child.
(retrieve all (?x Person)

(exists (?y Person) (parent-of ?x ?y)))

will generate the set of all parents. Note, that for these queries to run, the class
Person, the relations happy and parent-of, and the logic constant Fred must already
be defined (see assert).
Use (set/unset-feature trace-subgoals) to en/disable goal tracing of the infer-
ence engine.

Chapter 7: Commands 37

[Command]save-module ((name name) (file string)) :
Save all definitions and assertions of module name to file.

[Command]set-feature (&rest (features name)) : (list of keyword)
Enable the PowerLoom environment feature(s) named by features. Return the list of
enabled features. Calling set-feature without any arguments can be used to display
the currently enabled features. The following features are supported:
just-in-time-inference: Enables interleaving of forward chaining inference within
backward chaining queries.
iterative-deepening: Tells the query processor to use iterative deepening instead
of a depth-first search to find answers. This is less efficient but necessary for some
kinds of highly recursive queries.
trace-subgoals: Enables the generation of subgoaling trace information during
backchaining inference.
trace-solutions: Prints newly found solutions during retrieval right when they are
generated as opposed to when the query terminates.
trace-classifier: Tells the classifier to describe the inferences it draws.
justifications: Enables the generation of justifications during inference, which is
a prerequiste for the generation of explanations with (why).
emit-thinking-dots: Tells PowerLoom to annotate its inference progress by out-
putting characters indicating the completion of individual reasoning steps.
By default, the features emit-thinking-dots and just-in-time-inference are en-
abled, and the others are disabled.

[Command]unset-feature (&rest (features name)) : (list of keyword)
Disable the PowerLoom environment feature(s) named by features. Return the list
of enabled features. Calling unset-feature without any arguments can be used to
display the currently enabled features. See set-feature for a description of supported
features.

[Command]why (&rest (args object)) :
Print an explanation for the result of the most recent query. Without any arguments,
why prints an explanation of the top level query proposition down to a maximum
depth of 3. (why all) prints an explanation to unlimited depth. Alternatively, a
particular depth can be specified, for example, (why 5) explains down to a depth
of 5. A proof step that was not explained explicitly (e.g., due to a depth cutoff)
can be explained by supplying the label of the step as the first argument to why,
for example, (why 1.2.3 5) prints an explanation starting at 1.2.3 down to a depth
of 5 (which is counted relative to the depth of the starting point). The keywords
brief and verbose can be used to select a particular explanation style. In brief
mode, explicitly asserted propositions are not further explained and indicated with a
! assertion marker. Additionally, relatively uninteresting proof steps such as AND-
introductions are skipped. This explanation style option is sticky and will affect future
calls to why until it gets changed again. The various options can be combined in any
way, for example, (why 1.2.3 brief 3) explains starting from step 1.2.3 down to a
depth of 3 in brief explanation mode.

Chapter 8: PowerLoom API 38

8 PowerLoom API

This chapter lists functions that collectively define the PowerLoom API. The first section
describes the API functions themselves. The signature is the basic Stella signature. In-
formation on how to translate the names of the functions and their arguments into the
programming languages Common Lisp, C++ or Java is given in the Language Specific In-
terface section.

8.1 API Functions

Many of the functions take a ‘module’ argument that causes the function to be evaluated in
the context of that module. Passing in a NULL value for the module argument means that
evaluation takes place in the current module. The module argument is frequently followed
by an ‘environment’ argument that specifies which inference environment should be assumed
during evaluation. Values for ‘environment’ are ‘ASSERTION-ENV’, ‘TAXONOMIC-ENV’,
and ‘INFERENCE-ENV’. ‘ASSERTION-ENV’ specifies that a knowledge base query or
lookup should take into account only explicitly asserted propositions. ‘TAXONOMIC-ENV’
specifies that a knowledge base query should take into account explicitly-asserted proposi-
tions plus any rules that specify subsumption relationships. ‘INFERENCE-ENV’ specifies
that a knowledge base query should take all relevant propositions into account, includ-
ing those generated during forward inferencing. A NULL value for the the ‘environment’
argument defaults to ‘TAXONOMIC-ENV’.

Many of the functions that take PowerLoom or Stella objects as inputs also have an
analog version whose name starts with the prefix "s-" that take strings as inputs. This
is provided as a convenience so that programmers will not necessarily need to manipulate
PowerLoom objects directly.

[Function]ask ((query cons) (module module) (environment object)) :
truth-value

Returns a truth value for the query in module and environment. The truth value
represents the degree of belief in the answer. See also the helping functions is-true,
is-false , is-unknown.

[Function]assert-binary-proposition ((relation logic-object) (arg object)
(value object) (module module) (environment object)) : proposition

Assert that the proposition (relation arg value) is TRUE in module. Return the
asserted proposition.

[Function]assert-nary-proposition ((relation-and-arguments object)
(module module) (environment object)) : proposition

Assert that the proposition represented by the list arguments satisfies the relation
relation.

[Function]assert-proposition ((proposition proposition) (module module)
(environment object)) : proposition

Assert that the proposition proposition is true in module. Return the asserted propo-
sition.

Chapter 8: PowerLoom API 39

[Function]assert-unary-proposition ((relation logic-object) (arg object)
(module module) (environment object)) : proposition

Assert that the proposition (relation arg) is TRUE in module. Return the asserted
proposition.

[Function]change-module ((module module)) : object
Set the current module to module. The return value is module unless the context
switch cannot be performed, in which case the current module is returned.

[Function]clear-module ((module module)) : module
Destroy the contents of the module module as well as the contents of all of its children,
recursively.

[Function]conceive ((sentence object) (module module) (environment object)) :
(pl-iterator of proposition)

Create one or more proposition objects from the sentence sentence in the module
module. Return an iterator of the propositions. If any of the new propositions has the
same structure as an already existing proposition, an automatic check for duplicates
will return the pre-existing proposition. Multiple propositions may be returned for a
single sentence because of normalization of equivalences, conjunctions, etc.
Signals a Proposition-Error if PowerLoom could not conceive sentence.

[Function]cons-to-pl-iterator ((self cons)) : pl-iterator
Convert a Stella cons list into an API iterator.

[Function]create-concept ((name string) (parent logic-object)
(module module) (environment object)) : logic-object

Create a concept named name in the designated module, with the designated parent
superconcept (which can be left undefined). Additional superconcepts can be added
via assertions of the subset-of relation. Note that a specified parent concept needs
to be created separately.

[Function]create-enumerated-list ((members cons)) : logic-object
Create a logical term that denotes a list containing members. Useful for passing lists
as arguments to parameterized queries.

[Function]create-enumerated-set ((members cons)) : logic-object
Create a logical term that denotes the enumerated set containing members.

[Function]create-function ((name string) (arity integer) (module module)
(environment object)) : logic-object

Create a function named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

[Function]create-object ((name string) (concept logic-object)
(module module) (environment object)) : logic-object

Create an object named name of type concept in the designated module. Both name
and concept can be null. If name is null then an object will be created with a

Chapter 8: PowerLoom API 40

new, non-conflicting name based on the name of concept, or system-generated if no
concept is specified. If concept is null, then the object will be of type THING.
Return the object.

[Function]create-relation ((name string) (arity integer) (module module)
(environment object)) : logic-object

Create a relation named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

[Function]destroy-object ((object logic-object)) :
Delete the object object, retracting all facts attached to it.

[Method]empty? ((self pl-iterator)) : boolean
Return TRUE if the iterator self has no more elements.

[Function]evaluate ((command object) (module module) (environment object))
: object

Evaluate the command command within module and return the result. Currently,
only the evaluation of (possibly nested) commands and global variables is supported.
Commands are simple to program in Common Lisp, since they are built into the
language, and relatively awkward in Java and C++. Users of either of those languages
are more likely to want to call s-evaluate.

[Function]generate-unique-name ((prefix string) (module module)
(environment object)) : string

Generates a name based on prefix with a number appended that is not currently in
use in the knowledge base.

[Function]get-arity ((relation logic-object)) : integer
Return the arity of the relation relation.

[Function]get-binary-proposition ((relation logic-object) (arg1 object)
(arg2 object) (module module) (environment object)) : proposition

Return a proposition such that (relation arg1 arg2) is true. The relation argument
must be bound to a relation. One or both of the arg1 and arg2 arguments may be set
to NULL, which is interpreted as a wildcard. If more than one proposition matches
the input criteria, the selection is arbitrary. This procedure is normally applied to
single-valued relations or functions.

[Function]get-binary-propositions ((relation logic-object) (arg1 object)
(arg2 object) (module module) (environment object)) : (pl-iterator of
proposition)

Return propositions such that (relation arg1 arg2) is true. The relation argument
must be bound to a relation. One or both of the arg1 and arg2 arguments may be
set to NULL, which is interpreted as a wildcard.

[Function]get-child-modules ((module module)) : (pl-iterator of module)
Return the modules that are immediate children of module.

Chapter 8: PowerLoom API 41

[Function]get-column-count ((obj object)) : integer
Return the number of columns in obj, which must be of type proposition, cons,
vector or PL-iterator. For a proposition, the number includes both the predidate and
arguments. For the PL-iterator case,the number of columns is for the current value
of the iterator.

[Function]get-concept ((name string) (module module) (environment object)) :
logic-object

Return a class/concept named name that is local to or visible from the module mod-
ule.

[Function]get-concept-instance-matching-value ((concept logic-object)
(relation logic-object) (value object) (module module)
(environment object)) : object

Return a member of concept concept that has an attribute matching value for the
binary relation relation, i.e., (relation <result> value) holds.

[Function]get-concept-instances ((concept logic-object) (module module)
(environment object)) : pl-iterator

Return instances of the concept concept. Include instances of subconcepts of concept.
Depending on concept, the return values could be (wrapped) literals.

[Function]get-concept-instances-matching-value ((concept logic-object)
(relation logic-object) (value object) (module module)
(environment object)) : pl-iterator

Return members of concept concept that have an attribute matching value for the
binary relation relation, i.e., (relation <result> value) holds.

[Function]get-direct-concept-instances ((concept logic-object)
(module module) (environment object)) : pl-iterator

Return instances of concept concept. Exclude instances of subconcepts of concept.
Depending on concept, the return values could be (wrapped) literals.

[Function]get-direct-subrelations ((relation logic-object) (module module)
(environment object)) : (pl-iterator of logic-object)

Return relations that directly specialize relation. Non-reflexive.

[Function]get-direct-superrelations ((relation logic-object)
(module module) (environment object)) : (pl-iterator of logic-object)

Return relations that directly generalize relation. Non-reflexive.

[Function]get-direct-types ((object logic-object) (module module)
(environment object)) : (pl-iterator of logic-object)

Return most specific concepts that object belongs to.

[Function]get-domain ((relation logic-object)) : logic-object
Return the type (a concept) for the first argument to the binary relation relation.

[Function]get-enumerated-collection-members ((collection object)) : cons
Returns the members of an enumerated collection. This works on all types of collec-
tion, i.e., sets and lists

Chapter 8: PowerLoom API 42

[Function]get-home-module ((object logic-object)) : module
Return the module in which object was created.

[Function]get-inferred-binary-proposition-values ((relation logic-object)
(arg object) (module module) (environment object)) : pl-iterator

Return all values v such that (relation arg v) has been asserted or can be inferred.

[Function]get-module ((name string) (environment object)) : module
Return a module named name.

[Function]get-modules () : (pl-iterator of module)
Return all modules currently loaded into PowerLoom.

[Function]get-name ((obj object)) : string
Return the name of obj, if it has one. Otherwise return null.

[Function]get-nth-domain ((relation logic-object) (n integer)) :
logic-object

Return the type (a concept) for the the nth argument of the relation relation. Count-
ing starts at zero.

[Function]get-nth-float ((sequence object) (n integer)) : float
Return the floating point value in the nth column of sequence. Counting starts at
zero. sequence must be of type proposition, cons, vector or PL-iterator. A zero
column number returns a proposition’s relational predicate. For the PL-iterator case,
the the current value pointed to by the iterator is used. If this is not a floating point
value, then NULL-FLOAT will be returned.

[Function]get-nth-integer ((sequence object) (n integer)) : integer
Return an integer representation of the value in the nth column of sequence. Counting
starts at zero. sequence must be of type proposition, cons, vector or PL-iterator. A
zero column number returns a proposition’s relational predicate. For the PL-iterator
case, the the current value pointed to by the iterator is used. If this is not an integer
value, then NULL-INTEGER will be returned.

[Function]get-nth-logic-object ((sequence object) (n integer)) :
logic-object

Return a logic object representation of the value in the nth column of sequence.
Counting starts at zero. sequence must be of type proposition, cons, vector or PL-
iterator. A zero column number returns a proposition’s relational predicate. For the
PL-iterator case, the the current value pointed to by the iterator is used. A zero
column number returns the proposition’s relational predicate.

[Function]get-nth-string ((sequence object) (n integer)) : string
Return a string representation of the value in the nth column of sequence. Counting
starts at zero. sequence must be of type proposition, cons, vector or PL-iterator. A
zero column number returns a proposition’s relational predicate. For the PL-iterator
case, the the current value pointed to by the iterator is used. This will always succeed,
even if the nth value is not a string object. In that case, a string reprensentation will
be returned.

Chapter 8: PowerLoom API 43

[Function]get-nth-value ((sequence object) (n integer)) : object
Return the value in the nth column of sequence. Counting starts at zero. sequence
must be of type proposition, cons, vector or PL-iterator. A zero column number
returns a proposition’s relational predicate. For the PL-iterator case, the number of
columns is for the current value of the iterator.

[Function]get-object ((name string) (module module) (environment object)) :
object

Look for an object named name that is local to or visible from the module module.

[Function]get-parent-modules ((module module)) : (pl-iterator of module)
Return the modules that are immediate parents of module.

[Function]get-predicate ((prop proposition)) : logic-object
Return the concept or relation predicate for the proposition prop.

[Function]get-proper-subrelations ((relation logic-object) (module module)
(environment object)) : (pl-iterator of logic-object)

Return relations that specialize relation. Non-reflexive.

[Function]get-proper-superrelations ((relation logic-object)
(module module) (environment object)) : (pl-iterator of logic-object)

Return relations that generalize relation. Non-reflexive.

[Function]get-proposition ((relation-and-arguments object) (module module)
(environment object)) : proposition

Return a proposition matching relation-and-arguments that has been asserted (or in-
ferred by forward chaining). relation-and-arguments is a sequence containing objects
and nulls. The first argument must be the name of a relation. A null value acts like
a wild card. If more than one proposition matches the input criteria, the selection
among satisficing propositions is arbitrary. This procedure is normally applied to
single-valued relations or functions.

[Function]get-propositions ((relation-and-arguments object) (module module)
(environment object)) : (pl-iterator of proposition)

Return propositions matching relation-and-arguments that have been asserted (or in-
ferred by forward chaining). relation-and-arguments is a sequence containing objects
and nulls. The first argument must be the name of a relation. A null value acts like
a wild card.

[Function]get-propositions-in-module ((module module)
(environment object)) : (pl-iterator of proposition)

Return propositions that have been conceived in the module module.

[Function]get-propositions-of ((object logic-object) (module module)
(environment object)) : (pl-iterator of proposition)

Return all propositions that have object among their arguments, and that are TRUE
in the scope of the module module.

[Function]get-range ((relation logic-object)) : logic-object
Return the type (a concept) for fillers of the binary relation relation.

Chapter 8: PowerLoom API 44

[Function]get-relation ((name string) (module module) (environment object)) :
logic-object

Return a concept or relation named name that is local to or visible from the module
module.

[Function]get-relation-extension ((relation logic-object) (module module)
(environment object)) : (pl-iterator of proposition)

Return propositions that satisfy relation. Include propositions that satisfy subrela-
tions of relation.

[Function]get-rules ((relation logic-object) (module module)
(environment object)) : (pl-iterator of proposition)

Return rules attached to the concept/relation relation in either antecedent or conse-
quent position.

[Function]get-types ((object logic-object) (module module)
(environment object)) : (pl-iterator of logic-object)

Return all named concepts that object belongs to.

[Function]initialize () :
Initialize the PowerLoom logic system. This needs to be called by all applications
before using PowerLoom.

[Function]is-a ((object object) (concept logic-object) (module module)
(environment object)) : boolean

Return TRUE if object is a member of the concept concept.

[Function]is-default ((tv truth-value)) : boolean
Tests whether tv is a default truth value.

[Function]is-enumerated-collection ((obj object)) : boolean
Test whether obj is an enumerated collection. This subsumes both sets and lists.

[Function]is-enumerated-list ((obj object)) : boolean
Test whether obj is an enumerated list

[Function]is-enumerated-set ((obj object)) : boolean
Test whether obj is an enumerated set.

[Function]is-false ((tv truth-value)) : boolean
Tests whether tv is a false truth value. It can be false either absolutely or by default.

[Function]is-float ((obj object)) : boolean
Test whether obj is of type FLOAT (double)

[Function]is-integer ((obj object)) : boolean
Test whether obj is of type INTEGER

[Function]is-logic-object ((obj object)) : boolean
Test whether obj is of type LOGIC-OBJECT

Chapter 8: PowerLoom API 45

[Function]is-number ((obj object)) : boolean
Test whether obj is of type NUMBER. This can be either an integer or a floating point
number. One key characteristic is that object-to-integer and object-to-float
will both work on it.

[Function]is-strict ((tv truth-value)) : boolean
Tests whether tv is a strict (non-default) truth value.

[Function]is-string ((obj object)) : boolean
Test whether obj is of type STRING

[Function]is-subrelation ((sub logic-object) (super logic-object)
(module module) (environment object)) : boolean

Return TRUE if sub is a subconcept/subrelation of super.

[Function]is-true ((tv truth-value)) : boolean
Tests whether tv is a true truth value. It can be true either absolutely or by default.

[Function]is-true-binary-proposition ((relation logic-object) (arg object)
(value object) (module module) (environment object)) : boolean

Return TRUE if the proposition (relation arg value) has been asserted (or inferred
by forward chaining).

[Function]is-true-proposition ((proposition proposition) (module module)
(environment object)) : boolean

Return TRUE if proposition is TRUE in the module module.

[Function]is-true-unary-proposition ((relation logic-object) (arg object)
(module module) (environment object)) : boolean

Return TRUE if the proposition (relation arg) has been asserted (or inferred by
forward chaining).

[Function]is-unknown ((tv truth-value)) : boolean
Tests whether tv is an unknown truth value.

[Function]iterator-to-pl-iterator ((self iterator)) : pl-iterator
Convert an arbitrary Stella iterator into an API iterator.

[Method]length ((self pl-iterator)) : integer
Number of items in self.

[Function]list-to-pl-iterator ((self list)) : pl-iterator
Convert a Stella list into an API iterator.

[Function]load ((filename string)) :
Read logic commands from the file named filename and evaluate them. The file
should begin with an in-module declaration that specifies the module within which
all remaining commands are to be evaluated The remaining commands are evaluated
one-by-one, applying the function evaluate to each of them.

Chapter 8: PowerLoom API 46

[Method]next? ((self pl-iterator)) : boolean
Advance the PL-Iterator self and return true if more elements are available, false
otherwise.

[Function]object-to-float ((self object)) : float
Coerce self to a float, or throw a Stella Exception if the coersion is not feasible.

[Function]object-to-integer ((self object)) : integer
Coerce self to an integer, or throw a Stella Exception if the coersion is not feasible.

[Function]object-to-parsable-string ((self object)) : string
Return a string representing a printed representation of the object self. Like object-
to-string, but puts escaped double quotes around strings.

[Function]object-to-string ((self object)) : string
Return a printed representation of the term self as a string.

[Command]print-rules ((relation object)) :
Print the list of rules associated with relation.

[Command]retract ((proposition parse-tree)) : object
Retract the truth of proposition. Return the retracted proposition object. KIF
example: "(retract (happy Fred))" retracts that Fred is happy. Note that for this
assertion to succeed, the relation happy must already be defined. If the constant
Fred has not yet been created, it is automatically created as a side-effect of calling
retract.

[Function]retract-binary-proposition ((relation logic-object) (arg object)
(value object) (module module) (environment object)) : proposition

Retract that the proposition (relation arg value) is TRUE in module. Return the
asserted proposition.

[Function]retract-nary-proposition ((relation-and-arguments object)
(module module) (environment object)) : proposition

Retract the proposition that arguments satisfies the relation relation.

[Function]retract-proposition ((proposition proposition) (module module)
(environment object)) : proposition

Retract the truth of the proposition proposition in module. Return the retracted
proposition.

[Function]retract-unary-proposition ((relation logic-object) (arg object)
(module module) (environment object)) : proposition

Retract that the proposition (relation arg) is TRUE in module. Return the asserted
proposition.

[Function]retrieve ((query cons) (module module) (environment object)) :
pl-iterator

Returns an iterator for variables that satisfy query in module-name and environment.
This uses the normal PowerLoom query syntax:

Chapter 8: PowerLoom API 47

[n-values] output-variables query-form [options]

The output-variables should either be a single variable name – preceded by the ?
character – or a list of one or more such names. If a single variable name is provided,
then each element in the returned iterator will be a value binding. If a list (even of
one variable name) is provided, then each element in the returned iterator can be
accessed using the get-nth-... functions.

[Function]run-forward-rules ((module object) (force? boolean)) :
Run forward inference rules in module module. If module is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless force is set to TRUE, in which
case all forward rules are run or rerun.

Calling run-forward-rules temporarily puts the module into a mode where future
assertional (monotonic) updates will trigger additional forward inference. Once a
non-monotonic update is performed, i.e., a retraction or clipping of relation value, all
cached forward inferences will be discarded and forward inferencing will be disabled
until this function is called again.

[Function]s-ask ((query string) (module-name string) (environment object)) :
truth-value

Returns a truth value for the query in module-name and environment. The truth
value represents the degree of belief in the answer. See also the helping functions
is-true, is-false , is-unknown.

[Function]s-assert-proposition ((sentence string) (module-name string)
(environment object)) : (pl-iterator of proposition)

Assert that the logical sentence sentence is true in the module named module-name.
Return an iterator of the propositions resulting from sentence.

[Function]s-change-module ((name string) (environment object)) : object
Set the current module to the module named name. The return value is the module
named name unless the context switch cannot be performed, in which case the current
module is returned.

[Function]s-clear-module ((name string) (environment object)) : module
Destroy the contents of the module named name, as well as the contents of all of its
children, recursively.

[Function]s-conceive ((sentence string) (module-name string)
(environment object)) : (pl-iterator of proposition)

Create one or more proposition objects from the sentence sentence in the module
named module-name. Return an iterator of the propositions. If any of the new propo-
sitions has the same structure as an already existing proposition, an automatic check
for duplicates will return the pre-existing proposition. Multiple propositions may be
returned for a single sentence because of normalization of equivalences, conjunctions,
etc.

Signals a Proposition-Error if PowerLoom could not conceive sentence.

Chapter 8: PowerLoom API 48

[Function]s-create-concept ((name string) (parent-name string)
(module-name string) (environment object)) : logic-object

Create a concept named name in the designated module, with with the concept named
parent-name as superconcept (which can be left undefined). Additional superconcepts
can be added via assertions of the subset-of relation. Note that a specified parent
concept needs to be created separately.

[Function]s-create-function ((name string) (arity integer)
(module-name string) (environment object)) : logic-object

Create a function named name with arity arity in the designated module. Domain
and range information can be added via assertions of domain, nth-domain and range
relations.

[Function]s-create-object ((name string) (concept-name string)
(module-name string) (environment object)) : logic-object

Create an object named name of type concept-name in the designated module. Both
name and concept-name can be null strings. If name is a null string then an object
will be created with a new, non-conflicting name based on concept-name, or system-
generated if no concept nameis specified. If concept-name is the null string, then the
object will be of type THING.
Return the object.

[Function]s-create-relation ((name string) (arity integer)
(module-name string) (environment object)) : logic-object

Create a relation named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

[Function]s-destroy-object ((object-name string) (module-name string)
(environment object)) :

Delete the object named object-name, retracting all facts attached to it.

[Function]s-evaluate ((command string) (module-name string)
(environment object)) : object

Evaluate the command represented by the string command within module and return
the result. Currently, only the evaluation of (possibly nested) commands and global
variables is supported.

[Function]s-get-arity ((relation-name string) (module-name string)
(environment object)) : integer

Return the arity of the relation named relation-name.

[Function]s-get-child-modules ((name string) (environment object)) :
(pl-iterator of module)

Return the modules that are immediate children of module name.

[Function]s-get-concept ((name string) (module-name string)
(environment object)) : logic-object

Return a class/concept named name that is local to or visible from the module
module-name.

Chapter 8: PowerLoom API 49

[Function]s-get-concept-instances ((concept-name string)
(module-name string) (environment object)) : pl-iterator

Return instances of concept concept-name. Include instances of subconcepts of
concept-name. Depending on concept-name, the return values could be (wrapped)
literals.

[Function]s-get-direct-concept-instances ((concept-name string)
(module-name string) (environment object)) : pl-iterator

Return instances of concept concept-name. Exclude instances of subconcepts of
concept-name. Depending on concept-name, the return values could be (wrapped)
literals.

[Function]s-get-domain ((relation-name string) (module-name string)
(environment object)) : logic-object

Return the type (concept) for the first argument to the binary relation relation-name.

[Function]s-get-inferred-binary-proposition-values ((relation-name string)
(arg-name string) (module-name string) (environment object)) :
pl-iterator

Return all values v such that (relation-name arg-name v) has been asserted or can
be inferred.

[Function]s-get-nth-domain ((relation-name string) (n integer)
(module-name string) (environment object)) : logic-object

Return the type (a concept) for the nth argument of the relation named relation-name.
Counting starts at zero.

[Function]s-get-object ((name string) (module-name string)
(environment object)) : object

Look for an object named name that is local to or visible from the module module-
name.

[Function]s-get-parent-modules ((name string) (environment object)) :
(pl-iterator of module)

Return the modules that are immediate parents of module name.

[Function]s-get-parent-modules ((name string) (environment object)) :
(pl-iterator of module)

Return the modules that are immediate parents of module name.

[Function]s-get-proposition ((relation-and-arguments string)
(module-name string) (environment object)) : proposition

Return a proposition matching relation-and-arguments that has been asserted (or
inferred by forward chaining). relation-and-arguments is a string that begins with
a left parenthesis, followed by a relation name, one or more argument identifiers,
and terminated by a right parenthesis. Each argument identifier can be the name
of a logical constant, a literal reference (e.g., a number), the null identifier, or a
variable (an identifier that begins with a question mark). Each occurrence of a null
or a variable acts like a wild card. If more than one proposition matches the input
criteria, the selection among satisficing propositions is arbitrary. This procedure is
normally applied to single-valued relations or functions.

Chapter 8: PowerLoom API 50

[Function]s-get-propositions ((relation-and-arguments string)
(module-name string) (environment object)) : (pl-iterator of
proposition)

Return propositions matching relation-and-arguments that have been asserted (or
inferred by forward chaining). relation-and-arguments is a string that begins with a
left parenthesis, followed by a relation name, one or more argument identifiers, and
terminated by a right parenthesis. Each argument identifier can be the name of a
logical constant, a literal reference (e.g., a number), the null identifier, or a variable
(an identifier that begins with a question mark). Each occurrence of a null or a
variable acts like a wild card.

[Function]s-get-propositions-of ((object-name string) (module-name string)
(environment object)) : (pl-iterator of proposition)

Return all propositions that have the object named object-name among their argu-
ments, and that are TRUE in the scope of the module module.

[Function]s-get-range ((relation-name string) (module-name string)
(environment object)) : logic-object

Return the type (a concept) for fillers of the binary relation relation-name.

[Function]s-get-relation ((name string) (module-name string)
(environment object)) : logic-object

Return a concept or relation named name that is local to or visible from the module
module-name.

[Function]s-get-relation-extension ((relation-name string) (module module)
(environment object)) : (pl-iterator of proposition)

Return propositions that satisfy the relation named relation-name. Include proposi-
tions that satisfy subrelations of the relation.

[Function]s-get-rules ((relation-name string) (module-name string)
(environment object)) : (pl-iterator of proposition)

Return rules attached to the concept/relation named relation-name found in the
module named module-name.

[Function]s-is-true-proposition ((relation-and-arguments string)
(module-name string) (environment object)) : boolean

Return TRUE if a proposition that prints as the string relation-and-arguments is true
in the module named module-name.

[Function]s-print-rules ((name string) (stream output-stream)
(module-name string) (environment object)) :

Print rules attached to the concept/relation named name.

[Function]s-retract-proposition ((sentence string) (module-name string)
(environment object)) : (pl-iterator of proposition)

Retract the truth of the logical sentence sentence in the module named module-name.
Return an iterator of the retracted propositions resulting from sentence.

Chapter 8: PowerLoom API 51

[Function]s-retrieve ((query string) (module-name string)
(environment object)) : pl-iterator

Returns an iterator for variables that satisfy query in module-name and environment.
This uses the normal PowerLoom query syntax:
"[n-values] output-variables query-form [options]"

The output-variables should either be a single variable name – preceded by the ?
character – or a list of one or more such names. If a single variable name is provided,
then each element in the returned iterator will be a value binding. If a list (even of
one variable name) is provided, then each element in the returned iterator can be
accessed using the get-nth-... functions.

[Function]s-save-module ((module-name string) (filename string)
(ifexists string) (environment object)) :

Save the contents of the module module-name into a file named filename. If a file
named filename already exists, then the action taken depends on the value of ifexists.
Possible values are "ASK", "REPLACE", "WARN" and "ERROR":
REPLACE => Means overwrite without warning. WARN => Means overwrite with
a warning. ERROR => Means don’t overwrite, signal an error instead. ASK => Ask
the user whether to overwrite or not. If not overwritten, an exception is thrown.

[Function]save-module ((module module) (filename string) (ifexists string)
(environment object)) :

Save the contents of the module mod into a file named filename. If a file named filename
already exists, then the action taken depends on the value of ifexists. Possible values
are "ASK", "REPLACE", "WARN" and "ERROR":
REPLACE => Means overwrite without warning. WARN => Means overwrite with
a warning. ERROR => Means don’t overwrite, signal an error instead. ASK => Ask
the user whether to overwrite or not. If not overwritten, an exception is thrown.

[Function]string-to-object ((string string) (type logic-object)
(module module) (environment object)) : object

Evaluate string with respect to module and environment and return the corresponding
logical term. type is a concept used to assist the correct interpretation of string.
Currently type only has an effect on the interpretation of literal types.

8.2 Language Specific Interface

This section contains the description of the programming language specific aspects of using
the PowerLoom API. Each section describes the naming conventions and namespace issues
related to calling the API functions from that programming language.

8.2.1 Lisp API

This section tells how to call the API functions in PowerLoom’s Common Lisp implemen-
tation from a Lisp program. The function names are identical to the Stella names in the
PowerLoom API description See Chapter 8 [PowerLoom API], page 38. They are exported

Chapter 8: PowerLoom API 52

from the PLI package. Other Stella symbols and names are in the STELLA package, but
currently none of the Stella symbols are exported!.

PowerLoom can be used from Allegro Common Lisp, CMU Common Lisp, LispWorks
Common Lisp and Macintosh Common Lisp. It may be possible to use the system from
other Common Lisp systems, but they have not been tested.

8.2.1.1 Common Lisp Initialization

Loading the Common Lisp version of PowerLoom will normally initialize the system as
part of the loading process. The Common Lisp version can be loaded by loading the
file ‘load-powerloom.lisp’ from the top-level ‘powerloom’ directory. This will make the
system available for use.

8.2.1.2 Type Declarations

Stella is a typed language, and the Common Lisp translation uses the type information for
Common Lisp type declarations. That means that values specified as being of type INTE-
GER, STRING and FLOAT must have the correct type. In particular, integer values will
not be coerced to floating point values by the code. The following native type assignments
are made:

Stella Common Lisp
======= ===========
INTEGER FIXNUM
FLOAT DOUBLE-FLOAT
STRING SIMPLE-STRING

For convenience, loading PowerLoom will set the default format for reading floating
point numbers in Common Lisp to be double-float.

Stella CONS objects are implmented as native Lisp conses. Boolean values can take on
the values stella::true or stella::false.

8.2.1.3 NULL values

One additional consequence of the strong typing of the language is that there are specialized
NULL values for numeric and string parameters.

Stella Type Null Value
=========== ===========

INTEGER stella::null-integer
FLOAT stella::null-float
STRING stella::null-string

8.2.1.4 Wrapped Literal Values

Literal values (integers, floats, strings, etc.) that are used in PowerLoom appear as wrapped
values. The PowerLoom API functions object-to-... can be used to coerce the values
into the appropriate return type.

<to be written: wrapping values>

Chapter 8: PowerLoom API 53

8.2.1.5 Special Variables

All Stella special variables are implemented as Common Lisp special variables. Binding of
the values can be used normally.

8.2.1.6 CLOS Objects versus Structs

PowerLoom can be translated in one of two ways for Common Lisp. One method uses
CLOS objects as the basis for all Stella and PowerLoom objects. For faster execution, it is
also possible to use a version in which Stella and PowerLoom objects are implemented using
Common Lisp structs instead. This is controlled by the special variable cl-user::*load-
cl-struct-stella?*. If this is set to cl:t, then the struct version will be loaded. This
needs to be set before loading the ‘load-powerloom.lisp’ file.

8.2.2 C++ API

<to be written>

8.2.3 Java API

This section tells how to call the API functions in PowerLoom’s Java implementation from
a Java program. The Java translation is written for Java version 1.2. All of the PowerLoom
Interface functions appear as static methods of the class edu.isi.powerloom.PLI.

8.2.3.1 Initializing PowerLoom

PowerLoom needs to run initialization functions to set up its environment for proper op-
eration when it starts up. The simplest method for initializing PowerLoom is to use the
static method call:

PLI.initialize()

This must be called before using any PowerLoom features and before loading any Pow-
erLoom knowledge bases. It may be called more than once without ill effect.

8.2.3.2 PowerLoom Java Conventions

PowerLoom’s Java code is automatically generated by a translator from underlying Stella
code. The character set for legal Stella names is larger than the character set for legal Java
identifiers, so there is some mapping involved.

PowerLoom names are words separated by hyphen (-) characters. For Java, we have
attempted to closely follow the Java conventions:

• Class names begin with a capital letter and each word is capitalized. The hyphens from
the PowerLoom names are removed. Example:

Chapter 8: PowerLoom API 54

string-wrapper => StringWrapper

Exceptions are made for class names that would otherwise conflict with normal Java
Classes. In that case, the prefix "Stella " is added to each class name. At the moment
this applies only to the following exceptions:

object => Stella_Object
class => Stella_Class

• Method and Function names begin with a lower case letter but each subsequent word
is capitalized. The hyphens from PowerLoom names are removed. Example:

wrapper-value => wrapperValue

• Storage slots are implemented as Java fields. The names begin with a lower case letter
but each subsequent word is capitalized. The hyphens from PowerLoom names are
removed. Example:

dynamic-slots => dynamicSlots

• Global and Special variable names are written in all uppercase. The hyphens from
PowerLoom are replaced by underscore () characters. By convention, special variables
are written in PowerLoom with surrounding asterisk (*) characters. The asterisks are
replaced by dollar signs ($). Example:

html-quoted-characters => $HTML_QUOTED_CHARACTERS$

The most common non-alphanumeric characters are mapped as follows. A full set of
mappings is in section See Section 8.2.3.7 [Java Character Mapping], page 58.

? => P (for Predicate)
! => X (eXclamation)
$ => B (Buck)
% => R (peRcent)
& => A (Ampersand)
* => $ Special variable marker.

The character mappings use uppercase characters if the basic identifier uses mixed or
lower case. The mappings use lowercase characters if the basic identifier uses upper case.

Stella modules are mapped to Java packages. The basic system distribution includes the
following package hierarchy:

edu
isi

stella
javalib

powerloom
logic
pl_kernel_kb

loom_api

Basic system functionality and data structures such as Cons and List objects are defined
in stella. PowerLoom’s logic (concepts, relations, rules, etc.) are defined in the logic package.
There is a set of interface functions in the PLI package. They are described in their own
section below.

We recommend the following import statements in Java files that use PowerLoom:

Chapter 8: PowerLoom API 55

import edu.isi.stella.*;
import edu.isi.stella.javalib.*;
import edu.isi.powerloom.PLI;
import edu.isi.powerloom.logic.*;

Functions (in Java terms, static Methods) are translated as static methods on the class
of their first argument (as long as that argument is not a primitive type and is in the
same Stella module). Functions which take no arguments, those whose first argument is a
primitive type, and those whose first argument is a class not defined in the same module
are all placed into a class with the same name as the Stella module in which it appers. It
will be in the package corresponding to that Stella module. Java constructors should not
be called directly. Instead, there will be a static method new<ClassName> (with the class
name in mixed case!) that should be used instead.

Most of the functions of interest will be in the edu.isi.stella.Stella, edu.isi.powerloom.PLI
or edu.isi.powerloom.logic.Logic classes.

Methods typically refer to their first argument as "self".

Methods which return more than one return value will take a final argument which is
an array of Stella_Object, which will be used to return the additional arguments.

Primitive types in Stella have the following mapping in Java:

Stella Java
====== ====
INTEGER int
FLOAT double
NUMBER double
CHARACTER char
BOOLEAN boolean
STRING String
MUTABLE-STRING StringBuffer

NATIVE-OUTPUT-STREAM java.io.PrintStream
NATIVE-INPUT-STREAM java.io.PushbackInputStream (May change!!!)

Inside Stella/PowerLoom objects and collections, primitive types are wrapped using
Stella wrappers instead of Java’s primitive classes. So integers will be wrapped as
edu.isi.stella.IntegerWrapper rather than java.lang.Integer. Wrappers have a field called
wrapperValue which accesses the internal value. Example of use:

import edu.isi.stella.*;
import edu.isi.stella.javalib.*;
...
IntegerWrapper iWrap = IntegerWrapper.newIntegerWrapper(42);
...
int answer = iWrap.wrapperValue;
...

Chapter 8: PowerLoom API 56

8.2.3.3 Using the PLI Class

To make interoperability between PowerLoom and Java a little simpler, we are providing a
(PowerLoom Interface class named PLI which handles synchronization issues, setting and
restoring the reasoning context, and the a more convenient use of some Java-native objects
rather than Stella objects. Generally that means that strings are used for PowerLoom
expressions and return values rather than Stella Cons objects.

Details about the methods can be found in the section See Chapter 8 [PowerLoom API],
page 38. The names of functions in that section will need to be converted to their Java
equivalents using the conventions described in See Section 8.2.3.2 [PowerLoom Java Conven-
tions], page 53. We also provide javadoc documentation for the edu.isi.powerloom.PLI
class. We recommend using this method for accessing PowerLoom functionality. We expect
to expand the range of PowerLoom interface functions that have an analog in the PLI class
over time.

8.2.3.4 Using Stella Objects

Stella objects can also be used directly. The most common ones used by PowerLoom users
are Module and LogicObject. Other potentially useful Stella objects are Cons, Symbol,
Keyword and List. Except for LogicObject, these are in the edu.isi.stella package.
LogicObject is in the edu.isi.powerloom.logic package.

If one wishes to construct Cons objects (for example to create objects to pass to
interface functions, one would begin by building items up using Stella_Object.cons
static method, which takes a stella object and a cons. The empty cons is kept in the
edu.isi.stella.Stella.NIL static variable. Another way to create stella objects is to
use edu.isi.stella.Stella.unstringify static method. This method takes a string
representation of a stella object and returns the object. If passed a list, an object of type
Cons will be returned.

As an alternative, one can also convert one and two dimensional arrays of Stella_Object
into Cons objects using the overloaded function edu.isi.stella.javalib.arrayToCons.
These functions will return Cons objects constructed from the input arrays.

Keywords and symbols are objects that are stored in global static variables. The variable
names are all in upper case and are constructed by concatenating the tag SYM with the
module name and the name of the symbol or concatenating the tag KWD with the name of
the keyword. For example, the symbol BACKWARD in the logic module would be stored
in

edu.isi.powerloom.logic.Logic.SYM_LOGIC_BACKWARD

whereas the keyword :ERROR in the stella module would be in

edu.isi.stella.Stella.KWD_ERROR

8.2.3.5 PowerLoom and Threads

The most important consideration when using PowerLoom in a threaded environment is
that the core of PowerLoom must not execute in concurrently running threads. The PLI

Chapter 8: PowerLoom API 57

class takes care of this for interface functions that run through that class. Other PowerLoom
functions that are called need to synchronize on a lock object

edu.isi.powerloom.logic.Logic.$POWERLOOM_LOCK$

for proper operation. This is not needed for setting Special Variables, since they are
implemented on a per-thread basis. The most important special variable is the reasoning
context. See See Section 8.2.3.6 [Setting and Restoring Global Variable Values], page 57.

8.2.3.6 Setting and Restoring Global Variable Values

As noted above, special variables in Stella are implemented as static fields in a catchall
class named the same as the Stella module. It will be in the java package corresponding to
that Stella module. The values of Special variables are stored in Java objects of the type
StellaSpecialVariable, a subclass of Java’s InheritableThreadLocal. Any changes
made to the values will not affect any other running threads. This means that the changes
don’t need to be synchronized. Note that global (as opposed to special) variables don’t use
these objects.

Numbers and boolean values are stored in special variables using the corresponding Java
classes Integer, Double, Boolean, etc. The naming convention is to have all upper case
letters with a dollar sign ($) at the beginning and end of the name.

To temporarily change the value of one of these variables, users will need to be responsible
for saving and restoring the old values. Use of the "try ... finally ..." construct is very
useful for this, since it guarantees that the restore of values will be done. An example follows
of how to safely change modules. Contexts should be changed using the functions, although
other global variables can be changed by using the set method. Note that we use variables
of type Object to hold the values, since that avoids the need to cast when extracting the
current value, since the only operation we do with the current value is save it to restore it
later.

import edu.isi.stella.*;

// CONTEXT CHANGE.
Object savedModule = Stella.$MODULE$.get();
Module newModule

= Stella.getStellaModule(contextName, true);
if (newModule == null) { // Handle missing module
}
try {

Module.changeCurrentModule(newModule)
// Code that uses the newModule

} finally {
Module.changeCurrentModule(savedModule);

}

// INTEGER VALUE CHANGE:

Chapter 8: PowerLoom API 58

Object savedValue = Stella.$SAFETY$.get();
try {

Stella.$SAFETY$.set(new Integer(3));
// Code that uses the newModule

} finally {
Stella.$SAFETY$.set(savedValue);

}

// BOOLEAN VALUE CHANGE:
Object savedValue = Stella.$PRINTREADABLY$.get();
try {

Stella.$PRINTREADABLY$.set(Boolean.TRUE);
// Code that uses the newModule

} finally {
Stella.$PRINTREADABLY$.set(savedValue);

}

The need to change the module using this type of code can be largely avoided by using
the functions in the PLI interface package. They take a module argument and can handle
the binding and restoration of the module value themselves.

8.2.3.7 Java Character Mapping

The full Stella to Java character mapping is the following. The character mappings use
uppercase characters if the basic identifier uses mixed or lower case. The mappings use
lowercase characters if the basic identifier uses upper case.

Stella Java Mnemonic
====== ==== ========

! => X (eXclamation)
" => _
=> H (Hash)
$ => B (Buck)
% => R (peRcent)
& => A (Ampersand)
’ => Q (Quote)
(=> _
) => _
* => $
+ => I (Increase)
, => _
- => _
. => D (Dot)
/ => S (Slash)
: => C (Colon)

Chapter 8: PowerLoom API 59

; => _
< => L (Less than)
= => E (Equal)
> => G (Greater than)
? => P (Predicate)
@ => M (Monkey tail)
[=> J (Arbitrary (array index?))
\ => _
] => K (Arbitrary (array index?)
^ => U (Up arrow)
‘ => _
{ => Y (Arbitrary (adjacent free letter))
| => V (Vertical bar)
} => Z (Arbitrary (adjacent free letter))
~ => T (Tilde)

<space> => _

8.2.3.8 Stella Exceptions in Java

Stella exceptions are implemented as a subtype of java.lang.Exception (actually
RunTimeException) and may be caught normally. All Stella Exceptions belong to the
edu.isi.stella.StellaException class or one of its subclasses. The more specfic
PowerLoom exceptions belong to the edu.isi.powerloom.logic.LogicException class
or one of its subclasses.

8.2.3.9 Iteration in Java

Iteration in Stella (and by extension) PowerLoom is organized a little bit differently than
in Java. You can either use the Stella iterators directly, or else use one of the wrapper
classes described in the section See Section 8.2.3.10 [Utility Classes for Java], page 60. It
will present a more familiar Java interface. Since the iteration models are a bit different, it
would be unwise to mix accesses between the iteration models.

Stella iterators do not compute any values until the next? method (in Java: nextP) is
called. This method will try to compute the next value of the iterator and it will return a
boolean value which is true if more values are present. Each time it is called, the iteration
advances. Values can be read out of the value field of the iterator, which will have type
Stella_Object. Some iterators will also have a key field which can be read.

The way one would normally use a Stella iterator is as follows, with possible casting of
the value field:

Iterator iter = ...;

while (iter.nextP()) {
processValue(iter.value);

}

Chapter 8: PowerLoom API 60

8.2.3.10 Utility Classes for Java

To make interoperation of Stella and Java easier, there are several convenience classes for
wrapping Stella iterators and having them behave like Java enumerations or iterators. These
convenience classes are in the edu.isi.stella.javalib package:

ConsEnumeration.java Enumeration class for Cons objects
ConsIterator.java Iterator class for Cons objects
StellaEnumeration.java Enumeration interface to Stella’s Iterator
StellaIterator.java Iterator interface to Stella’s Iterator

All of the iterators and enumerators return objects that are actually of type Stella_
Object, but the signature specifies java.lang.Object as required for compatibility with
the standard Java signature. The Cons... classes take a Cons in their constructor. The
Stella... classes take a edu.isi.stella.Iterator object in their constructor.

Chapter 9: Built-In Relations 61

9 Built-In Relations

This chapter lists all of the relations that come predefined in PowerLoom. They are defined
in the module PL-KERNEL; users can access them by including or using the PL-KERNEL
module within the declarations of their own modules.

[Function]* ((?x number) (?y number)) :-> (?z number)
Function that multiplies two numbers.

[Function]+ ((?x number) (?y number)) :-> (?z number)
Function that adds two numbers.

[Function]- ((?x number) (?y number)) :-> (?z number)
Function that subtracts two numbers.

[Function]/ ((?x number) (?y number)) :-> (?z number)
Function that divides two numbers.

[Relation]< ((?x number) (?y number))
True if ?x < ?y.

[Relation]=< ((?x number) (?y number))
True if ?x <= ?y.

[Relation]> ((?x number) (?y number))
True if ?x > ?y.

[Relation]>= ((?x number) (?y number))
True if ?x >= ?y.

[Relation]ABSTRACT ((?r relation))
True if there are no direct assertions made to the relation ?r.

[Concept]AGGREGATE ((?a aggregate))
?a is an aggregate

[Relation]ANTISYMMETRIC ((?r relation))
A binary relation ?r is antisymmetric if whenever (?r ?x ?y) is true (?r ?y ?x) is false
unless ?x equals ?y.

[Function]ARITY ((?r relation)) :-> (?arity integer)
The number of arguments/domains of the relation ?r.

[Concept]BINARY-RELATION ((?r relation))
The class of binary relations.

[Relation]BOUND-VARIABLES ((?arguments thing))
True if all arguments are bound. The bound-variables predicate is used as a per-
formance enhancer, to prevent other predicates from backchaining excessively while
searching for bindings of certain of their arguments. Purists will shun the use of this
predicate, but some rules are inherently inefficient without the addition of some kind

Chapter 9: Built-In Relations 62

of control logic. Because evaluation of the bound-variables predicate evaluation
of predicates being guarded, using this predicate has the side-effect of locally dis-
abling query optimization. (See collect-into-set for an example that uses bound-
variables.

[Function]CARDINALITY ((?c set)) :-> (?card integer)
Function that returns the cardinality of a set.

[Relation]CLOSED ((?c collection))
The collection ?c is closed if all of its members are known. Asserting that a re-
lation is closed makes certain computations easier. For example, suppose that the
relation happy is closed, implying that all things that are happy will be asserted as
such. To prove (not (happy Fred)), PowerLoom can use a negation-as-failure proof
strategy which returns TRUE if Fred cannot be proved to be happy. Also, if the re-
lation children is closed, then a value for the expression (range-max-cardinality
children Fred) can be inferred merely by counting the number of fillers of the
children role on Fred.

[Function]COLLECT-INTO-SET ((?c collection)) :-> (?l set)
Infer as many members of ?c as possible and collect them into a set ?l. For example,
here is a rule used to compute bindings for the fillers predicate:

(<= (fillers ?r ?i ?v)
(and (bound-variables ?r ?i)

(collect-into-set (setofall ?v (holds ?r ?i ?v)) ?members)))

When ?r and ?i are bound, the term (setofall ?v (holds ?r ?i ?v)) evaluates to
a unary relation satisfied for each filler of the relation in ?r applied to the instance
in ?i. collect-into-set causes the extension of this (dynamically-defined) unary
relation to be computed. Note the use of bound-variables to screen out unbound
variables before they are passed to the setofall predicate.

[Concept]COLLECTION ((?c aggregate))
The class of all collections. This includes all sets, lists, concepts, and relations.

[Function]COLLECTIONOF ((?m thing)) :-> (?c collection)
Abstract function existing to subsume SETOF and LISTOF.

[Relation]COMMENT ((?x thing) (?s string))
?s is a comment attached to ?x. Comments are a generalization of other annotations
such as documentation and issue strings.

[Relation]COMMUTATIVE ((?r relation))
A relation ?r is commutative if its truth value is invariant with any permutation of
its arguments.

[Concept]CONCEPT ((?x relation))
The class of reified unary relations. The Powerloom notion of concept corresponds to
the object-oriented notion of class. From a logic standpoint, the notion of a concept
is hard to distinguish from the notion of unary relation. The conceptual distinction
is best illustrated in the domain of linguistics, where concepts are identified with
collective nouns while unary relations are identified with adjectives. For example,
Rock is a concept, while rocky is a unary relation.

Chapter 9: Built-In Relations 63

[Function]CONCEPT-PROTOTYPE ((?c concept)) :-> (?i thing)
Function that, given a concept, returns a prototypical instance that inherits all con-
straints that apply to any concept member, and has no additional constraints.

[Relation]COVERING ((?c collection) (?cover set))
True if ?c is a subset of the union of all collections in the set ?cover (see disjoint-
covering).

[Relation]CUT ((?arguments thing))
Prolog-like CUT. Succeeds the first time and then fails. Side-effect: Locally disables
query optimization.

[Relation]DIRECT-SUBRELATION ((?r relation) (?sub relation))
True iff ?sub is a direct subrelation of ?r; written in set notation, ?sub < ?r, and there
is no ?s such that ?sub < ?s < ?r. This relation will generate bindings for at most one
unbound argument.

[Relation]DIRECT-SUPERRELATION ((?r relation) (?super relation))
True iff ?super is a direct superrelation of ?r; in set notation, ?super > ?r, and there
is no ?s such that ?super > ?s > ?r. This relation will generate bindings for at most
one unbound argument.

[Relation]DISJOINT ((?c1 collection) (?c2 collection))
True if the intersection of ?c1 and ?c2 is empty.

[Relation]DISJOINT-COVERING ((?c collection) (?disjointcover set))
True if ?c is covered by the collections in ?disjointCover and if the member sets
in ?disjointCover are mutually-disjoint. For example the concepts Igneous-Rock,
Metamorphic-Rock, and Sedimentary-Rock together form a disjoint covering of the
concept Rock.

[Relation]DOCUMENTATION ((?x thing) (?s string))
?s is a documentation string attached to ?x. Some of the PowerLoom text processing
tools look for documentation strings and import them into documents.

[Relation]DOMAIN ((?r relation) (?d concept))
True if for any tuple T that satifies ?r, the first argument of T necessarily belongs
to the concept ?d. domain exists for convenience only and is defined in terms of
nth-domain. domain assertions should be avoided, since they create redundant nth-
domain propositions (use nth-domain directly).

[Relation]DUPLICATE-FREE ((?c collection))
?c is duplicate-free if no two members denote the same object.

[Concept]DUPLICATE-FREE-COLLECTION ((?c duplicate-free))
?c is free of duplicates

[Relation]EMPTY ((?c collection))
The collection ?c is empty if it has no members. Note that for collections possessing
open-world semantics, (e.g., most concepts) the fact that the collection has no known
members does not necessarily imply that it is empty.

Chapter 9: Built-In Relations 64

[Relation]EQUIVALENT-RELATION ((?r relation) (?equiv relation))
True if ?r is equivalent to ?equiv; written in set notation, ?r = ?equiv. This relation
will generate bindings for at most one unbound argument.

[Relation]EXAMPLE ((?r relation) (?e thing))
?e is an example of (the use of) ?r.

[Function]FILLERS ((?r relation) (?i thing)) :-> (?members set)
Given a relation ?r and instance ?i, returns a set of known fillers of ?r applied to
?i. IMPORTANT: this also collects intensional fillers such as skolems that might be
identical extensionally.

[Concept]FRAME-PREDICATE ((?c relation))
A frame predicate is a second-order relation that is used to describe constraints on the
set of fillers for a binary relation applied to an instance. Examples of frame predicates
are range-cardinality, range-type, and numeric-minimum. Frame predicates are
typically used to capture the kinds of relations manipulated by description logic sys-
tems such as USC/ISI’s Loom system.

[Concept]FUNCTION ((?r relation))
A relation is a function if its last argument is a function of its first n-1 arguments,
i.e., if it is a single-valued relation. Functions explicitly declared as such differ from
relations in that they may appear syntactically as a term applied to n-1 arguments.
For example, to express the sentence "two plus two equals four", because + is a
function we can write (= (+ 2 2) 4). The same sentence written in relational syntax
would look like (+ 2 2 4). If a relation is introduced using the defrelation syntax
and also declared to be single-valued, the functional syntax does not apply; only the
explicit use of deffunction sanctions the use of that syntax.

[Relation]GOES-FALSE-DEMON ((?r relation)
(?computation computed-procedure))

Names a computation (a function) that is attached (logically) to ?r Each time a
proposition with predicate ?r becomes false, the function is applied to that proposi-
tion.

[Relation]GOES-TRUE-DEMON ((?r relation)
(?computation computed-procedure))

Names a computation (a function) that is attached (logically) to ?r Each time a
proposition with predicate ?r becomes true, the function is applied to that proposition.

[Relation]GOES-UNKNOWN-DEMON ((?r relation)
(?computation computed-procedure))

Names a computation (a function) that is attached (logically) to ?r Each time a
proposition with predicate ?r becomes unknown, the function is applied to that propo-
sition.

[Relation]HOLDS ((?relation relation) (?arguments thing))
True if the tuple ?arguments is a member of the relation ?relation. holds is a variable
arity predicate that takes a relation as its first argument, and zero or more additional

Chapter 9: Built-In Relations 65

arguments. It returns values equivalent to a subgoal that has the first argument as
a predicate and the remaining arguments shifted one place to the left. For holds to
succeed, the (first) relation argument must be bound – PowerLoom will NOT cycle
through all relations searching for ones that permit the proof to succeed. However,
users can obtain the same effect if they choose by using other second-order predicates
to generate relation bindings. For example, the query

(retrieve all ?x (and (Relation ?r)
(holds ?r Fred ?x)))

retrieves all constants for which there is some binary relation that relates Fred to
that relation.

[Relation]IMAGE-URL ((?x thing) (?url string))
?url is a URL pointing to an image illustrating ?x. The Ontosaurus browser looks for
image-url values attached to objects it is presenting, and displays them prominently,
thereby spiffing up its displays.

[Relation]INEQUALITY ((?x number) (?y number))
Abstract superrelation of inequality relations.

[Relation]INSTANCE-OF ((?x thing) (?c concept))
True if ?x is an instance of ?c. Can be used to generate concept values of ?c, given
an instance ?x.

[Function]INVERSE ((?r binary-relation)) :-> (?inverserelation thing)
Function that returns the inverse relation for ?r. PERFORMANCE NOTE: for best
results there should be only one (inverse R I) assertion per relation pair R and I.
In that case R is viewed as the canonical relation and I simply provides a different
access mechanism to the canonical relation. In a logic-based KR paradigm inverse
relations are redundant and do not add anything that couldn’t be represented or
queried without them, however, sometimes they can provide some extra convenience
for users. Asserting (inverse I R) also will not cause an error but can degrade
backward inference performance due to the extra redundant rule that gets generated.
If domain rules will be written in terms of both R and I (as opposed to only R),
(inverse I R) should be asserted also to get full inferential connectivity between the
two relations.

[Relation]IRREFLEXIVE ((?r relation))
A binary relation ?r is irreflexive if it is false when both of its arguments are identical.

[Relation]ISSUE ((?x thing) (?s string))
?s is an issue attached to ?x. An issue string normally comments on a topic that has
not been resolved to everyone’s satisfaction.

[Relation]IST ((?context context) (?p proposition))
True if proposition ?p is true in context ?context. The IST (is true) relation allows
one to evaluate a query or rule in more than one context. A common use of IST is
in defining lifting axioms that import knowledge from one context to another. For
example, below is a rule that accesses a patient-record relation in a module called
Medical-Kb, lifts-out the age column, and imports it into a has-age relation in
the current context.

Chapter 9: Built-In Relations 66

(<= (has-age ?person ?age)
(and (has-ssn ?person ?ssn)

(exists (?1 ?2 ?3 ?4)
(ist Medical-Kb (patient-record ?ssn ?1 ?2 ?age ?3 ?4)))))

[Function]LENGTH ((?x thing)) :-> (?z integer)
Function that returns the length of a string or a logical list. NOT YET IMPLE-
MENTED FOR LISTS.

[Relation]LENGTH-OF-LIST ((?l collection) (?length integer))
Computes the length of the list or set ?l.

[Relation]LEXEME ((?r thing) (?s string))
?s is a lexeme for the relation or individual ?r. A relation or individual ?r can have
zero or more lexemes, words that are natural langage equivalents of a logical constant.
The same lexeme may be attached to more than one constant.

[Concept]LIST ((?l ordered))
A list is an ordered collection of elements. The range of the function listof consists
of elements of type List.

[Function]LISTOF ((?m thing)) :-> (?c list)
Term-forming function that defines an ordered list consisting of all function argu-
ments. Within logical expressions listof is most commonly used in conjunction
with the member-of predicate. For example the query

(retrieve ?x (member-of ?x (listof a b c)))

returns the constants a, b, and c on successive iterations.

[Relation]MAXIMUM-VALUE ((?l collection) (?max number))
Binds ?max to the maximum of the numbers in the list ?l.

[Relation]MEAN-VALUE ((?l collection) (?mean number))
Binds ?mean to the mean of the numbers in ?l.

[Relation]MEDIAN-VALUE ((?l collection) (?median number))
Binds ?median to the median of the numbers in ?l.

[Relation]MEMBER-OF ((?x thing) (?c collection))
TRUE if ?x is a member of collection ?c. A common use of member-of is for binding
a variable to successive members in a list or set (see listof and setof).

[Relation]MINIMUM-VALUE ((?l collection) (?min number))
Binds ?min to the minimum of the numbers in the list ?l.

[Relation]MUTUALLY-DISJOINT-COLLECTION ((?s set))
True if the members of ?s are pair-wise disjoint. Used most often to expresse disjoint-
ness constraints between concepts. For example

(mutually-disjoint-collection (setof MAN WOMAN))

states that the concepts MAN and WOMAN are disjoint.

Chapter 9: Built-In Relations 67

[Relation]NTH-DOMAIN ((?r relation) (?i integer) (?d concept))
True if the nth value for a tuple T satisfying ?r must belong to the concept ?d.
Argument counting starts at zero.

[Relation]NUMERIC-MAXIMUM ((?r relation) (?i thing) (?n number))
Relation that specifies an upper bound ?n on any numeric value that can belong to
the set of fillers of the relation ?r applied to ?i.

[Relation]NUMERIC-MINIMUM ((?r relation) (?i thing) (?n number))
Relation that specifies a lower bound ?n on any numeric value that can belong to the
set of fillers of the relation ?r applied to ?i.

[Concept]NUMERIC-SET ((?s collection))
?s is a set of numbers

[Relation]ORDERED ((?c collection))
?c is ordered if the ordering of its members is significant. Lists are ordered, while sets
are not.

[Relation]PHRASE ((?r thing) (?s string))
A phrase is a variablized sentence, a template, that is used to express individual ax-
iomatic facts as natural language sentences. By convention, a phrase contains one
or more occurrences of each variable in a relation or concept definition, it does not
begin with a capital letter, and it has no concluding period. Systematic attachment
of phrases to relations can be leveraged by tools that generate natural language para-
phrases of logic sentences.

[Function]PROJECT-COLUMN ((?i integer) (?c collection)) :-> (?l list)
Project elements in column ?i (zero-based) of the tuples of ?c and collect them into
a list ?l.

[Relation]PROPER-SUBRELATION ((?r relation) (?sub relation))
True iff ?sub is a proper subrelation of ?r; written in set notation, ?sub < ?r. This
relation will generate bindings for at most one unbound argument.

[Relation]PROPER-SUPERRELATION ((?r relation) (?super relation))
True iff ?super is a proper superrelation of ?r; written in set notation, ?super > ?r.
This relation will generate bindings for at most one unbound argument.

[Relation]RANGE ((?r relation) (?rng concept))
True if for any tuple T that satifies ?r, the last argument of T necessarily belongs to
the concept ?rng. range exists for convenience only and is defined in terms of nth-
domain. range assertions should be avoided, since they create redundant nth-domain
propositions (use nth-domain directly).

[Function]RANGE-CARDINALITY ((?r relation) (?i thing)) :->
(?card integer)

Function that returns the cardinality of the set of fillers of the relation ?r applied
to ?i. The cardinality function returns a value only when the relations range-min-
cardinality and range-max-cardinality compute identical values, i.e., when the
best lower and upper bounds on the cardinality are equal. Each of these bounding
functions employs a variety of rules to try and compute a tight bound.

Chapter 9: Built-In Relations 68

[Relation]RANGE-CARDINALITY-LOWER-BOUND ((?r relation)
(?i thing) (?lb integer))

Relation that specifies a lower bound on the cardinality of the set of fillers of the
relation ?r applied to ?i. The difference between range-cardinality-lower-bound
and range-min-cardinality is subtle but significant. Suppose we state that nine is
a lower bound on the number of planets in the solar system, and then ask if eight is
(also) a lower bound:

(assert (range-cardinality-lower-bound hasPlanets SolarSystem 9))
(ask (range-cardinality-lower-bound hasPlanets SolarSystem 8)) ==> TRUE

PowerLoom will return TRUE. However if we ask if the minimum cardinality of the
solar system’s planets is eight, we get back UNKNOWN

(ask (range-min-cardinality hasPlanets SolarSystem 8)) ==> UNKNOWN

because eight is not the tightest lower bound.

[Relation]RANGE-CARDINALITY-UPPER-BOUND ((?r relation)
(?i thing) (?ub integer))

Relation that specifies an upper bound on the cardinality of the set of fillers of the
relation ?r applied to ?i. (see the discussion for range-cardinality-lower-bound).

[Function]RANGE-MAX-CARDINALITY ((?r relation) (?i thing)) :->
(?maxcard integer)

Returns the strictest computable upper bound on the cardinality of the set of fillers
of the relation ?r applied to ?i. (see the discussion for range-cardinality-lower-
bound).

[Function]RANGE-MIN-CARDINALITY ((?r relation) (?i thing)) :->
(?mincard integer)

Returns the strictest computable lower bound on the cardinality of the set of fillers
of the relation ?r applied to ?i. (see the discussion for range-cardinality-lower-
bound).

[Relation]RANGE-TYPE ((?r relation) (?i thing) (?type concept))
Relation that specifies a type/range of the relation ?r applied to ?i. Multiple range
types may be asserted for a single pair <?r,?i>. Technically, a retrieval of types for a
given pair should include all supertypes (superconcepts) of any type that is produced,
but for utility’s sake, only asserted or directly inferrable types are returned.

[Relation]REFLEXIVE ((?r relation))
A binary relation ?r is reflexive if it is always true when both of its arguments are
identical.

[Concept]RELATION ((?x set))
The class of relations. This includes all concepts and all functions.

[Relation]RELATION-COMPUTATION ((?r relation)
(?computation computed-procedure))

Names a computation (a function) that evaluates an (atomic) relation proposition
during query processing. The function is passed a proposition for evaluation for
which all arguments are bound. The function returns a BOOLEAN if it represents a
predicate, or some sort of value if it is a function.

Chapter 9: Built-In Relations 69

[Relation]RELATION-CONSTRAINT ((?r relation)
(?computation computed-procedure))

Names a computation (a function) that evaluates an (atomic) relation proposition
during query processing. The function is passed a proposition for evaluation for which
at most one argument is unbound. The function returns a BOOLEAN if it represents
a predicate, or some sort of value if it is a function. If all arguments are bound the
function computes whether the constraint holds. If all but one argument is bound
and the unbound argument is a pattern variable then the missing value is computed.

[Relation]RELATION-EVALUATOR ((?r relation)
(?ev computed-procedure))

Names an evaluator (a function) that evaluates an (atomic) relation proposition
during constraint propagation. This defines an extensible means for computing using
auxiliary data structures. The function is passed a proposition for evaluation. All
side-effects are made by updates to the proposition, or by generating other assertions.

[Relation]RELATION-SPECIALIST ((?r relation)
(?sp computed-procedure))

Names a specialist (a function) that evaluates an (atomic) relation proposition dur-
ing query processing. This defines an extensible means for computing with the control
stack. The function is passed a CONTROL-FRAME that contains the proposition,
and returns a keyword :FINAL-SUCCESS, :CONTINUING-SUCCESS, :FAILURE,
or :TERMINAL-FAILURE that controls the result of the computation.

[Concept]SCALAR ((?x scalar))
The class of scalar quantities.

[Concept]SCALAR-INTERVAL ((?x scalar))
An interval of scalar quantities.

[Concept]SET ((?s duplicate-free-collection))
This class denotes the mathematical notion of a set; a collection that has no dupli-
cates.

[Function]SETOF ((?m thing)) :-> (?c set)
Term-forming function that defines an enumerated set consisting of all function ar-
guments. setof is like listof except that it removes duplicate values.

[Relation]SINGLE-VALUED ((?c relation))
The relation ?c is single-valued if the value of its last argument is a function of all
other arguments. All functions are single-valued (see function).

[Relation]SQUARE-ROOT ((?x number) (?y number))
Relation that returns the positive and negative square roots: ?y = sqrt(?x). For
positive roots only see function SQRT.

[Relation]STANDARD-DEVIATION ((?l collection) (?sd number))
Binds ?sd to the standard deviation of the numbers in ?l.

Chapter 9: Built-In Relations 70

[Function]STRING-CONCATENATE ((?x1 string) (?x2 string)) :->
(?x3 string)

Concatenate strings ?x1 and ?x2 and bind ?x3 to the result.

[Relation]SUBRELATION ((?r relation) (?sub relation))
True iff ?sub is a subrelation of ?r; written in set notation, ?sub =< ?r. This relation
will generate bindings for at most one unbound argument.

[Relation]SUBSET-OF ((?sub collection) (?super collection))
True if ?sub is a subset of ?super. For performance reasons, the subset-of predicate
refuses to search for bindings if both of its variables are unbound. Implementation
note: subset-of is treated specially internally to PowerLoom, and hence Powerloom
does not permit the augmentation of subset-of with additional inference rules. In
otherwords, subset-of behaves semantically like an operator instead of a relation.

[Function]SUBSTRING ((?s string) (?start integer) (?end integer)) :->
(?sub string)

Generate the substring of ?s starting at position ?start (zero-based), ending just
before position ?end and bind ?sub to the result. This is the PowerLoom equivalent
to the STELLA method subsequence. In addition, this function can be used to
locate substrings in strings by supplying values for ?s and ?sub and allowing ?start
and ?end to be bound by the function specialist. In other words, (retrieve all (?start
?end) (substring "foo" ?start ?end "o")) ==> ?start = 1, ?end = 2, ?start = 2, ?end
= 3.

[Relation]SUM ((?l collection) (?sum number))
Binds ?sum to the sum of the numbers in the list ?l.

[Relation]SUPERRELATION ((?r relation) (?super relation))
True iff ?super is a superrelation of ?r; written in set notation, ?super >= ?r. This
relation will generate bindings for at most one unbound argument.

[Relation]SYMMETRIC ((?r relation))
A binary relation ?r is symmetric if it is commutative.

[Relation]SYNONYM ((?term thing) (?synonym thing))
Assert that ?synonym is a synonym of ?term. This causes all references to ?synonym
to be interpreted as references to ?term. Retraction eliminates a synonym relation.

[Relation]TOTAL ((?r function))
True if the function ?r is defined for all combinations of inputs. By default, functions
are not assumed to be total (unlike Prolog, which does make such an assumption.
For example, if we define a two-argument function foo and then retrieve its value
applied to some random instances a and b, we get nothing back:

(deffunction foo (?x ?y) :-> ?z)
(retrieve ?x (= ?x (foo a b)))

However, if we assert that foo is total, then we get a skolem back when we execute
the same retrieve:

(assert (total foo))
(retrieve ?x (= ?x (foo a b)))

Chapter 9: Built-In Relations 71

[Relation]TRANSITIVE ((?r relation))
A binary relation ?r is transitive if (?r ?x ?y) and (?r ?y ?z) implies that (?r ?x ?z).
Note that functions cannot be transitive, since their single-valuedness would not allow
multiple different values such as (?r ?x ?y) and (?r ?x ?z) due to the Unique Names
Assumption made by PowerLoom.

[Relation]TYPE-OF ((?c concept) (?x thing))
True if ?x is a member of the concept ?c.

[Function]VALUE ((?function function) (?arguments thing)) :-> (?value thing)
True if applying ?function to ?arguments yields the value ?value. The value predi-
cate is the analog of holds, except that it applies to functions instead of relations.

[Relation]VARIABLE-ARITY ((?r relation))
Asserts that the relation ?r can take a variable number of arguments.

[Relation]VARIANCE ((?l collection) (?variance number))
Binds ?variance to the variance of the numbers in ?l.

Chapter 10: Miscellaneous 72

10 Miscellaneous

This is a catch-all section for documented functions, methods and relations that haven’t
been categorized yet into any of the previous sections. They are in random order and many
of them will never be part of the official PowerLoom interface. So beware!

[Method]2-d-element ((array 2-d-array) (row integer) (column integer)) :
(like (any-value self))

Return the element of array at position [row, column].

[Method]2-d-element ((array 2-d-float-array) (row integer)
(column integer)) : float

Return the element of array at position [row, column].

[Method]2-d-element-setter ((array 2-d-array) (value object) (row integer)
(column integer)) : (like (any-value self))

Set the element of array at position [row, column] to value and return the result.

[Method]2-d-element-setter ((array 2-d-float-array) (value float)
(row integer) (column integer)) : (like (any-value self))

Set the element of array at position [row, column] to value and return the result.

[Command]add-testing-example ((form cons) (score partial-match-score)) :
Add a query and score pair to the master list of testing examples

[Command]add-training-example ((form cons) (score partial-match-score))
:

Add a query and score pair to the master list of training examples

[Function]all-asserted-types ((self object)) : (cons of named-description)
Return a set of all of the types that are asserted to be satisfied by self.

[Function]all-class-instances ((type surrogate)) : cons
Return a set of instances that belong to the class type.

[Function]all-cycles ((module module) (local? boolean)) : (cons of cons)
Return a list of lists of descriptions that are provably co-extensional.

[Function]all-direct-subrelations ((relation named-description)
(removeEquivalents? boolean)) : (cons of named-description)

Return a set of relations that immediately specialize relation. If removeEquivalents?
(recommended), don’t include any relations equivalent to relation.

[Function]all-direct-superrelations ((relation named-description)
(removeEquivalents? boolean)) : (cons of named-description)

Return a set of relations that immediately subsume relation. If removeEquivalents?
(recommended), don’t include any relations equivalent to relation.

[Function]all-direct-types ((self object)) : (cons of logic-object)
Return a set of most specific types that are satisfied by self.

Chapter 10: Miscellaneous 73

[Function]all-equivalent-relations ((relation named-description)
(reflexive? boolean)) : (cons of named-description)

Return a list of all relations equivalent to relation. If reflexive?, include relation in
the list.

[Function]all-facts-of-instance ((self object) (includeunknownfacts? boolean)
(elaborate? boolean)) : (list of proposition)

Return a list of all definite (TRUE or FALSE) propositions attached to self.

[Command]all-facts-of-n ((n integer) &rest (instanceRefs name)) : (cons of
proposition)

This is a generalization of all-facts-of (which see). With n = 0 and only one
instance this command behaves just like all-facts-of. Otherwise, returns a cons
list of all definite (TRUE or FALSE) propositions that reference any of the instances
listed in instanceRefs, plus if n >= 1 all propositions that reference any instances that
are arguments of propositions collected in the previous step, plus if n >= 2... and so
on. That is, if we only consider binary propositions, this can be viewed as growing
a graph with instances as its nodes and predicates as its arcs starting from the set
of seed instanceRefs to depth n-1. Caution: with a fully connected KB and large
enough n this could return the whole knowledge base.
The returned propositions include those asserted to be true or false by default, but
it does not include propositions that are found to be true only by running the query
engine. Facts inferred to be true by the forward chainer will be included. Hence, the
returned list of facts may be longer in a context where the forward chainer has been
run then in one where it has not (see run-forward-rules).

[Function]all-instances ((module module) (local? boolean)) : (iterator of
logic-object)

Iterate over all instances (or individuals) visible from module. Only instances that
haven’t been deleted will be considered. If local?, only return instances created locally
in module.

[Function]all-named-descriptions ((module module) (local? boolean)) :
(iterator of named-description)

Iterate over all named descriptions visible from module. If local?, return only named
descriptions interned in module. If module is null, return all named descriptions
interned everywhere.

[Function]all-named-instances ((module module) (local? boolean)) :
(iterator of logic-object)

Iterate over all named instances (or individuals) visible from module. Only instances
that haven’t been deleted will be considered. If local?, only return instances created
locally in module.

[Function]all-named-terms ((module module) (local? boolean)) : (iterator
of object)

Iterate over all named terms visible from module. A term can be an instance (or
individual) as well as a description. Only terms that haven’t been deleted will be
considered. If local?, only return terms created locally in module.

Chapter 10: Miscellaneous 74

[Function]all-propositions ((module module) (local? boolean)) : (iterator of
proposition)

Iterate over all conceived propositions visible from module. Only propositions that
haven’t been deleted will be considered. If local?, only return propositions conceived
locally in module.

[Function]all-relation-values ((relation surrogate)
(nMinusOneArguments cons)) : cons

Return a set of values that satisfy the relation relation (a surrogate) applied to nMi-
nusOneArguments plus that last value.

[Command]all-sentences-of ((instanceRef object)) : (cons of
string-wrapper)

Return a list of sentences describing facts about instanceRef.

[Function]all-slot-value-types ((self logic-object) (relation surrogate)) :
(cons of named-description)

Return a set of the most specific types for fillers of the slot relation applied to self.

[Function]all-slot-values ((self logic-object) (relation surrogate)) : cons
Return a set of values for the slot relation (a surrogate) applied to self (an object).

[Function]all-subrelations ((relation named-description)
(removeequivalents? boolean)) : (cons of named-description)

Return a set of all (named) relations that specialize relation.

[Function]all-superrelations ((relation named-description)
(removeequivalents? boolean)) : (cons of named-description)

Return a set of all relations that subsume relation.

[Function]all-terms ((module module) (local? boolean)) : (iterator of
object)

Return a list of all terms visible from module. A term can be an instance (or individ-
ual) as well as a description. Only terms that haven’t been deleted will be considered.
If local?, only return terms created locally in module.

[Function]all-types ((self object)) : (cons of named-description)
Return a set of all of the types that are satisfied by self.

[Function]all-unnamed-terms ((module module) (local? boolean)) : iterator
Iterate over all unnamed terms visible from module. A term can be an instance (or
individual) as well as a description. Only terms that haven’t been deleted will be
considered. If local?, only return terms created locally in module.

[Function]allocate-supported-closure-iterator ((startnode cons)
(allocateadjacencyiterator function-code) (filterfunction function-code)) :
supported-closure-iterator

Similar to allocate-transitive-closure-iterator (which see), but return a
SUPPORTED-CLOSURE-ITERATOR instead.

Chapter 10: Miscellaneous 75

[Function]allocate-transitive-closure-iterator ((startNode object)
(allocateAdjacencyIterator function-code) (filterFunction function-code))
: iterator

Return an iterator that generates the transitive closure of applying iterators gener-
ated by allocateAdjacencyIterator to startNode. If filterFunction is non-null, that
function is applied as a filter to each node generated (nodes filtered out still generate
descendants, but they don’t get returned).

[Macro]apply-ask (&body (body cons)) : object
Execute a yes/no query composed of input-variables inputVariables and body
queryBody. Before executing, bind variables to inputBindings (in sequence).
(apply-ask inputVariables queryBody inputBindings)

[Function]apply-kappa? ((description description) (vector vector)) : boolean
Apply (inherit) the description description to members of the vector vector. Return
TRUE if no clash was detected. Constraint propagation happens only if it is enabled
prior to calling apply-kappa?.

[Macro]apply-retrieve (&body (body cons)) : object
Execute a query composed of io-variables variables and body queryBody. Before
executing, bind variables to inputBindings (in sequence). If one variable is left
unbound, returns a cons list of bindings of that variable. If two or more are unbound,
returns a cons list of cons lists of bindings: (apply-retrieve variables queryBody
inputBindings)

[Command]ask-partial (&rest (proposition&options parse-tree)) : float
Similar to ask (which see), but return the highest partial match score for the supplied
proposition instead of a truth value. If the option :MAXIMIZE-SCORE? is set to
FALSE, return after the first partial match score has been generated.

[Function]bottom? ((self object)) : boolean
Return TRUE if self is the undefined individual BOTTOM.

[Command]call-all-facts-of ((instanceRef object)) : (list of proposition)
Return a list of all definite (TRUE or FALSE) propositions that reference the instance
instanceRef.

[Function]call-ask ((query object)) : truth-value
Callable version of ask (which see). Accepts queries specified by a query iterator,
or specified as a CONS-list of arguments as they would be supplied to ask. Raises
LOGIC-EXCEPTIONs in case of illegal queries and logical expressions.

[Function]call-defconcept ((arguments cons)) : named-description
Callable version of the defconcept command (which see). Expects the same argu-
ments as defconcept but supplied as a list.

[Function]call-deffunction ((arguments cons)) : named-description
Callable version of the deffunction command (which see). Expects the same argu-
ments as deffunction but supplied as a list.

Chapter 10: Miscellaneous 76

[Function]call-defobject ((arguments cons)) : logic-object
Callable version of the defobject command (which see). Expects the same arguments
as defobject but supplied as a list.

[Function]call-defproposition ((arguments cons)) : proposition
Callable version of the defproposition command (which see). Expects the same
arguments as defproposition but supplied as a list.

[Function]call-defrelation ((arguments cons)) : named-description
Callable version of the defrelation command (which see). Expects the same argu-
ments as defrelation but supplied as a list.

[Function]call-list-undefined-relations ((module module) (local? boolean)) :
cons

Callable version of list-undefined-relations (which see).

[Function]call-propagate-constraints ((context context)) :
Trigger constraint propagation over all propositions in the module or world context.

[Function]call-retrieve ((query object)) : query-iterator
Callable version of retrieve (which see). Accepts queries specified by a query itera-
tor, or specified as a CONS-list of arguments as they would be supplied to retrieve.
Raises LOGIC-EXCEPTIONs in case of illegal queries and logical expressions.

[Function]call-retrieve-partial ((query object)) : query-iterator
Callable version of retrieve-partial (which see). Accepts queries specified by a
query iterator, or specified as a CONS-list of arguments as they would be supplied
to retrieve-partial. Raises LOGIC-EXCEPTIONs in case of illegal queries and
logical expressions.

[Function]call-run-forward-rules ((module module) (force? boolean)) :
Run forward inference rules in module module. If module is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless force? is set to TRUE, in which
case all forward rules are run or rerun.

[Function]call-set-inference-level ((levelKeyword keyword) (module module))
: keyword

Set the inference level of module to the level specified by levelKeyword. If module is
NULL and we are inside a query, set the level of the current query iterator. Otherwise,
set the level globally.

[Function]class? ((objectRef object)) : boolean
Return TRUE if objectRef denotes a class.

[Function]coerce-to-instance ((self object) (original object)) : logic-object
Return the logic instance referred to by self.

[Function]coerce-to-instance-or-literal ((self object) (original object)) :
object

Return the logic instance referred to by self, or self if it is a literal (e.g., string or
number) that can’t be coerced.

Chapter 10: Miscellaneous 77

[Function]coerce-to-vector ((self object)) : vector
Return a vector containing the elements in self. Coerce each element of self to be a
logic object or literal.

[Function]collection? ((objectRef object)) : boolean
Return TRUE if objectRef denotes a relation or a class.

[Command]conceive-term ((tree object)) : object
tree is a term expression (a string or an s-expression), or is a class reference (a symbol
or surrogate). Return a (possibly newly-conceived) term representing the internalized
representation of that term.

[Function]conjoin-truth-values ((tv1 truth-value) (tv2 truth-value)) :
truth-value

Return the logical conjunction of truth values tv1 and tv2.

[Method]consify ((self query-iterator)) : cons
Generate all solutions for the query self, and collect them into a cons list of result
tuples. If :SINGLETONS? TRUE, collect a list of atoms rather than a list of lists for
tuples of arity=1.

[Method]consify ((self query-solution-table)) : cons
Collect all solutions of self into a cons list and return the result.

[Method]consify ((self justification)) : cons
Return a CONS tree representation of the proof self. Each proof step is represented
as a CONS tree of the form (<proposition> (<key> <value>...) <antecedent>...) where
each <antecedent> is a CONS tree representing a subproof. The consification follows
the original proof structure literally, i.e., no uninteresting nodes such as patterns or
AND-introductions are suppressed.

[Method]consify-current-solutions ((self query-iterator)) : cons
Collect the current solutions of self into a cons list of result tuples. If :SINGLETONS?
TRUE, collect a list of atoms rather than a list of lists for tuples of arity=1.

[Function]consify-justification ((self justification) (style keyword)) : cons
Return a CONS tree representation of the proof self. Each proof step is represented
as a CONS tree of the form (<proposition> (<key> <value>...) <antecedent>...) where
each <antecedent> is a CONS tree representing a subproof. style indicates what nodes
in the proof tree should be suppressed. :RAW preserves the original structure literally,
:VERBOSE keeps AND- introductions but suppresses all auxiliary (non-logical) nodes
such as pattern nodes, and :BRIEF additionally suppresses AND-introduction nodes.

[Function]constant? ((objectRef object)) : boolean
Return TRUE if objectRef denotes a literal or scalar.

[Method]copy ((self justification)) : (like self)
Return a copy of the proof starting at self. Allocates all new justification objects, but
structure-shares other information such as propositions and substitutions.

Chapter 10: Miscellaneous 78

[Command]create ((name generalized-symbol)
&rest (type generalized-symbol)) : object

Create a logic object with name name and return it. If type is also supplied, assert
that the object belongs to that type.

[Function]create-2-d-array ((nof-rows integer) (nof-columns integer)
&rest (values object)) : 2-d-array

Create a two-dimensional array with nof-rows rows and nof-columns columns, and
initialize it in row-major-order from values. Missing values will be padded with NULL,
extraneous values will be ignored.

[Function]create-2-d-float-array ((nof-rows integer) (nof-columns integer)
&rest (values float)) : 2-d-float-array

Create a two-dimensional array with nof-rows rows and nof-columns columns, and
initialize it in row-major-order from values. Missing values will be padded with NULL,
extraneous values will be ignored.

[Function]create-float-vector (&rest (values float)) : float-vector
Return a vector containing values, in order.

[Function]create-marker-storage ((supportRecall? boolean)) : marker-table
Return a new marker storage object, used to remember with objects have been
marked. If supportRecall? is set, then the iterator recall-marked-objects can
be invoked on the new marker storage object.

[Function]create-vector (&rest (values object)) : vector
Return a vector containing values, in order.

[Command]current-inference-level () : normal-inference-level
Return the current inference level that is active in the current query, the current
module, or, otherwise, globally.

[Function]default-truth-value? ((self truth-value)) : boolean
Return TRUE if self is a default truth value.

[Macro]define-arithmetic-operation-on-wrappers ((name symbol)
(operation-name symbol)) : object

Defines name as an arithmetic comparision operation using the test test-name. It will
take two wrapped number parameters and return a wrapped number. The code will
use the appropriate test for the specific subtype of wrapped number actually passed
in, and return the appropriate subtype of wrapped number based on the normal
arithmetic contagion rules.
For example, if both input parameters are wrapped integers then the output will be
a wrapped integer. If the inputs are a wrapped integer and a wrapped float then the
output will be a wrapped float, etc.

[Macro]define-arithmetic-test-on-wrappers ((name symbol)
(test-name symbol)) : object

Defines name as an arithmetic comparision operation using the test test-name. It will
take two wrapped number parameters and return a boolean. The code will use the
appropriate test for the specific subtype of wrapped number actually passed in.

Chapter 10: Miscellaneous 79

[Macro]define-computed-constraint ((name symbol) (var-list cons)
(constraint-test cons) &body (position-computations cons)) : object

Defines name to be a constraint computation which uses constraint-test to deter-
mine if a fully bound set of variables satisfies the constraint. The forms in position-
computations are used to compute the value for each of the positions. All such
computations must set the variable value to be the result computed for the missing
position. Setting value to null for any such computation means that that particular
argument cannot be computed from the others. The input variables in var-list will
be bound to the N arguments to the constraint. The generated function will return
a Stella Object and take as inputs the values of the N arguments to the constraint.
A value of null means that the value is not available. If all arguments are not null,
then the return value will be a Stella wrapped boolean indicating whether the con-
straint is satisified or not. If more than one input value is null, then this constraint
code will not be called.

[Function]deobjectify-tree ((self object)) : object
Return a copy of self where all logic objects are replaced by their generated parse-
tree version. This is useful to convert the result of a retrieval query into a regular
parse tree.

[Method]describe-object ((self named-description) (stream output-stream)
(mode keyword)) :

Prints a description of self to stream stream. mode can be :terse, :verbose, or :source.
Used by describe.

[Method]description-name ((self named-description)) : symbol
Return the name of the description self.

[Method]description-name ((self description)) : symbol
Return the name of the description self, if it has one.

[Function]destroy-instance ((self object)) :
Destroy all propositions that reference self, and mark it as deleted?, thereby making
it invisible within class extensions.

[Function]destroy-object ((self object)) :
Destroy self which can be a term or a proposition. Destroy all propositions that
reference self and mark it as deleted? (thereby making it invisible within class
extensions).

[Function]destroy-proposition ((proposition proposition)) : proposition
Retract and destroy the proposition proposition. Recursively destroy all propositions
that reference proposition. Also, destroy all satellite propositions of proposition.

[Function]destroy-term ((self logic-object)) :
Destroy all propositions that reference self, and mark it as deleted?, thereby making
it invisible within class extensions. Unlink descriptions from native relations.

[Function]direct-superrelations ((self relation)) : (iterator of (like self))
Return direct super classes/slots of self.

Chapter 10: Miscellaneous 80

[Function]disabled-powerloom-feature? ((feature keyword)) : boolean
Return true if the STELLA feature is currently disabled.

[Function]disjoin-truth-values ((tv1 truth-value) (tv2 truth-value)) :
truth-value

Return the logical disjunction of truth values tv1 and tv2.

[Function]disjoint-terms? ((d1 description) (d2 description)) : boolean
Return TRUE if d1 and d2 belong to disjoint partitions.

[Function]do-clear-instances ((module module)) :
Function version of clear-instances that evaluates its argument.

[Function]do-save-module ((module module) (store object)) :
Save module to the persistent store store which can either be an output stream or a
persistent OBJECT-STORE.

[Method]empty? ((self query-solution-table)) : boolean
Return TRUE if self has zero entries.

[Method]empty? ((self float-vector)) : boolean
Return TRUE if self has length 0.

[Function]enabled-powerloom-feature? ((feature keyword)) : boolean
Return true if the STELLA feature is currently enabled.

[Method]estimated-length ((self paging-index)) : integer
Return the estimated length of the sequences in self, which could be too large if some
of the members have been deleted.

[Function]explain-why ((label string) (style keyword) (maxdepth integer)
(stream output-stream)) :

Programmer’s interface to WHY function.

[Function]explain-whynot ((label string) (style keyword) (maxdepth integer)
(summary? boolean) (stream output-stream)) :

Programmer’s interface to the WHYNOT function.

[Function]false-truth-value? ((self truth-value)) : boolean
Return TRUE if self represents some form of falsehood.

[Method]fetch-instance ((store object-store) (name object)) : object
Fetch the instance identified by name (a string or symbol) from store and return it
as an appropriate logic object. This needs to be appropriately specialized on actual
OBJECT-STORE implementations.

[Method]fetch-relation ((store object-store) (name object)) :
named-description

Fetch the relation identified by name (a string or symbol) from store and return it as
a named description. This needs to be appropriately specialized on actual OBJECT-
STORE implementations.

Chapter 10: Miscellaneous 81

[Method]fill-array ((self 2-d-array) &rest (values object)) :
Fill the two-dimensional array self in row-major-order from values. Missing values
will retain their old values, extraneous values will be ignored.

[Method]fill-array ((self 2-d-float-array) &rest (values float)) :
Fill the two-dimensional array self in row-major-order from values. Missing values
will retain their old values, extraneous values will be ignored.

[Function]finalize-objects () :
Finalize all currently unfinalized objects. The user-level entry point for this is
(process-definitions).

[Function]find-direct-supers-and-subs ((self description)
(onlysupers? boolean)) : (cons of description) (cons of description)
(cons of description)

Classify self and return three values, its direct supers, direct subs, and a list of equiv-
alent descriptions. Setting supersOnly? may speed up the computation (perhaps by
a lot). If description is nameless and has no dependent propositions, then it is
automatically removed from the hierarchy after classification.

[Function]find-direct-supers-of-instance ((self object)) : (cons of
logic-object)

Classify self and return a list of most specific named descriptions among all descrip-
tions that it satisfies.

[Command]find-instance ((instanceRef object)) : object
Return the nearest instance with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

[Command]find-rule ((ruleName name)) : proposition
Search for a rule named ruleName. Like get-rule, but find-rule implicity quotes
its input argument.

[Function]function? ((relationRef object)) : boolean
Return TRUE if relationRef references a function.

[Function]generate-expression ((self logic-object)
(canonicalizevariablenames? boolean)) : object

Return an s-expression representing the source expression for self.

[Method]generate-specialized-term ((self logic-thing)) : object
Method to generate a specialized term for self. This is designed to allow for exten-
sion of the term generation code to cover other types of objects for the logic. This
particular method will signal an error unless there is a surrogate-value-inverse link
set.

[Function]get-class ((instanceRef object)) : logic-object
Return the nearest class with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

Chapter 10: Miscellaneous 82

[Function]get-instance ((instanceRef object)) : object
Return the nearest instance with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

[Function]get-module ((moduleRef object)) : module
Return a module named moduleRef.

[Function]get-relation ((instanceRef object)) : logic-object
Return the nearest relation with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

[Function]get-self-or-prototype ((instanceRef object)) : logic-object
Used to convert a computation to reference so-called template slots rather than own
slots: If instanceRef denotes a class, return a prototype of that class. Otherwise,
return instanceRef.

[Function]get-slot-maximum-cardinality ((self logic-object)
(relation surrogate)) : integer

Return a maximum value for the number of fillers of relation relation (a surrogate)
applied to the instance self (an object).

[Function]get-slot-minimum-cardinality ((self logic-object)
(relation surrogate)) : integer

Return a minimum value for the number of fillers of relation relation (a surrogate)
applied to the instance self (an object).

[Function]get-slot-value ((self logic-object) (relation surrogate)) : object
Return a single value for the slot relation (a surrogate) applied to self (an object).

[Function]get-slot-value-type ((self logic-object) (relation surrogate)) :
named-description

Return a most specific type for fillers of the slot relation (a surrogate) applied to self.
If there is more than one, pick one.

[Function]get-why-justification ((label string)) : justification
Returns the current WHY justification. May also throw one of the following subtypes
of EXPLAIN-EXCEPTION: EXPLAIN-NO-QUERY-EXCEPTION EXPLAIN-
NO-SOLUTION-EXCEPTION EXPLAIN-NO-MORE-SOLUTIONS-EXCEPTION
EXPLAIN-NOT-ENABLED-EXCEPTION EXPLAIN-NO-SUCH-LABEL-
EXCEPTION EXPLAIN-QUERY-TRUE-EXCEPTION

[Function]get-whynot-justifications ((query query-iterator) (label string)
(mapping explanation-mapping)) : (list of justification)

Programmer’s interface to WHYNOT function. Derive justifications why query failed,
or, if label was supplied as non-NULL, lookup its justification relative to mapping
and return the result.

Chapter 10: Miscellaneous 83

[Command]in-dialect ((dialect name)) : keyword
Change the current logic dialect to dialect. Currently supported dialects are KIF,
STELLA, and PREFIX-STELLA. The STELLA dialects are not recommended for the
construction of knowledge bases, they are mainly used internally by PowerLoom.

[Method]insert-at ((self query-solution-table) (key (like (any-key self)))
(value (like (any-value self)))) :

Insert value identified by key into self. If a solution with that key already exists,
destructively modify it with the slot values of value. This is necessary to preserve the
order of solutions in self.

[Function]invert-truth-value ((self truth-value)) : truth-value
Return the logical negation of self.

[Method]length ((self query-solution-table)) : integer
Return the number of entries in self.

[Command]list-features () : list
Return a list containing two lists, a list of currently enabled PowerLoom features, and
a list of all available PowerLoom features.

[Command]list-unclassified-instances ((module name) (local? boolean)) :
(cons of logic-object)

Collect all instances in module (or in any module if module is NULL) that were not
(or will not be) classified due to their lack of non-inferable/primitive type assertions.

[Command]list-unclassified-relations ((module name) (local? boolean)) :
(cons of named-description)

Collect all named description in module (or in any module if module is NULL) that
were not (or will not be) classified due to their lack of non-inferable/primitive ancestor
relations.

[Command]list-undefined-relations ((module name) (local? boolean)) : (cons
of named-description)

Return a list of as yet undefined concepts and relations in module. These relations
were defined by the system, since they were referenced but have not yet been defined
by the user. If module is NULL look in the current module. If local? only look in
module but not in any modules it inherits.

[Method]listify ((self query-iterator)) : list
Just like QUERY-ITERATOR.consify but return a LIST instead.

[Function]load-stream ((stream input-stream)) :
Read logic commands from stream and evaluate them.

[Function]logic-class? ((self class)) : boolean
Return TRUE if the class self or one of its supers supports indices that record ex-
tensions referenced by the logic system. Also return true for literal classes.

Chapter 10: Miscellaneous 84

[Function]logic-form-less? ((o1 object) (o2 object)) : boolean
A sorting predicate for objects o1 and o2 that can appear in logical forms. Performs
a combined numeric and lexocographic sort that accounts for lists, collections and
propositions. Numbers precede all other values, null follows all other values.

[Function]logic-module? ((self module)) : boolean
Return TRUE if self is a logic module, implying that relations defined within it define
a knowledge base. A module is a logic module iff it inherits the module PL-KERNEL.

[Method]lookup ((self query-solution-table) (key (like (any-key self)))) :
(like (any-value self))

Lookup the solution identified by key in self and return its value, or NULL if no such
solution exists.

[Function]natural-deduction-mode? () : boolean
True if normalization is governed by natural deduction semantics.

[Method]non-empty? ((self query-solution-table)) : boolean
Return TRUE if self has at least 1 entry.

[Method]non-empty? ((self float-vector)) : boolean
Return TRUE if self has length > 0.

[Method]nth ((self query-solution-table) (position integer)) : (like
(any-value self))

Return the nth solution in self, or NULL if it is empty.

[Function]object-name ((self object)) : symbol
Return the name symbol for the logic object self.

[Function]object-name-string ((self object)) : string
Return the name string for the logic object self.

[Function]object-surrogate ((self object)) : surrogate
Return the surrogate naming the logic object self.

[Function]object-surrogate-setter ((self object) (name surrogate)) :
surrogate

Return the name of the logic object self to name.

[Method]pop ((self query-solution-table)) : (like (any-value self))
Remove and return the first solution of self or NULL if the table is empty.

[Function]powerloom () :
Run the PowerLoom listener. Read logic commands from the standard input, evaluate
them, and print their results. Exit if the user entered bye, exit, halt, quit, or stop.

[Function]pretty-print-logical-form ((form object) (stream output-stream))
:

Pretty-print the logical form form to stream according to the current setting of
logic-dialect.

Chapter 10: Miscellaneous 85

[Method]print-array ((self 2-d-array) (stream native-output-stream)) :
Print the array self to stream.

[Method]print-array ((self 2-d-float-array) (stream native-output-stream))
:

Print the array self to stream.

[Function]print-extension-sizes ((module module) (sizeCutoff integer)) :
Print the extension sizes of concepts visible in module. If module is NULL the current
module is used. Do not report extensions with size less than sizeCutoff (default is
10).

[Function]print-goal-stack ((frame control-frame) (verbose? boolean)) :
Print stack of goals. Assumes that query has been interrupted with a full stack of
control frames.

[Function]print-logical-form ((form object) (stream output-stream)) :
Print the logical form form to stream according to the current setting of
logic-dialect. Pretty-printing is controlled by the current setting of
prettyPrintLogicalForms?.

[Function]print-logical-form-in-dialect ((self object) (dialect keyword)
(stream output-stream)) :

Produce a stringified version of a logical representation of self and write it to the
stream stream. Use the dialect dialect, or use the current dialect if dialect is NULL.

[Function]print-unformatted-logical-form ((form object)
(stream output-stream)) :

Print the logical form form to stream according to the current setting of *logic-
dialect*. Pretty-printing is explicitly forced to be turned off.

[Function]print-whynot-justification ((justification justification)
(stream output-stream) (maxDepth integer) (style keyword)
(summary? boolean)) :

Print a WHYNOT justification to stream according to maxDepth and style. Print a
summary only if summary? is TRUE.

[Function]random-float ((n float)) : float
Generate a random integer in the interval [0..n-1]. n must be <= 2^15.

[Method]recall-marked-objects ((self marker-table)) : list-iterator
Return an iterator that generates all marked objects recorded in self.

[Function]record-justifications? () : boolean
Return TRUE if every query records justifications to enable the explanation of con-
cluded results.

[Function]register-logic-dialect-print-function ((dialect keyword)
(fn function-code-wrapper)) :

Register fn as a logic-object print function for dialect. Each function should have
the signature ((self OBJECT) (stream OUTPUT-STREAM)). Any return values will be
ignored.

Chapter 10: Miscellaneous 86

[Function]relation-name ((self named-description)) : string
Given a relation object, return it’s name.

[Function]relation? ((objectRef object)) : boolean
Return TRUE if objectRef denotes a relation or a class.

[Method]remove-at ((self query-solution-table) (key (like (any-key self)))) :
Remove the solution identified by key from self. To preserve the solution ordering
chain, the solution is marked as deleted and will be completely removed upon the
next iteration through self.

[Method]remove-deleted-members ((self paging-index)) : (like self)
Destructively remove all deleted members of self.

[Function]reset-query-caches () :
Zero out all caches managed by the query optimizer, so that it will reoptimize subgoal
queries upon next invocation.

[Function]retract-facts-of-instance ((self logic-object)) :
Retract all definite (TRUE or FALSE) propositions attached to self.

[Command]retrieve-partial (&rest (tree parse-tree)) : query-iterator
Partial-match version of retrieve (which see) that generates scored partial solutions
based on the current partial match strategy. By supplying BEST instead of ALL, or by
adding the option :SORT-BY :SCORE, the generated solutions will be sorted so that
solutions with higher scores come first. Use the :MATCH-MODE option to override the
global default setting established by set-partial-match-mode, e.g., use :MATCH-
MODE :NN to use the neural net partial match mode. The :MINIMUM-SCORE option can
be used to only retrieve solutions that have at least the specified minimum match
score. By default, retrieve-partial does not maximize the match scores of its
returned bindings. To only get maximal scores use :MAXIMIZE-SCORE? TRUE (this is
not yet implemented - you can use ask-partial to maximize scores for individual
solutions by hand).

[Command]run-forward-rules ((moduleRef name) &rest (force keyword)) :
Run forward inference rules in module moduleRef. If moduleRef is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless the optional keyword :force is
included, in which case all forward rules are run or rerun.
Calling run-forward-rules temporarily puts the module into a mode where future
assertional (monotonic) updates will trigger additional forward inference. Once a
non-monotonic update is performed, i.e., a retraction or clipping of relation value, all
cached forward inferences will be discarded and forward inferencing will be disabled
until this function is called again.

[Command]run-powerloom-tests () :
Run the PowerLoom test suite. Currently this simply runs all demos and echos
commands and their results to standard output. The output can then be diffed with
previously validated runs to find deviations.

Chapter 10: Miscellaneous 87

[Function]satisfies? ((instanceOrTuple object) (relationRef object)) :
truth-value

Try to prove whether instanceOrTuple satisfies the definition of the relation relation-
Ref and return the result truth value of the query. instanceOrTuple can be a single
object, the name or surrogate of an object, or a collection (a list or vector) of objects.
relationRef can be a relation, description, surrogate or relation name.

[Command]save-all-neural-networks ((file string)) :
Save all neural networks to file (if file is non-NULL). If networks are saved periodically
(see set-save-network-cycle) this file name will be used to perform periodic saves.

[Command]set-error-print-cycle ((i integer)) :
Set number of cycles between which error rates are saved to the file established by the
last call to save-all-neural-networks appended with extension .err. A number
<= 0 (or NULL) turns off periodic saving.

[Command]set-inference-level ((level name) (module name)) : keyword
Set the inference level of module to the level specified by levelKeyword. If module
is NULL, set the level globally.

[Method]set-marker ((self marker-table) (object object)) :
Record membership of object in the marker storage object self.

[Command]set-num-neighbors ((d integer)) :
Sets the number of nearest neighbors to predict from.

[Command]set-num-training-per-case ((d integer)) :
Sets the number of training examples for each case in the training set.

[Function]set-powerloom-feature ((feature keyword)) :
Enable the PowerLoom environment feature feature.

[Command]set-save-network-cycle ((i integer)) :
Set number of cycles between which networks are saved to the file established by the
last call to save-all-neural-networks. A number <= 0 or a NULL number turns
off periodic saving.

[Method]sort ((self query-solution-table) (predicate function-code)) : (like
self)

Perform a stable, destructive sort of self according to predicate, and return the result.
If predicate has a < semantics, the result will be in ascending order.

[Function]specializes? ((subObject object) (superObject object)) :
truth-value

Try to prove if the description associated with subObject specializes the description
for superObject and return the result truth value of the query.

[Function]strengthen-truth-value ((tv1 truth-value) (tv2 truth-value)) :
truth-value

If tv2 has greater strength than tv1, adapt the strength of tv1 (not its value!) and
return the result. Otherwise, return tv1 unmodified.

Chapter 10: Miscellaneous 88

[Function]strict-truth-value? ((self truth-value)) : boolean
Return TRUE if self is a strict truth value.

[Function]termify ((self object)) : object
Convert self into an equivalent PowerLoom object that can be passed as an argument
wherever an instance is expected.

[Function]test-closed-slot? ((relation surrogate)) : boolean
Return TRUE if relation (a surrogate) is asserted to be closed or if the current module
closes all relations.

[Function]test-function-slot? ((relation surrogate)) : boolean
Return TRUE if relation (a surrogate) is a function.

[Method]test-marker? ((self marker-table) (object object)) : boolean
Return TRUE if object is stored (marked) in self.

[Function]test-relation-on-arguments? ((relation surrogate)
(arguments cons)) : boolean

Return TRUE if relation (a surrogate) is TRUE when applied to arguments.

[Function]test-slot-value? ((self logic-object) (relation surrogate)
(filler object)) : boolean

Return TRUE if the proposition (<relation> <self> <filler>) is true.

[Function]test-special-marker-table? ((self object)) : boolean
Return TRUE if the object self is stored (marked) in the table pointed at by the
special variable *specialMarkerTable*. Designed for use by remove-if.

[Function]test-subrelation? ((subrelation surrogate)
(superrelation surrogate)) : boolean

Return TRUE if subrelation specializes superrelation.

[Function]test-type-on-instance? ((self object) (type surrogate)) : boolean
Return TRUE if self satisfies type.

[Function]true-truth-value? ((self truth-value)) : boolean
Return TRUE if self represents some form of truth.

[Command]unassert ((proposition parse-tree)) :
Retract the truth or falsity of proposition. This is a more general version of retract
that also handles falsity. For example, if we assert the proposition "(not (sad Fred))",
and then execute the statement "(unassert (sad Fred))", the truth value of the propo-
sition "(sad Fred)" will be set to UNKNOWN. If we had called retract in place of
unassert, the proposition "(sad Fred)" would remain set to FALSE. Note that for
this unassertion to succeed, the logic constant Fred and the relation sad must already
be defined.

[Function]unassert-fact ((self proposition)) :
Retract the truth or falsity of the proposition self

Chapter 10: Miscellaneous 89

[Function]unknown-truth-value? ((self truth-value)) : boolean
Return TRUE if self represents UNKNOWN.

[Function]unset-powerloom-feature ((feature keyword)) :
Disable the PowerLoom environment feature feature.

[Function]upclassify-all-descriptions () :
Classify all named descriptions.

[Function]upclassify-all-instances () :
Classify all named instances.

[Function]upclassify-instances ((module module) (local? boolean)) :
Classify instances local to module and inherited by module. If local?, don’t classify
inherited descriptions. If module is NULL, classify descriptions in all modules.

[Function]upclassify-named-descriptions ((module module)
(local? boolean)) :

Classify named descriptions local to module and inherited by module. If local?, don’t
classify inherited descriptions. If module is NULL, classify descriptions in all modules.

[Function]weaken-truth-value ((tv1 truth-value) (tv2 truth-value)) :
truth-value

If tv2 has lesser strength than tv1, adapt the strength of tv1 (not its value!) and
return the result. Otherwise, return tv1 unmodified.

[Macro]with-logic-environment ((moduleForm object) (environment object)
&body (body cons)) : object

Execute body within the module resulting from moduleForm. *module* is an ac-
ceptable moduleForm. It will locally rebind *module* and *context* and shield the
outer bindings from changes.

[Macro]within-classification-session ((descriptionorinstance keyword)
&body (body cons)) : object

Used during classification. Execute body within the indicated classification session
and inference world.

[Macro]within-meta-cache (&body (body cons)) : object
Execute body within the meta cache of the current module. Set appropriate special
variables.

[Function]is-true-proposition1 ((relation-and-arguments object)
(module module) (environment object)) : boolean

Return TRUE if a proposition (relation args) has been asserted (or inferred by
forward chaining).

[Function]main () :
Main PowerLoom entry point for your code in C++ and Java.

[Command]initialize-kernel-kb () :
Bootstrap the PowerLoom built-in kernel KB.

Chapter 11: Glossary 90

11 Glossary

This glossary contains brief definitions for terms used in the PowerLoom User’s Manual
and/or used by the knowledge representation community. It is impractical to give a logically
precise definition for many of these terms, because their interpretation varies quite a bit. In
this case, the glossary attempts to indicate a range of interpretations consistent with their
use in PowerLoom.

Assertion: An assertion states that a particular proposition is True or False.

Backward and Forward Inference: ???

Backward Rule: ???

Binary Relation: A relation having two arguments (arity equals two), often as a mapping
from one concept domain to another. This is by far the most common form of relation.

Classifier: A classifier is a type of an inference engine that implements efficient strategies for
computing subsumption relations between pairs of concepts, or for computing instance-of
relations between a concept an a set of instances. PowerLoom implements a classifier that
can be explicitly invoked by an application program.

Clipping: If a function or single-valued binary relation maps an instance to two or more
other instances, a logical contradiction (a clash) exists. If clipping is enabled, PowerLoom
will automatically retract all assertions but the last that lead to a clash. Clipping can be
toggled on or off; it is enabled by default.

Closed-World Semantics: Under closed-world semantics it is assumed that “if proposition
P cannot be proved True, then assume that P is False.” PowerLoom gives programmers
the option to explicitly declare that concept or a relation operates under the assumption of
closed-world semantics (See also Open-World Semantics).

Concept: A concept defines a category or class of individuals. PowerLoom categorizes a
concept as a special kind of relation. The distinction between a concept and a unary relation
is subtle (some logicians do not believe that there is any distinction1). In linguistics, the
distinction is that between a noun and an adjective. In logic, the test we favor is whether or
not the relation has a domain — a unary relation has a domain, while a concept does not.
For example, the relation ‘married’ has domain ‘person’, while the concept ‘married-person’
does not have a domain (or is its own domain).

Constraint: “Constraint” at its most general is a synonym for “rule”. Often a constraint is
conceptualized as a rule that restricts the types of the arguments that can appear within a
tuple.

Context: ???

Default Rule: A default rule expresses an conditional implication that applies only when
its consequent is consistent with current state of the knowledge base. In other words, the
rule applies only when it will not lead to a contradition.

Definition: A definition binds a name to a logical expression. PowerLoom syntax defines
several operators with names of the form defxxx (e.g., defconcept and defrule) that
declare definitions for various types of entities.

1 but they are mistaken :).

Chapter 11: Glossary 91

Description: A “description” is an expression that defines a particular logical relation (e.g.,
the class of all three-legged black cats). In PowerLoom, the terms “concept” and “relation”
generally refer to named relations, while a description may or may not have a name. The
KIF operators kappa and setofall are used to define unnamed descriptions.

Description Logic: The term “description logic” refers to a logic that focuses on descrip-
tions as its principal means for expressing logical expressions. A description logic system
emphasises the use of classification and subsumption reasoning as its primary mode of in-
ference. Loom and Classic were two early examples of knowledge representation systems
that implement description logics.

Domain Model: A collection of definitions, rules, and facts that characterizes the possible
states of some real or imagined world. The domain model specifies a terminology (of
concepts and relations) that is useful for describing objects in that world. Often “domain
model” refers to that portion of a world’s representation that does not change over time.

Extension: Given a relation R with arity N, the extension of R is the set of ground propositions
of the form (R x1 ... xN) whose truth value is true. If R is a concept, then its extension
of often considered to be, not a set of unary tuples, but the set of argument fillers of those
tuples, i.e., the set of instances that belong to the concept.

Fact: A fact is a proposition that has been asserted to be either True or False. The term
“fact” usually refers to a “ground proposition”, i.e., a proposition that can be represented
as a predicate applied to a sequence of instances or literals.

Filler: The second argument to a binary tuple is often refered to as its “filler”. When a
multiple-valued binary relation maps an instance to a set of values, these values are also
called “fillers”.

Forward Rule: ???

Function: Formally, a function is a relation such that the value of the last (nth) argument of a
relational tuple is a function of the values of the first n-1 arguments. This definition coincides
with the notion of a “single-valued relation”. PowerLoom (and KIF) support specialized
syntax that allows functions that have been defined using the operator deffunction to
appear in term expressions (e.g., (= (f ?x) 42))).

Instance: An instance denotes an entity within a domain model, a member of the concept
Thing. Depending on ones interpretation, this could include almost everything. Often the
term “instance” is used more narrowly, to exclude literals and other objects whose properties
do not change over time. PowerLoom assumes that concepts and relations are instances.

KIF: Short for “Knowledge Interchange Format”, KIF is a language that defines a Lisp-like
syntax for the predicate calculus. There is an ANSII-standard that defines the KIF syntax
and semantics. PowerLoom adopts KIF as its representation language, and adds a few
extensions.

Knowledge Base: A knowledge base attempts to capture in abstract (machine interpretable)
form a useful representation of a physical or virtual world. The entities in that world are
modeled in the knowledge base by objects we call terms. Examples of terms are “Georgia”
(denoting the U.S., state), “BenjaminFranklin” (denoting the historical person by that
name), the number three, the string "abc", and the concept “Person”.

Literal: A logically static constant. Examples are numbers, strings, quantities, and truth
values.

Chapter 11: Glossary 92

Module: ???

Open-World Semantics: PowerLoom assumes an open-world semantics, unless a user ex-
plicitly specifies that it use closed-world semantics. Under this assumption, if PowerLoom
cannot prove or disprove a proposition, then it assigns that proposition the value Unknown
(See also Closed-World Semantics).
Predicate:. The term predicate is a syntactic notion that refers to the zeroth arguments of
a proposition. Predicates denote relations and properties, i.e., sets.
Proposition:. A logical sentence whose truth value can be evaluated with respect to some
context. Each PowerLoom assertion assigns the value True or False to some proposition.
Primitive Relation: P is a primitive concept or relation if and only if a proof that (P x1 ...
xn) is true exists only for the case that there exists an explicit assertion of a proposition (Q
x1 ... xn) and either Q equals P or Q is a proper subrelation of P. In otherwords, the only
rules that imply membership in P are those that relate P to one of its (proper) subconcepts
or subrelations.
Query: A query probes the informational state of a knowledge base. An ask query test
the truth of its propositional argument. A retrieve asks for sets of constants (bindings)
that make its propositional argument true when the constants are substituted in place of
its variables. The propositional argument to ask and retrieve arbitrary expression in the
first-order predicate calculus. Because of constraints imposed either by resource limitations
or inherent undecidability, PowerLoom cannot guarantee the completeness of its inferences.
Relation: ???

Retraction: A retraction changes the truth value of a proposition from either True or False
to the value Unknown. Retraction is a procedural (non-declarative) operation.
Rule: A “rule” is any universally-quantified proposition, i.e., a proposition of the form
(forall (?x1 ... ?xn) <logical sentence with free variables ?x1 ... ?xn). Power-
Loom supports several different syntactic constructs for defining rules. (See also Forward
Rule and Backward Rule).
Subsumption: A subsumption relation specifies the relative generality of two concepts. A
concept A subsumes a concept B if the definitions of A and B logically imply that members
of B must also be members of A.
Truth-Maintenance: ???

Type: Often used a synonym for the term concept. The phrase “a type of an instance”
generally refers to (one of) the concepts that the instance belongs to. The phrase “nth
domain type” refers to a concept that contains all instances of the nth column of a relation.
World: ???

Chapter 12: PowerLoom Grammar 93

12 PowerLoom Grammar

The syntax of PowerLoom is described below using a modified BNF notation adapted from
the KIF specification.

12.1 Alphabet

We distinguish between terminals, which are part of the language, and nonterminals. All
nonterminals are bracketed as follows <nonterminal>. Squared brackets means zero or
one instances of the enclosed expression; <nonterminal>* means zero or more occurrences
and <nonterminal>+ means one or more occurrences of <nonterminal>. The notation
<nonterminal1> - <nonterminal2> refers to all of the members of <nonterminal1> except
for those in <nonterminal2>.

A word is a contiguous sequence of characters, which include all upper case letters, lower
case letters, digits and alpha characters (ASCII character set from 93 to 128) excluding some
special characters like white spaces, single and double quotes and brackets.

<word> ::= a primitive syntactic object

Special words are those who refer to a variable. All variables are preceded by a question
mark.

<indvar> ::= a word beginning with the character ?

A string <string> is a character sequence including words plus all special charcters
(except double quotes) enclosed in double quotes. A double quote can be included in a
string if it is preceeded by the escape character ’\’.

12.2 Grammar

Legal expressions in PowerLoom are forms, which are either a statement or a definition,
described in more detail below.

<form> ::= <statement> | <definition>

12.2.1 Constants and Typed Variables

The language consists of several groups of operators, defined as follows:
<termop> ::= listof | setof | the | setofall | kappa

<sentop> ::= = | /= | not | and | or | forall | exists
| <= | => | <=> |<<= | =>> | <~ | ~> | <<~ | ~>>

<defop> ::= defconcept | deffunction | defrelation | defrule |
:documentation | :-> |
:<= | :=> | :<<= | :=>> |
:<=> | :<=>> :<<=> | :<<=>> | := |
:axioms

<operator> ::= <termop> | <sentop> | <defop>

All other words are constants (words which are not operators or variables):

Chapter 12: PowerLoom Grammar 94

<constant> ::= <word> - <indvar> - <operator>

Semantically, there are different categories of constants — Concept constants
<conceptconst>, Function constants <funconst>, Relation constants <relconst>, Rule
constants <ruleconst> and Logical constants <logconst>. The differences between
these categories are entirely semantic. However, some operators will only accept specific
constants.

In contrast to the specification of KIF3.0, PowerLoom supports a typed syntax. There-
fore, variables in quantified terms and sentences can appear either typed or untyped, as
follows:

<vardecl> ::= (<indvar> <constant>) | <indvar>

12.2.2 Terms

Terms are used to denote objects in the world being described:

<term> ::= <indvar> | <constant> | <funterm> | <listterm> | <setterm> |
<quanterm>

<listterm> ::= (listof <term>*)

<setterm> ::= (setof <term>*)

<funterm> ::= (<funconst> <term>+)

Note: Zero arguments are allowed for <funterm> in KIF3.0: <term>*

<quanterm> ::= (the <vardecl> <sentence>) |
(setofall <vardecl> <sentence>) |
(kappa {<vardecl> | (<vardecl>+)} <sentence>) |
(lambda {<vardecl> | (<vardecl>+)} <term>)

Note: KIF3.0 allows <term> instead of <vardecl> for setofall. No <quanterm> as well
as no <setterm> in core of KIF as a result of descision 95-3 (March 1995).

12.2.3 Sentences

Sentences are used to express propositions about the world:

<sentence> ::= <constant> | <equation> | <inequality> |
<relsent> | <logsent> | <quantsent>

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<constant> <term>+)

Note: Zero arguments allowed in KIF3.0 for <relsent> (<term>*). <funconst> is
currently not allowed in PowerLoom (use (= <funterm> <term>) instead).

<logsent> ::= (not <sentence>) |
(and <sentence>*) |
(or <sentence>*) |
(=> <sentence>* <sentence>) | (=>> <sentence>* <sentence>) |
(<= <sentence> <sentence>*) | (<<= <sentence> <sentence>*) |

Chapter 12: PowerLoom Grammar 95

(~> <sentence>* <sentence>) | (~>> <sentence>* <sentence>) |
(<~ <sentence> <sentence>*) | (<<~ <sentence> <sentence>*)

<quantsent> ::= (forall {<vardecl> | (<vardecl>+)} <sentence>) |
(forall {<vardecl> | (<vardecl>+)} <sentence> <sentence>)

|
(exists {<vardecl> | (<vardecl>+)} <sentence>)

12.2.4 Definitions

PowerLoom supports two distinct categories of definitions — relation definitions (including
concept and function definitions) and rule definitions. A relation definition introduces a
new logical constant, and states some facts about that constant (e.g., who its parents are in
a subsumption taxonomy). A rule definitions binds a new constant to a proposition (so that
the constant denotes the proposition) and asserts the truth of that proposition. Usually, the
proposition asserted by a defrule is an implication. The assertional truth of a proposition
defined by a rule can be altered by asserting or retracting the constant that denotes the
proposition.

<keyword-option> ::= <keyword> <word>
<definition> ::= <reldefinition> | <objdefinition> | <ruledefinition>

<reldefinition> ::=
(defconcept <conceptconst> <vardecl>

[:documentation <string>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
[:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)}] |
[<keyword-option>*])

|
(deffunction <funconst> (<vardecl>+)

[:documentation <string>]
[:-> <vardecl>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
[:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)}]
[<keyword-option>*])

|
(defrelation <relconst> (<vardecl>+)

[:documentation <string>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
[:<<=>> <sentence>] |

Chapter 12: PowerLoom Grammar 96

[:axioms {<sentence> | (<sentence>+)}]
[<keyword-option>*])

<objdefinition> ::= (defobject <constant>
[:documentation <string>]
[<keyword-option>*])

<ruledefinition> ::= (defrule <constant> <sentence>
[:documentation <string>]
[<keyword-option>*])

<ruledefinition> ::= (defrule <ruleconst> <sentence>)

Function Index 97

Function Index

*
* . 61

+
+ . 61

-
- . 61

/
/ . 61

<
< . 61

=
=< . 61

>
> . 61
>= . 61

2
2-d-element . 72
2-d-element-setter . 72

A
ABSTRACT . 61
add-testing-example . 72
add-training-example . 72
AGGREGATE . 61
all-asserted-types . 72
all-class-instances . 72
all-cycles . 72
all-direct-subrelations 72
all-direct-superrelations 72
all-direct-types . 72
all-equivalent-relations 73
all-facts-of . 27
all-facts-of-instance . 73
all-facts-of-n . 73
all-instances . 73
all-named-descriptions . 73
all-named-instances . 73
all-named-terms . 73
all-propositions . 74

all-relation-values . 74
all-sentences-of . 74
all-slot-value-types . 74
all-slot-values . 74
all-subrelations . 74
all-superrelations . 74
all-terms . 74
all-types . 74
all-unnamed-terms . 74
allocate-supported-closure-iterator 74
allocate-transitive-closure-iterator 75
ANTISYMMETRIC . 61
apply-ask . 75
apply-kappa? . 75
apply-retrieve . 75
ARITY . 61
ask. 28, 38
ask-partial . 75
assert . 28
assert-binary-proposition 38
assert-from-query . 28
assert-nary-proposition 38
assert-proposition . 38
assert-rule . 29
assert-unary-proposition 39

B
BINARY-RELATION . 61
bottom? . 75
BOUND-VARIABLES . 61

C
call-all-facts-of . 75
call-ask . 75
call-defconcept . 75
call-deffunction . 75
call-defobject . 76
call-defproposition . 76
call-defrelation . 76
call-list-undefined-relations 76
call-propagate-constraints 76
call-retrieve . 76
call-retrieve-partial . 76
call-run-forward-rules . 76
call-set-inference-level 76
CARDINALITY . 62
cc . 29
change-module . 39
class? . 76
classify-instances . 29
classify-relations . 29
clear-instances . 30
clear-module . 30, 39

Function Index 98

CLOSED . 62
coerce-to-instance . 76
coerce-to-instance-or-literal 76
coerce-to-vector . 77
COLLECT-INTO-SET . 62
COLLECTION . 62
collection? . 77
COLLECTIONOF . 62
COMMENT . 62
COMMUTATIVE . 62
conceive . 30, 39
conceive-term . 77
CONCEPT . 62
CONCEPT-PROTOTYPE . 63
conjoin-truth-values . 77
cons-to-pl-iterator . 39
consify . 77
consify-current-solutions 77
consify-justification . 77
constant? . 77
copy . 77
copyright . 30
COVERING . 63
create . 78
create-2-d-array . 78
create-2-d-float-array . 78
create-concept . 39
create-enumerated-list . 39
create-enumerated-set . 39
create-float-vector . 78
create-function . 39
create-marker-storage . 78
create-object . 39
create-relation . 40
create-vector . 78
current-inference-level 78
CUT . 63

D
default-truth-value? . 78
defconcept . 30
deffunction . 30
define-arithmetic-operation-on-wrappers . . 78
define-arithmetic-test-on-wrappers 78
define-computed-constraint 79
definstance . 31
defmodule . 31
defobject . 32
defproposition . 32
defrelation . 33
defrule . 33
delete-rules . 33
demo . 33
deny . 34
deobjectify-tree . 79
describe . 34
describe-object . 79

description-name . 79

destroy . 34

destroy-instance . 79

destroy-object . 40, 79

destroy-proposition . 79

destroy-term . 79

DIRECT-SUBRELATION . 63

DIRECT-SUPERRELATION . 63

direct-superrelations . 79

disabled-powerloom-feature? 80

disjoin-truth-values . 80

DISJOINT . 63

DISJOINT-COVERING . 63

disjoint-terms? . 80

do-clear-instances . 80

do-save-module . 80

DOCUMENTATION . 63

DOMAIN . 63

DUPLICATE-FREE . 63

DUPLICATE-FREE-COLLECTION 63

E
EMPTY . 63

empty? . 40, 80

enabled-powerloom-feature? 80

EQUIVALENT-RELATION . 64

estimated-length . 80

evaluate . 25, 40

evaluate-string . 26

EXAMPLE . 64

explain-why . 80

explain-whynot . 80

F
false-truth-value? . 80

fetch-instance . 80

fetch-relation . 80

fill-array . 81

FILLERS . 64

finalize-objects . 81

find-direct-supers-and-subs 81

find-direct-supers-of-instance 81

find-instance . 81

find-rule . 81

FRAME-PREDICATE . 64

FUNCTION . 64

function? . 81

Function Index 99

G
generate-expression . 81
generate-specialized-term 81
generate-unique-name . 40
get-arity . 40
get-binary-proposition . 40
get-binary-propositions 40
get-child-modules . 40
get-class . 81
get-column-count . 41
get-concept . 41
get-concept-instance-matching-value 41
get-concept-instances . 41
get-concept-instances-matching-value 41
get-direct-concept-instances 41
get-direct-subrelations 41
get-direct-superrelations 41
get-direct-types . 41
get-domain . 41
get-enumerated-collection-members 41
get-home-module . 42
get-inferred-binary-proposition-values . . . 42
get-instance . 82
get-module . 42, 82
get-modules . 42
get-name . 42
get-nth-domain . 42
get-nth-float . 42
get-nth-integer . 42
get-nth-logic-object . 42
get-nth-string . 42
get-nth-value . 43
get-object . 43
get-parent-modules . 43
get-predicate . 43
get-proper-subrelations 43
get-proper-superrelations 43
get-proposition . 43
get-propositions . 43
get-propositions-in-module 43
get-propositions-of . 43
get-range . 43
get-relation . 44, 82
get-relation-extension . 44
get-rules . 34, 44
get-self-or-prototype . 82
get-slot-maximum-cardinality 82
get-slot-minimum-cardinality 82
get-slot-value . 82
get-slot-value-type . 82
get-types . 44
get-why-justification . 82
get-whynot-justifications 82
GOES-FALSE-DEMON . 64
GOES-TRUE-DEMON . 64
GOES-UNKNOWN-DEMON . 64

H
help . 34
HOLDS . 64

I
IMAGE-URL . 65
in-dialect . 83
in-module . 34
INEQUALITY . 65
initialize . 44
initialize-kernel-kb . 89
insert-at . 83
INSTANCE-OF . 65
INVERSE . 65
invert-truth-value . 83
IRREFLEXIVE . 65
is-a . 44
is-default . 44
is-enumerated-collection 44
is-enumerated-list . 44
is-enumerated-set . 44
is-false . 44
is-float . 44
is-integer . 44
is-logic-object . 44
is-number . 45
is-strict . 45
is-string . 45
is-subrelation . 45
is-true . 45
is-true-binary-proposition 45
is-true-proposition . 45
is-true-proposition1 . 89
is-true-unary-proposition 45
is-unknown . 45
ISSUE . 65
IST . 65
iterator-to-pl-iterator 45

L
length . 45, 83
LENGTH . 66
LENGTH-OF-LIST . 66
LEXEME . 66
LIST . 66
list-features . 83
list-to-pl-iterator . 45
list-unclassified-instances 83
list-unclassified-relations 83
list-undefined-relations 83
listify . 83
LISTOF . 66
load . 34, 45
load-file . 34
load-stream . 83
logic-class? . 83

Function Index 100

logic-form-less? . 84
logic-module? . 84
lookup . 84

M
main . 89
MAXIMUM-VALUE . 66
MEAN-VALUE . 66
MEDIAN-VALUE . 66
MEMBER-OF . 66
MINIMUM-VALUE . 66
MUTUALLY-DISJOINT-COLLECTION 66

N
natural-deduction-mode? 84
next? . 46
non-empty? . 84
nth . 84
NTH-DOMAIN . 67
NUMERIC-MAXIMUM . 67
NUMERIC-MINIMUM . 67
NUMERIC-SET . 67

O
object-name . 84
object-name-string . 84
object-surrogate . 84
object-surrogate-setter 84
object-to-float . 46
object-to-integer . 46
object-to-parsable-string 46
object-to-string . 46
ORDERED . 67

P
PHRASE . 67
pop . 84
powerloom . 84
presume . 34
pretty-print-logical-form 84
print-array . 85
print-extension-sizes . 85
print-features . 34
print-goal-stack . 85
print-logical-form . 85
print-logical-form-in-dialect 85
print-rules . 34, 46
print-unformatted-logical-form 85
print-whynot-justification 85
process-definitions . 34
PROJECT-COLUMN . 67
propagate-constraints . 35
PROPER-SUBRELATION . 67
PROPER-SUPERRELATION . 67

R
random-float . 85
RANGE . 67
RANGE-CARDINALITY . 67
RANGE-CARDINALITY-LOWER-BOUND 68
RANGE-CARDINALITY-UPPER-BOUND 68
RANGE-MAX-CARDINALITY . 68
RANGE-MIN-CARDINALITY . 68
RANGE-TYPE . 68
recall-marked-objects . 85
record-justifications? . 85
REFLEXIVE . 68
register-logic-dialect-print-function 85
RELATION . 68
RELATION-COMPUTATION . 68
RELATION-CONSTRAINT . 69
RELATION-EVALUATOR . 69
relation-name . 86
RELATION-SPECIALIST . 69
relation? . 86
remove-at . 86
remove-deleted-members . 86
repropagate-constraints 35
reset-features . 35
reset-query-caches . 86
retract . 35, 46
retract-binary-proposition 46
retract-facts-of . 35
retract-facts-of-instance 86
retract-from-query . 35
retract-nary-proposition 46
retract-proposition . 46
retract-rule . 35
retract-unary-proposition 46
retrieve . 35, 46
retrieve-partial . 86
run-forward-rules . 47, 86
run-powerloom-tests . 86

S
s-ask . 47
s-assert-proposition . 47
s-change-module . 47
s-clear-module . 47
s-conceive . 47
s-create-concept . 48
s-create-function . 48
s-create-object . 48
s-create-relation . 48
s-destroy-object . 48
s-evaluate . 48
s-get-arity . 48
s-get-child-modules . 48
s-get-concept . 48
s-get-concept-instances 49
s-get-direct-concept-instances 49
s-get-domain . 49

Function Index 101

s-get-inferred-binary-proposition-values

. 49
s-get-nth-domain . 49
s-get-object . 49
s-get-parent-modules . 49
s-get-proposition . 49
s-get-propositions . 50
s-get-propositions-of . 50
s-get-range . 50
s-get-relation . 50
s-get-relation-extension 50
s-get-rules . 50
s-is-true-proposition . 50
s-print-rules . 50
s-retract-proposition . 50
s-retrieve . 51
s-save-module . 51
satisfies? . 87
save-all-neural-networks 87
save-module . 37, 51
SCALAR . 69
SCALAR-INTERVAL . 69
SET . 69
set-error-print-cycle . 87
set-feature . 37
set-inference-level . 87
set-marker . 87
set-num-neighbors . 87
set-num-training-per-case 87
set-powerloom-feature . 87
set-save-network-cycle . 87
SETOF . 69
SINGLE-VALUED . 69
sort . 87
specializes? . 87
SQUARE-ROOT . 69
STANDARD-DEVIATION . 69
strengthen-truth-value . 87
strict-truth-value? . 88
STRING-CONCATENATE . 70
string-to-object . 51
SUBRELATION . 70
SUBSET-OF . 70
SUBSTRING . 70
SUM . 70

SUPERRELATION . 70
SYMMETRIC . 70
SYNONYM . 70

T
termify . 88
test-closed-slot? . 88
test-function-slot? . 88
test-marker? . 88
test-relation-on-arguments? 88
test-slot-value? . 88
test-special-marker-table? 88
test-subrelation? . 88
test-type-on-instance? . 88
TOTAL . 70
TRANSITIVE . 71
true-truth-value? . 88
TYPE-OF . 71

U
unassert . 88
unassert-fact . 88
unknown-truth-value? . 89
unset-feature . 37
unset-powerloom-feature 89
upclassify-all-descriptions 89
upclassify-all-instances 89
upclassify-instances . 89
upclassify-named-descriptions 89

V
VALUE . 71
VARIABLE-ARITY . 71
VARIANCE . 71

W
weaken-truth-value . 89
why . 37
with-logic-environment . 89
within-classification-session 89
within-meta-cache . 89

Variable Index 102

Variable Index

(Index is empty)

Concept Index 103

Concept Index

(Index is nonexistent)

i

Table of Contents

1 Introduction . 1

2 Powerloom History . 2

3 Installation . 3
3.1 System Requirements . 3
3.2 Unpacking the Sources . 4
3.3 Lisp Installation . 4
3.4 C++ Installation . 5
3.5 Java Installation . 5
3.6 Removing Unneeded Files . 6

4 Conceptual Framework . 7
4.1 Terms and Propositions . 7
4.2 Definitions . 7
4.3 Truth Values . 9
4.4 Modules . 10

5 Annotated Example. 12
5.1 Using Modules . 12
5.2 Concepts . 12
5.3 Relations . 13
5.4 Relation Hierarchies . 13
5.5 Functions . 14
5.6 Defined Concepts . 15
5.7 Negation and Open and Closed World Semantics 15
5.8 Retraction . 18
5.9 Clipping of Values . 19
5.10 Rule-based Inference . 19
5.11 Explanation . 20
5.12 Contexts and Modules . 23
5.13 Classification, Subsumption . 24
5.14 Truth Maintenance . 24
5.15 Inference Control . 24
5.16 Keyword Axioms . 24
5.17 Cardinality/Type Reasoning with Frame Predicates 24
5.18 Loom-to-PowerLoom . 24
5.19 Deviations from KIF . 24
5.20 Differences from Loom . 24
5.21 Defaults . 24
5.22 Sets, Lists, SETOFALL, KAPPA . 24

ii

6 Communicating with PowerLoom 25
6.1 Command Interpreter . 25
6.2 Persistent Knowledge Bases . 26

7 Commands . 27

8 PowerLoom API . 38
8.1 API Functions . 38
8.2 Language Specific Interface . 51

8.2.1 Lisp API . 51
8.2.1.1 Common Lisp Initialization 52
8.2.1.2 Type Declarations. 52
8.2.1.3 NULL values . 52
8.2.1.4 Wrapped Literal Values. 52
8.2.1.5 Special Variables . 52
8.2.1.6 CLOS Objects versus Structs 53

8.2.2 C++ API . 53
8.2.3 Java API . 53

8.2.3.1 Initializing PowerLoom 53
8.2.3.2 PowerLoom Java Conventions 53
8.2.3.3 Using the PLI Class 55
8.2.3.4 Using Stella Objects 56
8.2.3.5 PowerLoom and Threads 56
8.2.3.6 Setting and Restoring Global Variable

Values . 57
8.2.3.7 Java Character Mapping 58
8.2.3.8 Stella Exceptions in Java 59
8.2.3.9 Iteration in Java . 59
8.2.3.10 Utility Classes for Java 59

9 Built-In Relations . 61

10 Miscellaneous . 72

11 Glossary . 90

12 PowerLoom Grammar 93
12.1 Alphabet . 93
12.2 Grammar . 93

12.2.1 Constants and Typed Variables 93
12.2.2 Terms . 94
12.2.3 Sentences . 94
12.2.4 Definitions . 95

Function Index . 97

iii

Variable Index . 102

Concept Index . 103

	Introduction
	Powerloom History
	Installation
	System Requirements
	Unpacking the Sources
	Lisp Installation
	C++ Installation
	Java Installation
	Removing Unneeded Files

	Conceptual Framework
	Terms and Propositions
	Definitions
	Truth Values
	Modules

	Annotated Example
	Using Modules
	Concepts
	Relations
	Relation Hierarchies
	Functions
	Defined Concepts
	Negation and Open and Closed World Semantics
	Retraction
	Clipping of Values
	Rule-based Inference
	Explanation
	Contexts and Modules
	Classification, Subsumption
	Truth Maintenance
	Inference Control
	Keyword Axioms
	Cardinality/Type Reasoning with Frame Predicates
	Loom-to-PowerLoom
	Deviations from KIF
	Differences from Loom
	Defaults
	Sets, Lists, SETOFALL, KAPPA

	Communicating with PowerLoom
	Command Interpreter
	Persistent Knowledge Bases

	Commands
	PowerLoom API
	API Functions
	Language Specific Interface
	Lisp API
	Common Lisp Initialization
	Type Declarations
	NULL values
	Wrapped Literal Values
	Special Variables
	CLOS Objects versus Structs

	C++ API
	Java API
	Initializing PowerLoom
	PowerLoom Java Conventions
	Using the PLI Class
	Using Stella Objects
	PowerLoom and Threads
	Setting and Restoring Global Variable Values
	Java Character Mapping
	Stella Exceptions in Java
	Iteration in Java
	Utility Classes for Java

	Built-In Relations
	Miscellaneous
	Glossary
	PowerLoom Grammar
	Alphabet
	Grammar
	Constants and Typed Variables
	Terms
	Sentences
	Definitions

	Function Index
	Variable Index
	Concept Index

