STELLA Manual

Painless symbolic programming with
delivery in Common-Lisp, C++ and Java

Edition 1.0

This manual describes
STELLA 3.1 or later.

The STELLA Development Team

USC Information Sciences Institute

Copyright (C) 2002 University of Southern California, Information Sciences Institute
4676 Admiralty Way, Marina Del Rey, CA 90292

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Chapter 1: Introduction 1

1 Introduction

This document describes the STELLA programming language. STELLA stands for
Strongly-TypEd, Lisp-like LAnguage. It is an object-oriented language that strongly sup-
ports symbolic programming tasks. We developed it, since none of the currently “healthy”
languages such as C++ or Java adequately support symbolic programming. While Common-
Lisp would probably still be today’s language of choice for many symbolic programming
applications, its dwindling vendor support and user base make it more and more difficult
to justify its use.

When we started the development of the PowerLoom knowledge representation system in
1995 we were faced with exactly this problem. PowerLoom had to be delivered in C++, but
it was simply incoceivable to write such a large symbolic programming application directly
in C++. The solution was to invent a new programming language we called STELLA and
write PowerLoom in STELLA instead.

STELLA is a strongly typed, object-oriented, Lisp-like language specifically geared to
support artificial intelligence applications. STELLA preserves those features of Common
Lisp deemed essential for symbolic programming such as built-in support for dynamic
data structures, heterogeneous collections, first-class symbols, powerful iteration constructs,
name spaces, an object-oriented type system with a simple meta-object protocol, excep-
tion handling, language extensibility through macros and automatic memory management.
Maybe the biggest difference between STELLA and Common Lisp is that STELLA is
strongly typed. All externally visible interfaces such as slots, function parameters and
return values, etc. have to be explicitly typed. Internal objects such as local variables,
however, are mostly typed implicitly supported by type inference. This in conjunction with
a powerful type coercion mechanism significantly reduces the number of explicit type infor-
mation that needs to be supplied by the programmer compared to languages such as C++
or Java.

STELLA programs are first translated into a target language such as Common Lisp,
C++ or Java, and then compiled with the native target language compiler to generate
executable code. The language constructs of STELLA are restricted to those that can
be translated fairly directly into native constructs of the intended target languages. This
allows STELLA to be translated into efficient, conventional and readable Lisp, C++ and Java
code. The resulting native code can be understood and to some extent even maintained by
programmers who don’t know STELLA, and it can easily be interfaced with other programs
not written in STELLA.

As of Fall 2000, we have programmed approximately 100,000 lines of STELLA code -
about 50% for the STELLA kernel itself and the other 50% for the PowerLoom knowledge
representation system and related systems. Our subjective experience has been that it is
only slightly more difficult to write and debug a STELLA program than a Lisp program,
and that the inconvenience of having to supply some type information is much outweighed
by the benefits such as catching many errors during compile time instead of at run time.

The biggest benefit, however, seems to be that we can still leverage all the incremental
code development benefits of Lisp, since we use the Common Lisp-based version of STELLA
for prototyping. This allows us to incrementally define and redefine functions, methods and
classes and to inspect, debug and fix incorrect code on the fly. Even the most sophisticated

Chapter 1: Introduction 2

C++ or Java IDE’s don’t yet seem to support this fully incremental development style, i.e.,
a change in a class (every change in Java is a change to a class) still requires recompilation
and restart of the application. But it is the restart that can be the most time consuming if
one debugs a complex application that takes a significant time to reach a certain state!

Once a STELLA program has matured, it can be translated into C++ or Java to gain
extra efficiency, to deliver it as a stand-alone application, or to link it with other programs.

1.1 Credits and History

Bob MacGregor invented STELLA in 1995 to implement the PowerLoom knowledge
representation system. He wrote most of the first Lisp-based kernel system of STELLA and
still occasionally writes extensions or provides fixes. Today he is primarily a STELLA user
writing his own applications.

Hans Chalupsky completed the first full STELLA bootstrap (STELLA translating itself)
in Spring 1996, and then went on to deal with all the changes necessary to handle the many
C++ and Java idiosyncrasies that were discovered when the first versions of these translators
came online. He is currently one of the principal maintainers of STELLA supporting the
STELLA code analyzer and the Lisp and C++ translators.

Eric Melz wrote the first version of the C++ translator under very trying circumstances
(i.e., at a stage where the STELLA language changed under him on a daily basis). He got
the first C++ version of STELLA running in the Fall of 1996.

Tom Russ wrote the Java translator and got the first Java version of STELLA running
in Spring 1999. He is currently one of the principal maintainers of STELLA supporting the
STELLA code analyzer and the Lisp and Java translators. He is also still active writing
occasional extensions such as the STELLA XML parser.

Chapter 2: Installation 3

2 Installation

2.1 System Requirements

To install and use STELLA you’ll approximately need the following amounts of disk
space:

7 MB for the tar-red or zip-ped archive file

35 MB for the untarred sources, tanslations, compiled Java files and documentation
8 MB to compile a Lisp version

11 MB to compile the C++ version (without -g)

3 MB to compile the Java version (already included)

This means that you will need approximately 55 MB to work with one Lisp, one C++
and one Java version of STELLA in parallel. If you also want to experiment with the Lisp
translation variant that uses structures instead of CLOS instances to implement STELLA
objects, then you will need an extra 8 MB to compile that.

The full STELLA development tree is quite large, since for every STELLA source file
there are three to four translated versions and as many compiled versions thereof. The
actual STELLA libraries that you have to ship with an application, however, are quite
small. For example, the Java jar file ‘stella.jar’ is only 2 MB including Java sources.
Eliminating the Java sources cuts that down to about 1 MB! The dynamic C++ library
‘libstella.so’ compiled on a Linux platform is about 4 MB. Additionally, if you don’t
need all the different translations of STELLA, you can delete some of the versions to keep
your development tree smaller (See Section 2.7 [Removing Unneeded Files|, page 6).

To run the Lisp version of STELLA you need an ANSI Common-Lisp (or at least one
that supports CLOS and logical pathnames). We have successfully tested STELLA with
Allegro-CL 4.2, 4.3, 5.0 and 6.0, Macintosh CL 3.0 and 4.0, Lucid CL 4.1 (plus the necessary
ANSTI extensions and Mark Kantrowitz’s logical pathnames implementation) and the freely
available CMUCL 18c. Our main development platform is Allegro CL running under Sun
Solaris and Linux RedHat, so, the closer your environment is to ours, the higher are the
chances that everything will work right out of the box. Lisp development under Windows
should also be no problem.

To run the C++ version of STELLA you need a C++ compiler such as g++ that supports
templates and exception handling. We have successfully compiled and run STELLA with
g++ 2.96 under Linux Redhat 7.0 and 7.2, and with CygWin 5.0 under Windows 2000
(CygWin provides a very Unix-like environment). We have not yet tried to run the C++
version fully natively under Windows. The main portability issue is the garbage collector.
It is supposed to be very portable and run natively on Windows platforms, but we have
never verified that.

For the Java version you will need Java JDK 1.2 or later. To get reasonable performance,
you should use JDK 1.3 or later. We’ve run the Java version of STELLA on a variety of
platforms without any problems.

Chapter 2: Installation 4

Any one of the Lisp, C++ or Java implementations of STELLA can be used to develop
your own STELLA code and translate it into all three languages, but the most convenient
development environment is the one based on Lisp. If you use the C++ or Java version,
translating and using your own STELLA macros is possible but not yet very well supported.

2.2 Unpacking the Sources

Uncompress and untar the file ‘stella-X.Y.Z.tar.gz’ (or unzip the file ‘stella-X.Y.Z.zip’)
in the parent directory of where you want to install STELLA (‘X.Y.Z’ are place holders
for the actual version numbers). This will create the STELLA tree in the directory
‘stella-X.Y.Z/’. All pathnames mentioned below will be relative to that directory which
we will usually refer to as the "STELLA directory".

2.3 Lisp Installation

To install the Lisp version startup Lisp and load the file ‘load-stella.lisp’ with:
(CL:load "load-stella.lisp")

The first time around this will compile all Lisp-translated STELLA files before they are
loaded. During subsequent sessions the compiled files will be loaded right away.

If you want to use the version that uses Lisp structs instead of CLOS objects to implement
STELLA objects do the following:

(CL:setq cl-user::*load-cl-struct-stella?* CL:t)
(CL:1load "load-stella.lisp")

Alternatively, you can edit the initial value of the variable *1oad-cl-struct-stella?*
in the file ‘load-stella.lisp’. Using structs instead of CLOS objects greatly improves
slot access speed, however, it may cause problems with incremental re-definition of STELLA
classes. It is therefore recommended to only use this for systems that are in or near the
production stage.

Once all the files are loaded, you should see a message like this:

Initializing STELLA...
STELLA 3.1 (patch-level 0) loaded.
Type ‘(in-package "STELLA")’ to execute STELLA commands.
USER(2) :
To reduce startup time, you might want to create a Lisp image that has all of STELLA
preloaded.

Now type
(in-package "STELLA")
to enter the STELLA Lisp package where all the STELLA code resides.

IMPORTANT: All unqualified Lisp symbols in this document are assumed to be in the
STELLA Lisp package. Moreover, the STELLA package does NOT inherit anything from the
COMMON-LISP package (see the file ‘sources/stella/cl-1ib/cl-setup.lisp’ for the few
exceptions), hence, you have to explicitly qualify every Lisp symbol you want to use with

Chapter 2: Installation 5

CL:. For example, to get the result of the previous evaluation you have to type CL: * instead
of *.

2.4 C++ Installation

To compile the C++ version of STELLA change to the native C++ directory and run
make:

% cd native/cpp/stella
% make

This will compile all STELLA files, the garbage collector and generate a static or dynamic
‘libstella’ library file in the directory ‘native/cpp/1lib’ which can later be linked with
your own C++-translated STELLA (or other) code. To test whether the compilation was
successful you can run STELLA from the same directory like this:

% ./stella

Welcome to STELLA 3.1 (patch-level 0)

Running kernel startup code...

Initializing symbol tables...

Initializing quoted constants...

Initializing global variables...

Creating class objects...

Finalizing classes...

Creating method objects...

Finalizing methods...

Running non-phased startup code...

Starting up translators...

Bye!

This will simply run various STELLA startup code and exit. See Section 4.1.2 [Hello

World in C++], page 14, to see how you can use the STELLA C++ executable to translate
STELLA code.

2.5 Java Installation

Nothing needs to be done to install the Java version. Since Java class files are platform
independent, they are already shipped with the STELLA distribution and can be found in
the directory ‘native/java’ and its subdirectories. Additionally, they have been collected
into the file ‘stella. jar’ in the STELLA directory. To try out the Java version of STELLA
run the following in the STELLA directory:

% java -jar stella.jar

Welcome to STELLA 3.1 (patch-level 0)
Running kermel startup code...
Initializing symbol tables...
Initializing quoted constants...
Initializing global variables...
Creating class objects...

Finalizing classes...

Chapter 2: Installation 6

Creating method objects...

Finalizing methods...

Running non-phased startup code...

Starting up translators...

Bye!

Similar to the C++ executable, this will simply run various STELLA startup code and

exit. See Section 4.1.3 [Hello World in Javal, page 16, to see how you can use the STELLA
Java executable to translate STELLA code.

2.6 X/Emacs Setup

STELLA development is very similar to Lisp development, and it is best done in an
X/Emacs-based Lisp development environment such as the Allegro-CL Emacs interface
plus Allegro Composer, or ILISP. If you do use X/Emacs with the Allegro CL interface,
add the following to your ‘.emacs’ or ‘.xemacs/init.el’ file:

(setq auto-mode-alist
(cons ’("\\.ste$" . fi:common-lisp-mode) auto-mode-alist))

If you are using the Allegro CL interface, you might want to install the file ‘emacs/fi-stella.el’,
since it sets up proper indentation for STELLA code and makes looking up STELLA defini-
tions via the C-c . or M-. commands work better. Look at the file ‘emacs/fi-stella.el’
for specific installation instructions.

2.7 Removing Unneeded Files

To save disk space you can remove files that you don’t need. For example, if you are
not interested in the C++ version of STELLA, you can delete the directory ‘native/cpp’.
Similarly, you can remove ‘native/java’ to eliminate all Java-related files. You could do the
same thing for the Lisp directory ‘native/lisp’, but that would eliminate your ability to
develop any new STELLA code! Finally, if you don’t need any of the STELLA sources, you
can delete the directory ‘sources/stella’. If you don’t need local copies of the STELLA
documentation, you can delete parts or all of the ‘sources/stella/doc’ directory.

Chapter 3: The STELLA Language 7

3 The STELLA Language

3.1 Language Overview

STELLA is a strongly typed, object-oriented, Lisp-like language. STELLA programs
are first translated into either Common Lisp, C++, or Java, and then compiled with any
conventional compiler for the chosen target language to generate executable code. Over 95%
of the STELLA system is written in STELLA itself, the rest is written in target-language-
specific native code.

The design of STELLA borrows from a variety of programming languages, most promi-
nently from Common Lisp, and to a lesser degree from other object-oriented languages such
as Eiffel, Sather, and Dylan. Since STELLA has to be translatable into C++ and Java,
various restrictions of these languages also influenced its design.

In the following, we assume that the reader is familiar with basic Common Lisp concepts,
and has at least some familiarity with C++ or Java. Let us start with a cursory overview of
STELLA’s main features:

Syntax: STELLA uses a parenthesized, uniform expression syntax similar to Lisp. Most
definitional constructs and control structures are similar to their Common Lisp analogues
with variations to support types.

Type system: STELLA is strongly typed and supports efficient static compilation similar
to C++. Types are required for the arguments and return values of functions and methods,
for global variables, and for slot definitions. Local, lexically scoped variables can be typed
implicitly by relying on type inference.

Object system: Types are organized into a single inheritance class hierarchy. Restricted
multiple inheritance is allowed via mixin classes. Dynamic method dispatch is based on the
runtime type of the first argument (similar to C++ and Java). Slots can be static (native)
or dynamic. Dynamic slots can be defined at runtime and do not occupy any space until
they are filled. Slots can have both initial and default values, and demons can be triggered
by slot accesses. A meta-object protocol allows the control of object creation, initialization,
termination, and destruction.

Control structure: Functions and methods are distinguished. They can have multiple
(zero or more) return values and a variable number of arguments. Lisp-style macros are
supported to facilitate syntax extensions. Expressions and statements are distinguished.
Local variables are lexically scoped, but dynamically scoped variables (specials) are also
supported. STELLA has an elegant, uniform, and efficient iteration mechanism plus a
built-in protocol for iterators. An exception mechanism can be used for error handling and
non-local exits.

Symbolic programming: Symbols are first-class objects, and extensive support for dy-
namic datatypes such as cons-trees, lists, sets, association lists, hash tables, extensible
vectors, etc., is available. A backquote mechanism facilitates macro writing and code gen-
eration. Interpreted function call, method call, slot access, and object creation is supported,
and a restricted evaluator is also available.

Chapter 3: The STELLA Language 8

Name spaces: Functions, methods, variables, and classes occupy separate name spaces
(i.e., the same name can be used for a function and a class). A hierarchical module system
compartmentalizes symbol tables and supports large-scale programming.

Memory management: STELLA relies on automatic memory management via a garbage
collector. For Lisp and Java the native garbage collector is used. For the C++ version
of STELLA we use the Boehm- Weiser conservative garbage collector with good results.
Various built-in support for explicit memory management is also available.

The Common Lisp features most prominently absent from STELLA are anonymous
functions via lambda abstraction, lexical closures, multi-methods, full-fledged eval (a re-
stricted evaluator is available), optional and keyword arguments, and a modifiable readtable.
STELLA does also not allow dynamic re/definition of functions and classes, even though the
Lisp-based development environment provides this facility (similar to Dylan). The main in-
fluences of C++ and Java onto STELLA are the strong typing, limited multiple inheritance,
first-argument polymorphism, and the distinction between statements and expressions.

3.2 Basic Data Types (tbw)

To be written.

3.3 Control Structure (tbc)

To be completed.

3.3.1 Conditionals

STELLA conditionals are very similar to those found in Common-Lisp. The main differ-
ence is that most STELLA conditionals are statements and therefore do not return a value.
For this reason, a C++-style choose directive has been added to the language to allow value
conditionalization based on a boolean expression.

if condition then-statement else-statement Statement
Evaluate the boolean expression condition. If the result is true execute then-
statement, otherwise, execute else-statement. Note that unlike the Common-Lisp
version of if the else-statement is not optional in STELLA. Example:
Gf G xy)
(print "x is greater than y" EQOL)
(print "x is less than or equal to y" EOL))

when condition statement. . . Statement
Evaluate the boolean expression condition. Only if the result is true execute the
statement’s in the body. Example:
(when (symbol? x)
(print "x is a symbol, ")
(print "its name is " (symbol-name (cast x SYMBOL)) EOL))

Chapter 3: The STELLA Language 9

unless condition statement. . . Statement
Evaluate the boolean expression condition. Only if the result is false execute the
statement’s in the body. Therefore, (unless test ...) is equivalent to (when (not

test) ...). Example:
(unless (symbol? x)
(print "x is not a symbol, ")
(print "hence, its name is unknown" EQL))

cond clause. . . Statement
cond is a conditional with an arbitrary number of conditions each represented by a
clause. Each cond clause has to be of the following form:

(condition statement. ..)

The first clause whose condition evaluates to true will be selected and its statement’s
will be executed. Each clause can have 0 or more statements. The special condition
otherwise always evaluates to true and can be used for the catch-all case. Example:
(cond ((symbol? x)
(print "x is a symbol" EOL))
((cons? x)
(print "x is a cons" EOL))
(otherwise
(print "x is an object" EOL)))

choose condition true-expression false-expression Expression
Evaluate the boolean expression condition. If the result is true return the value of
true-expression, otherwise, return the value of false-expression. STELLA computes
the most specific common supertype of true-expression and false-expression and uses
that as the type returned by the choose expression. If no such type exists, a trans-
lation error will be signaled. Example:

(setq face (choose happy? :smile :frown))

case expression clause. . . Statement
Each case clause has to be of one of the following forms:

(key statement. . .)
((key...) statement...)

case selects the first clause whose key (or one of the listed key’s) matches the result
of expression and executes the clause’s statement’s. FEach case key has to be a
constant such as a number, character, string, symbol, keyword or surrogate. Keys are
compared with eql? (or string-eql? for strings). All keys in a case statement have
to be of the same type. The special key otherwise can be used to catch everything.
It is a run-time error if no clause with a matching key exists. Therefore, a STELLA
case without an otherwise clause corresponds to a Common Lisp ecase. An empty
otherwise clause can always be specified via (otherwise NULL). Example:
(case car-make
("Yugo"
(setq price :cheap))
(vw

Chapter 3: The STELLA Language 10

(setq price :medium))
(("Ferrari" "Rolls Royce")
(setq price :expensive))

(otherwise
(setq price :unknown)))

typecase expression clause. . . Statement
Each typecase clause has to be of one of the following forms:

(type statement...)
((type...) statement...)

typecase selects the first clause whose type (or one of the listed type’s) equals or
is a supertype of the run-time type of the result of expression and then executes the
clause’s statement’s. Therefore, typecase can be used to implement a type dispatch
for cases where the run-time type of an expression can be different from the static
type known at translation time. Currently, the static type of expression is required
to be a subtype of 0BJECT.

Each type expression has to be a symbol describing a simple type (i.e., parametric
or anchored types are not allowed). Similar to case, the special key otherwise can
be used to catch everything. It is a run-time error if no clause with a matching type
exists. Therefore, a STELLA typecase without an otherwise clause corresponds to
a Common Lisp etypecase. An empty otherwise clause can always be specified via
(otherwise NULL). typecase does allow the value of expression to be undefined, in
which case the otherwise clause is selected. Example:

(typecase (first list)
(cons
(print "it is a cons"))
((SYMBOL KEYWORD)
(print "it is a symbol"))
(STANDARD-0BJECT
(print "it is a regular object"))
(otherwise NULL))
Note that in the example above it is important to list STANDARD-OBJECT after SYMBOL
and CONS, since it subsumes the preceding types. Otherwise, it would always shadow
the clauses with the more specific types.

The semantics of typecase is slightly extended for the case where expression is a
local variable. In that case each reference to the variable within a typecase clause
is automatically casted to the appropriate narrower type. For example, in the code
snippet below method calls such as first or slot accesses such as symbol-name are
translated correctly without needing to explicitly downcast x which is assumed to be
of type OBJECT:

(typecase x
(Cons
(print "it is a cons with value " (first x)))
((SYMBOL KEYWORD)
(print "it is a symbol with name " (symbol-name x)))
(STANDARD-0OBJECT

Chapter 3: The STELLA Language 11

(print "it is a regular object"))
(otherwise NULL))

Since the typecase expression has to be a subtype of 0BJECT, a typecase cannot be used
to test against literal types such as STRING or INTEGER. If such type names are encountered
as keys in a typecase, they are automatically converted to their wrapped version, e.g.,
STRING-WRAPPER, INTEGER-WRAPPER, etc.

3.4 Functions (tbw)

To be written.

3.5 Classes (tbw)

To be written.

3.6 Methods (tbw)

To be written.

3.7 Macros (tbw)

To be written.

3.8 Modules (tbw)

To be written.

Chapter 4: Programming in STELLA 12

4 Programming in STELLA

4.1 Hello World in STELLA

Included with the STELLA distribution is a simple Hello World application that shows
you how to organize your own STELLA code and build a working STELLA application.
The sources for the Hello World system consist of the following files:

sources/systems/hello-world-system.ste
sources/hello-world/file-a.ste
sources/hello-world/file-b.ste

STELLA organizes code modules with a simple system facility. Translation always op-
erates on a complete system, so you always need to create a system definition for the
STELLA files comprising your application (somewhat similar to what you would put in a
Unix Makefile).

For the Hello World system the system definition already exists and resides in the file
‘sources/systems/hello-world-system.ste’. By default, STELLA looks in the directory
‘sources/systems’ to find the definition of a particular system. ‘hello-world-system.ste’
defines two things:

(1) The HELLO-WORLD module which defines a namespace for all objects in the Hello World
systems. STELLA modules are mapped onto corresponding native namespace constructs,
i.e., Lisp packages, C++ namespaces or Java packages. The exact mapping for each language
can be defined via the keyword options :lisp-package, : cpp-package and : java-package
in the module definition, for example

(defmodule "HELLO-WORLD"
:lisp-package "STELLA"
:cpp-package "hello_world"
: java-package "edu.isi.hello_world"
:uses ("STELLA"))

The :uses directive tells STELLA from what other modules this one inherits.

(2) The actual system definitions defining what source files comprise the system, and
what parent systems this one depends on, plus a variety of other options:

(defsystem HELLO-WORLD
:directory "hello-world"
:required-systems ("stella")
:cardinal-module "HELLO-WORLD"
:production-settings (1 0 3 3)
:development-settings (3 2 3 3)
:files ("file-a"

"file-b"))

4.1.1 Hello World in Lisp

Chapter 4: Programming in STELLA 13

To generate a Lisp translation of Hello World you can use either the Lisp, C++ or Java
version of STELLA. Before you can translate you have to make sure the following native
directories exist:

native/lisp/hello-world/
bin/acl5.0/hello-world/

The directory ‘native/lisp/hello-world/’ will hold the Lisp translations of the cor-
responding STELLA source files. The directory ‘bin/acl5.0/hello-world/’ will hold the
compiled Lisp files if you are using Allegro CL 5.0. If you are using a different Lisp, one
of the other binary directories as defined in the top-level file ‘translations.lisp’ will be
used. The directory ‘bin/lisp/hello-world/’ will be used as a fall-back if your version of
Lisp is not yet handled in ‘translations.lisp’.

If you create your own system, you will need to create those directories by hand (future
versions of STELLA might do that automatically). For the Hello World system these
directories already exist.

To generate a Lisp translation of Hello World using Lisp startup a Lisp version of
STELLA (see Section 2.3 [Lisp Installation], page 4). The following idiom will then translate
the system into Lisp and also Lisp-compile and load it. The first argument to make-system
is the name of the system, and the second argument indicates into what language it should
be translated:

STELLA(3): (make-system "hello-world" :common-lisp)
Processing ‘/tmp/stella-3.1.0/sources/hello-world/file-a.ste’:
***x Pass 1, generating objects...
Processing ‘/tmp/stella-3.1.0/sources/hello-world/file-b.ste’:
% Pass 1, generating objects...
;35 Writing fasl file
HHH /tmp/stella-3.1.0/bin/aclb5.0/hello-world/startup-system.fasl
;53 Fasl write complete
; Fast loading
; /tmp/stella-3.1.0/bin/acl5.0/hello-world/startup-system.fasl
CL:T
STELLA(4) :
After the system is loaded you can call its main function:
STELLA(10) : (main)
Hello World A
Hello World B
bye
O
STELLA(11):

Using main in the Lisp version will not always make sense, since you can call any function
directly at the Lisp top level, but both C++ and Java always need a main function as a top-
level entry point.

While this would be somewhat unusual, you could also generate the Lisp translation
using the C++ or Java version of STELLA. The easiest way to do that is to run the stella
script in the STELLA directory like this:

Chapter 4: Programming in STELLA 14

% ./stella -e ’(make-system "hello-world" :common-lisp)’
Welcome to STELLA 3.1 (patch-level 0)

Processing ‘sources/hello-world/file-a.ste’:

**x* Pass 1, generating objects...

Processing ‘sources/hello-world/file-b.ste’:

***x Pass 1, generating objects...

Translating ‘sources/hello-world/file-a.ste’ to ‘Common Lisp’...
Writing ‘native/lisp/hello-world/file-a.lisp’...

Translating ‘sources/hello-world/startup-system.ste’ to ‘Common Lisp’...
Writing ‘native/lisp/hello-world/startup-system.lisp’...

The -e command line option is used to evaluate an evaluable STELLA command. Con-
veniently, make-system is such a command, so you can supply a make-system form to the
C++ or Java version of STELLA just as you would do in Lisp. Note the extra quotes around
the expression to protect the characters from interpretation by the Unix shell.

To compile and load the translated Lisp files into Lisp you then have to startup a Lisp
version of STELLA and call make-system again which now will only compile and load the
necessary files, since the translations have already been generated in the previous step.

4.1.2 Hello World in C++

To generate a C++ translation of Hello World you can use either the Lisp, C++ or Java
version of STELLA. Before you can translate you have to make sure the following native
directory exists:

native/cpp/hello-world/

The directory ‘native/cpp/hello-world/’ will hold the C++ translations of the corre-
sponding STELLA source files. If you create your own system, you will need to create this
directory by hand (future versions of STELLA might do that automatically). For the Hello
World system the directory already exist.

To generate a C++ translation of Hello World using Lisp startup a Lisp version of
STELLA (see Section 2.3 [Lisp Installation|, page 4). The following idiom will then trans-
late the system into C++. The first argument to make-system is the name of the system,
and the second argument indicates into what language it should be translated:

STELLA(4): (make-system "hello-world" :cpp)

Processing ‘/tmp/stella-3.1.0/sources/hello-world/file-a.ste’:

**x* Pass 1, generating objects...

Processing ‘/tmp/stella-3.1.0/sources/hello-world/file-b.ste’:

***x Pass 1, generating objects...

Writing ‘/tmp/stella-3.1.0/native/cpp/hello-world/file-b.hh’...

Writing ‘/tmp/stella-3.1.0/native/cpp/hello-world/file-b.cc’...
Translating ‘/tmp/stella-3.1.0/sources/hello-world/startup-system.ste’.
Writing ‘/tmp/stella-3.1.0/native/cpp/hello-world/startup-system.hh’...
Writing ‘/tmp/stella-3.1.0/native/cpp/hello-world/startup-system.cc’...
:VOID

STELLA(5) :

Chapter 4: Programming in STELLA 15

Alternatively, you can generate the translation using the C++ or Java version of STELLA.

The easiest way to do that is to run the stella script in the STELLA directory like this:

% ./stella -e ’(make-system "hello-world" :cpp)’

Welcome to STELLA 3.1 (patch-level 0)

Processing ‘sources/hello-world/file-a.ste’:

**x* Pass 1, generating objects...

Processing ‘sources/hello-world/file-b.ste’:

**x* Pass 1, generating objects...

Writing ‘native/cpp/hello-world/file-b.hh’...

Writing ‘native/cpp/hello-world/file-b.cc’...

Translating ‘sources/hello-world/startup-system.ste’.

Writing ‘native/cpp/hello-world/startup-system.hh’...

Writing ‘native/cpp/hello-world/startup-system.cc’...

The -e command line option is used to evaluate an evaluable STELLA command. Con-
veniently, make-system is such a command, so you can supply a make-system form to the
C++ or Java version of STELLA just as you would do in Lisp. Note the extra quotes around
the expression to protect the characters from interpretation by the Unix shell.

Different from Lisp, neither of the above idioms will compile and load the generated C++
code. Instead you have to use the Unix ‘make’ facility to compile and link the C++ sources.
First change into the native ‘hello-world’ directory and then call make (important: the
generated Makefiles currently require the GNU version of make):

% cd native/cpp/hello-world/
% make
g++ -w -g -02 -DSTELLA_USE_GC -I../stella/cpp-lib/gc/include \
-c¢ -I.. main.cc
g++ -w -g -02 -DSTELLA_USE_GC -I../stella/cpp-lib/gc/include \
-c -I.. file-a.cc
g++ -w -g -02 -DSTELLA_USE_GC -I../stella/cpp-lib/gc/include \
-c¢ -I.. file-b.cc
g++ -w —-g -02 -DSTELLA_USE_GC -I../stella/cpp-lib/gc/include \
-c -I.. startup-system.cc
g++ -dynamic -L../stella/cpp-lib/gc -Xlinker -rpath -Xlinker \
>../1ib:/tmp/stella-3.1.0/native/cpp/1lib’ \
main.o -o hello-world \
-L../1lib -lhello-world -L../lib -lstella -lgc -1lm
The first time around this will also compile the C++ version of STELLA and the C++
garbage collector and create a STELLA library file. Future builds of the Hello World and
other systems will use the STELLA library file directly. To run the Hello World system
simply run the ‘hello-world’ executable that was built in the previous step:
% ./hello-world
Hello World A
Hello World B
bye

4.1.3 Hello World in Java

Chapter 4: Programming in STELLA 16

To generate a Java translation of Hello World you can use either the Lisp, C++ or Java
version of STELLA. Before you can translate you have to make sure the following native
directory exists:

native/java/edu/isi/hello-world/

The directory ‘native/java/edu/isi/hello-world/’ will hold the Java translations of
the corresponding STELLA source files. If you create your own system, you will need to
create this directory by hand (future versions of STELLA might do that automatically).
For the Hello World system the directory already exist.

Note that following Java convention we use the package edu.isi.hello_world to hold
the Hello World system. This was specified via the : java-package option in the definition
of the HELLO-WORLD module. Also note that we use hello_world instead of hello-world
as the package name, since a dash cannot legally appear as part of a Java identifier.

To generate a Java translation of Hello World using Lisp startup a Lisp version of
STELLA (see Section 2.3 [Lisp Installation], page 4). The following idiom will then translate
the system into Java. The first argument to make-system is the name of the system, and
the second argument indicates into what language it should be translated:

STELLA(5): (make-system "hello-world" :java)

Processing ‘/tmp/stella-3.1.0/sources/hello-world/file-a.ste’:

***x Pass 1, generating objects...

Writing ‘/tmp/stella-3.1.0/native/java/hello_world/Startup_Hello_...
:VOID

STELLA(6) :

Alternatively, you can generate the translation using the C++ or Java version of STELLA.
The easiest way to do that is to run the stella script in the STELLA directory like this:

% ./stella -e ’(make-system "hello-world" :java)’

Welcome to STELLA 3.1 (patch-level 0)

Processing ‘sources/hello-world/file-a.ste’:

**x* Pass 1, generating objects...

Processing ‘sources/hello-world/file-b.ste’:

**x* Pass 1, generating objects...

Writing ‘native/java/edu/isi/hello_world/HelloWorld. java’...

Writing ‘native/java/edu/isi/hello_world/StartupFileA.java’...

Writing ‘native/java/edu/isi/hello_world/StartupFileB.java’..

Writing ‘native/java/edu/isi/hello_ world/StartupHelloWorldSystem java’.

The -e command line option is used to evaluate an evaluable STELLA command. Con-
veniently, make-system is such a command, so you can supply a make-system form to the
C++ or Java version of STELLA just as you would do in Lisp. Note the extra quotes around
the expression to protect the characters from interpretation by the Unix shell.

Different from Lisp, neither of the above idioms will compile and load the generated C++
code. Instead you have to use the Java compiler to compile and Java to run the compiled
Java sources. First change into the top-level native Java directory ‘nmative/java’ and then
compile and run the Hello World system like this:

Chapter 4: Programming in STELLA 17

% cd native/java/

% javac edu/isi/hello_world/*.java

% java edu.isi.hello_world.HelloWorld

Hello World A

Hello World B

bye

It is not necessary to Java-compile STELLA first, since STELLA already ships with a

Java compilation of the STELLA system.

4.2 Incrementally Developing STELLA Code

The preferred method of STELLA code development is to use a Lisp-based version of
STELLA for all the prototyping and testing, since that allows you to exploit most (or all)
of the rapid-prototyping advantages of Lisp. Once a system has reached a certain point of
stability, it can be translated into C++ or Java for delivery or to interface it with other C++
or Java code.

In the following, we assume an X/Emacs-based Lisp development environment such as
the Allegro CL Emacs interface, where Lisp is run in an Emacs subprocess, and Lisp source
can be compiled and evaluated directly from the source buffers. By "Lisp buffer" we mean
the listener buffer in which Lisp is actually running, and by "source buffer" we mean a
buffer that is used to edit a file that contains STELLA source.

Included in the distribution is the Hello World system comprised of the files

sources/systems/hello-world-system.ste
sources/hello-world/file-a.ste
sources/hello-world/file-b.ste
To get started, simply add your code to either ‘file-a.ste’ or ‘file-b.ste’, since all
the necessary definitions and directories for these files are already set up properly. See
section 77?7 on how to setup your own system.

Make sure the Hello World system is loaded into Lisp by doing the following:
(make-system "hello-world" :common-lisp)
This will make sure that the system definition is loaded and the necessary module defi-
nition is evaluated.
Now suppose you add the following function to ‘file-a.ste’:

(defun (factorial INTEGER) ((n INTEGER))
(if (eql? n 0)
(return 1)

(return (x n (factorial (1- n))))))

There are various options for translating and evaluating this definition. For example,
you can simply remake the complete system similar to what you would do for a C++ or Java
program:

(make-system "hello-world" :common-lisp)

This will retranslate the modified files, recompile them and reload them into your Lisp

image.

Chapter 4: Programming in STELLA 18

Instead of retranslating and recompiling everything, you can incrementally evaluate the
definition of factorial from your Emacs-to-Lisp interface. Simply put your cursor some-
where inside the definition in the source buffer and evaluate it by typing M-C-x. This
translates the STELLA code into Lisp and compiles (or evaluates) the resulting Lisp code.
Now you can actually try it out in the Lisp buffer, for example:

STELLA(4): (factorial 6)
720

Finally, instead of evaluating the definition in the source buffer, you can also enter it
directly at the Lisp prompt with the same effect.

The way this works is that the Lisp symbol stella: :defun is actually bound to a Lisp
macro that calls all the necessary translation machinery to convert the STELLA defun into
Lisp code. Look at the file ‘sources/stella/cl-1ib/stella-to-cl.ste’ for the complete
set of such macros. This might be a bit confusing, since there are now three different
bindings (or meanings) of defun:

1. The STELLA operator defun used to define STELLA functions.

2. The Lisp macro stella: :defun that resides in the STELLA Lisp package and is only
available for convenience in Lisp versions of STELLA.

3. The Lisp macro CL:defun which is the standard Common Lisp macro used to define
Lisp functions.

We'll try to explicitly qualify which meaning is used wherever there might be some doubt
which one is meant. In general, every unqualified symbol mentioned below is either part of
the STELLA language or resides in the STELLA Lisp package.

Since a newly-written STELLA function might have errors, it is prudent to first only
translate it without actually executing the result of the translation. In the source buffer
you can do that by macro-expanding the defun. For example, if you use the Allegro CL
interface you would position the cursor on the opening parenthesis of the defun and then
type M-M. Any errors discovered by the STELLA translator are reported in the Lisp buffer
window. The expansion will be a CL:progn that contains the translated definition as the
first element plus various startup-time (initialization) code following it.

In the Lisp buffer you can achieve a similar effect with the 1ptrans macro. For example,
executing

(1ptrans
(defun (factorial INTEGER) ((n INTEGER))
(if (eql? n 0)
(return 1)
(return (* n (factorial (1- n)))))))

in the Lisp buffer first Lisp-translates the definition, and then prints the translation.
To see the C++ translation you can use cpptrans, calling jptrans will generate the Java
translation.

You can also use lptrans/cpptrans/jptrans to translate code fragments that are not
top-level definitions such as defun and its friends. For example:
STELLA(8): (lptrans
(foreach element in (list 1 2 3)
do (print element EOL)))

Chapter 4: Programming in STELLA

(CL:LET* ((ELEMENT NULL)
(ITER-003

(%THE-CONS-LIST (LIST (WRAP-INTEGER 1) (WRAP-INTEGER 2)

(WRAP-INTEGER 3)))))
(CL:LOOP WHILE (CL:NOT (CL:EQ ITER-003 NIL)) DO

(CL:PROGN (SETQ ELEMENT (%%VALUE ITER-003))
(SETQ ITER-003 (%%REST ITER-003)))
(%#PRINT-STREAM (%NATIVE-STREAM STANDARD-OUTPUT)

ELEMENT EOQOL)))
O

STELLA(9): (cpptrans
(foreach element in (list 1 2 3)
do (print element EOL)))
{ Object* element = NULL;
Cons* iter004 = list(3, wrapInteger(l), wrapInteger(2),
wrapInteger(3))-> theConsList;

while (!(iter004 == NIL)) {
element = iter004->value;
iter004 = iter004->rest;
cout << element << endl;

}
}
:VOID
STELLA(10): (jptrans

(foreach element in (list 1 2 3)

do (print element EQOL)))
{ Stella_Object element = null;

Cons iter005 = Stella.list
(Stella_Object.cons
(Stella.wrapInteger(1),
Stella_0Object.cons

(Stella.wrapInteger(2),
Stella_0Object.cons

(Stella.wrapInteger(3),
Stella.NIL)))) .theConsList;

while (!(iter005 == Stella.NIL)) {
{

element = iter005.value;

iter005 = iter005.rest;
b
java.lang.System.out.println(element) ;
}
b
:VOID

The use of 1ptrans is really necessary here, since there is no Lisp macro foreach that
knows how to translate STELLA foreach loops (those Lisp macros only exist for top-level

Chapter 4: Programming in STELLA 20

definition commands such as defun). In order to translate such code fragments without
error messages, they need to be self-contained, i.e., all referenced variables have to be either
bound by a surrounding let, or they must be globally defined variables. Otherwise, the
STELLA translator will generate various "undefined variable" error messages.

You can use the STELLA Lisp macro eval (i.e., stella: :eval not CL:eval) to actually
execute such a code fragment. For example:
STELLA(11): (eval
(foreach element in (list 1 2 3)
do (print element EOL)))
L1
L2
ILI3
O
This translates the loop and executes the result, which prints the wrapped numbers
(hence, the |L| prefix) to standard output. The () at the end is the resulting Lisp value
returned by the loop (in Lisp everything returns a value, even though for STELLA foreach
is a statement, not an expression).

Make it a habit to wrap eval around any STELLA code you incrementally evaluate in
the Lips buffer. This makes sure that all the arguments to a function, etc., are translated
into the appropriate STELLA objects. For example, evaluating

(eval (list :a :b :c))

in the Lisp buffer generates a STELLA list that points to the STELLA keywords :a, :b

and :c. If you don’t use eval, for example,
(1ist :a :b :c)

a STELLA list containing the Lisp keywords ‘:a’; :b” and ‘:¢’ will be created. Lisp key-
words are a completely different data structure than STELLA keywords, and any STELLA
code expecting a STELLA keyword but finding a Lisp keyword will break, since Lisp key-
words are not a legal STELLA data structure. Unfortunately, such cases can be very
confusing, since Lisp and STELLA keywords look/print exactly alike.

eval is also necessary to access STELLA symbols and surrogates in the Lisp buffer. For
example, to access a STELLA symbol, you can use quote (again, this is the STELLA quote
not CL:quote):

(eval (quote foo))

This returns the STELLA symbol foo. We explicitly used quote here, since code typed
at the Lisp prompt is first passed through the Lisp reader before the STELLA translator
sees it, and the default Lisp reader interprets the ’ character differently than the STELLA
reader. Within a STELLA file you can use the syntax ’foo, since it will be read directly
by the STELLA reader that knows how to interpret it correctly.

lptrans, cpptrans and jptrans are evaluable STELLA commands that can also be
evaluated by the C++ and Java version of STELLA. For example, to generate a Java trans-
lation of a little STELLA code fragment you could run the stella script in the STELLA
directory like this (the output below has been additionally indented by hand for clarity):
% ./stella -e ’(jptrans\
(foreach element in (list 1 2 3)\
do (print element EOL)))’

Chapter 4: Programming in STELLA 21

Welcome to STELLA 3.1 (patch-level 0)
{ Stella_Object element = null;
Cons iter001 = Stella.list
(Stella_Object.cons
(Stella.wrapInteger(1),
Stella_0Object.cons
(Stella.wrapInteger(2),
Stella_0Object.cons
(Stella.wrapInteger(3),
Stella.NIL)))) .theConsList;

while (!(iter001 == Stella.NIL)) {
{
element = iter001.value;
iter001 iter001.rest;
}
java.lang.System.out.println(element) ;

}

}

4.3 Performance Hints

Here are a few things to watch out for once you get serious about the performance of
your translated STELLA programs:

Safety checks: The STELLA variable *safety* controls whether certain safety code is
added to your translated STELLA program. For Lisp translations it also controls whether
cast’s will be translated into run-time type checks or not. There is no run-time type
checking performed in C++. In Java native casts will always perform runtime type tests.
The default *safetyx* level is 3 which enables the translation of all safety clauses with level
3 or lower. A safety level of 1 or lower disables the generation of calls to the cast function
in Lisp. cast performs run-time type checks which are somewhat expensive. However,
you should not disable run-time type checking in Lisp until you have fully debugged your
program. Once you are confident that your program works correctly, you can set *safetyx*
to 0 before you translate it. That way you will avoid the generation and execution of any
safety code at all. All of the core STELLA system was translated with *safety* set to 1.

Quoted cons trees: Access to quoted constants that are not symbols is somewhat slow,
since it currently uses hashing to find them in a table. Hence, access to quoted constants
such as (quote (foo bar fum)) should be avoided in inner loops. Access to quoted symbols
such as (quote foo) is fast and does not cause any performance problems. The use of quote
for constant cons trees is rare in STELLA (and somewhat deprecated), which is the reason
why this mechanism is not all that well supported. Future versions of STELLA might
re-implement the handling of constants and alleviate this performance problem.

Equality tests: The standard equality test in STELLA is eq1l?, which the translator will
translate into the most efficient equality test for the particular types of operands (eql? is
somewhat similar to the Lisp function CL:eql with the exception of comparing strings). If
the translator can determine that at least one of the operands is a subtype of STANDARD-

Chapter 4: Programming in STELLA 22

OBJECT, it will translate the test into a fast pointer comparison with the Lisp function CL:eq
or the C++/Java == operator. However, if both operands are of type 0BJECT, they might be
wrapped literals such as wrapped integers or strings. In that case the equality test translates
into a call to the function eql? which in turn uses method calls to handle comparison of
different types of wrapped literals (two wrapped literals are equal if their wrapped content
is equal). This is of course a lot less efficient than a simple pointer comparison. It also
means that if you can restrict the type of a variable that will be tested with eql? to
STANDARD-OBJECT, you probably should do so for performance reasons.

Type tests: Run-time type tests as used implicitly within a typecase or explicitly
with functions such as cons? have to use a call to the method primary-type. Hence, in
performance-critical portions of your code you should try to keep the number of such tests
as small as possible.

Wrapping and unwrapping literals: The STELLA translator automatically wraps (or
objectifies) literals such as numbers or strings when they are stored in a variable or slot of
type OBJECT. Similarly, it unwraps wrapped literals automatically to operate on the literal
directly. This is very convenient, since it relieves the programmer from having to perform
these conversions by hand and makes the code less cluttered. For example, consider the
following code fragment:

(let ((1 (cons "foo" nil))
(x (concatenate "bar" (first 1))))
(print x EOL)))

Here is its C++ translation:

{ Cons* 1 = cons(stringWrapLiteral("foo"), NIL);
char* x stringConcatenate
("bar", ((StringWrapperx) (1->first()))->wrapperValue, 0);

cout << x << endl;

}

Notice how the string literal "foo" is first wrapped so it can be inserted into the CONS
list 1 and then automatically unwrapped in the call to concatenate. While this is very
convenient, it does cause a certain overhead that should be avoided in performance critical
loops, etc. In such situations, it often helps to use auxiliary variables of the appropriate
literal type to avoid unnecessary wrap/unwrap operations.

Lisp-style property lists: Lisp programs often use property lists for fast retrieval of
information that is linked to symbols. To support the easy translation of existing Lisp pro-
grams that use this paradigm into STELLA, a similar mechanism implemented by the func-
tions symbol-value, symbol-plist, and symbol-property is available that preserves the
performance benefits of this storage scheme (see the file sources/stella/symbols.ste).
However, property lists do not fit the object-oriented programming paradigm supported by
STELLA, and, hence, are frowned upon.

Compiler optimization: The optimization settings used with the native Lisp or C++
compiler can greatly influence performance results. In particular, using high optimization
settings with the Lisp compiler can greatly improve slot access time on STELLA objects.

4.3.1 Lisp Performance Hints

Chapter 4: Programming in STELLA 23

The standard Lisp implementation for STELLA objects are CLOS objects, since CLOS
provides the most natural Lisp implementation for the STELLA object system. However,
there is a price to pay, since in Lisp slot access on CLOS objects is a lot slower than slot
access on structs. For example, in Allegro CL 4.3, the access to the value slot of a STELLA
CONS cell takes about 4 times longer on a CLOS object implementation of CONS than on a
struct implementation. Unfortunately, the struct implementation itself takes about 3 times
longer than calling CL: car on a Lisp cons, which is why we are actually using Lisp conses as
the Lisp implementation for STELLA CONSes. Note, that in the C++ and Java translation
these slot-access performance problems are nonexistent.

In order to get the maximum performance out of the Lisp version of STELLA, you can
tell the translator to use structs as the implementation for STELLA objects. It does so
by using CL:defstruct instead of CL:defclass and dispatches methods directly on the
structure object.

To use the struct translation scheme evaluate
(set-stella-feature :use-common-lisp-structs)

before you translate a STELLA system. This will generate translated files with a .slisp
extension. Make sure that after you translated all the files you are interested in, you disable
the above feature with

(unset-stella-feature :use-common-lisp-structs)

Otherwise, subsequent incremental translations in that Lisp image might fail, since dif-
ferent translation schemes cannot be mixed. If you already are using the struct version of
STELLA, all systems will be translated in struct mode by default.

To use the struct translation of your system you have to use the struct version of
STELLA. To do so do the following:

(CL:setq cl-user::*load-cl-struct-stella?* CL:t)
(CL:load "load-stella.lisp")

Alternatively, you can edit the initial value of the variable *1oad-cl-struct-stella?*
in the file ‘load-stella.lisp’ (see also Section 2.3 [Lisp Installation], page 4).

The reasons why the struct translation scheme is not enabled by default are the following:

Incremental redefinition of STELLA classes does not redefine any objects created with
the old definition, and, hence, slot accessors might simply break or retrieve the value
of a different slot when applied to such an old object. The programmer therefore has
to be very careful when redefining a STELLA class while in struct mode. This means,
that you should view the usage of the struct-translation scheme for Lisp as a kind of
delivery option, similar to translating into C++. Part of the reason why slot access on
CLOS object is expensive is the indirection machinery that allows redefinition of classes
and their associated instances. This is great for code development, but the flexibility
and expense is usually not needed or warranted for delivered code.

The performance trade-offs between CLOS and struct versions might be different in
different versions of Lisp. For example, in older version of Allegro CL slot access on
structs was fast, but method dispatch was significantly slower than for CLOS objects
which eliminated some/all of the performance gains.

Chapter 5: Library Classes (tbw)

5 Library Classes (tbw)

To be written.

24

Chapter 6: Library Functions

6 Library Functions

6.1 Basic Constants and Predicates

true : BOOLEAN
Represents the boolean true truth value.

false : BOOLEAN
Represents the boolean false truth value.

null? ((x OBJECT)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x SECOND-CLASS-OBJECT)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x NATIVE-VECTOR)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x STRING)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x MUTABLE-STRING)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x CHARACTER)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x CODE)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x INTEGER)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

null? ((x FLOAT)) : BOOLEAN

Return true if x is undefined (handled specially by all translators).

defined? ((x OBJECT)) : BOOLEAN
Return true if x is defined (handled specially by all translators).

defined? ((x SECOND-CLASS-OBJECT)) : BOOLEAN
Return true if x is defined (handled specially by all translators).

25

Constant

Constant

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Chapter 6: Library Functions 26

defined? ((x SECOND-CLASS-OBJECT)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x STRING)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x MUTABLE-STRING)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x CHARACTER)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x CODE)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x INTEGER)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defined? ((x FLOAT)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

eq? ((x UNKNOWN) (y UNKNOWN)) : BOOLEAN Function
Return true if x and y are literally the same object (or simple number). Analogue to
the Common Lisp EQL and C++ and Java’s ==.

eql? ((x OBJECT) (y OBJECT)) : BOOLEAN Function
Return true if x and y are eq? or equivalent literals such as strings that also might be
wrapped in non-identical wrappers. For the case where x or y are plain literals such as
strings or integers, the STELLA translator substitutes the equality test appropriate
for the particular target language and does not actually call this function. For cases
where x or y are known to be of type STANDARD-OBJECT, the STELLA translator
substitutes the faster eq? test inline.

equal? ((x OBJECT) (y OBJECT)) : BOOLEAN Function
Return true if x and y are eql? or considered equal by a user-defined object-equal?
method. This implements a fully extensible equality test similar to Java’s equals
method.

object-equal? ((x OBJECT) (y OBJECT)) : BOOLEAN Method
Return true if x and y are eq?.

object-equal? ((x WRAPPER) (y OBJECT)) : BOOLEAN Method
Return true if x and y are literal wrappers whose literals are considered eql?.

Chapter 6: Library Functions 27

6.2 Numbers

Pl : FLOAT Constant
A float approximation of the mathematical constant pi.

+ (&rest (arguments NUMBER)) : NUMBER Function
Return the sum of all arguments.

- ((x NUMBER) &rest (arguments NUMBER)) : NUMBER Function
If only x was supplied return the result of 0 - x. Otherwise, return the result of (...((x
- argl) - arg2) - ... - argN).

* (&rest (arguments NUMBER)) : NUMBER Function

Return the product of all arguments.

/ ((x NUMBER) &rest (arguments NUMBER)) : NUMBER Function
If only x was supplied return the result of 1 / x. Otherwise, return the result of (...((x

/ argl) /arg2) /.. / argN).

1+ ((expression OBJECT)) : OBJECT Macro
Add 1 to expression and return the result.

1- ((expression OBJECT)) : OBJECT Macro
Subtract 1 from expression and return the result.

++ ((place OBJECT) &body (increment CONS)) : OBJECT Macro
Increment the value of place and return the result. place can be either a variable
name or a slot reference. Increment by the optional increment (which can be a float)
or 1 otherwise.

— ((place 0BJECT) &body (decrement CONS)) : OBJECT Macro
Decrement the value of place and return the result. place can be either a variable
name or a slot reference. Decrement by the optional decrement (which can be a float)
or 1 otherwise.

= ((x NUMBER) (y NUMBER)) : BOOLEAN Function
Return true if x and y are numbers of exactly the same magnitude.

< ((x NUMBER) (y NUMBER)) : BOOLEAN Function
Return true if x is less than y.

<= ((x NUMBER) (y NUMBER)) : BOOLEAN Function
Return true if x is less than or equal to y.

Chapter 6: Library Functions 28

>= ((x NUMBER) (y NUMBER)) : BOOLEAN Function
Return true if x is greater than or equal to y.

> ((x NUMBER) (y NUMBER)) : BOOLEAN Function
Return true if x is greater than y.

zero? ((x INTEGER)) : BOOLEAN Function
Return true if x is 0.

plus? ((x INTEGER)) : BOOLEAN Function
Return true if x is greater than 0.

even? ((x INTEGER)) : BOOLEAN Function
Return true if x is an even number.

odd? ((x INTEGER)) : BOOLEAN Function
Return true if x is an odd number.

mod ((x INTEGER) (modulo INTEGER)) : INTEGER Function
Return the result of x mod modulo.

ceiling ((n NUMBER)) : INTEGER Function
Return the smallest integer >= n.

floor ((n NUMBER)) : INTEGER Function
Return the biggest integer <= n.

round ((n NUMBER)) : INTEGER Function
Round n to the closest integer and return the result.

abs ((x INTEGER)) : INTEGER Method
Return the absolute value of x.

abs ((x FLOAT)) : FLOAT Method
Return the absolute value of x.

min ((x INTEGER) (y INTEGER)) : INTEGER Function
Return the minimum of x and y. If either is NULL, return the other.

max ((x INTEGER) (y INTEGER)) : INTEGER Function
Return the maximum of x and y. If either is NULL, return the other.

sqrt ((n FLOAT)) : FLOAT Function
Return the square root of n.

Chapter 6: Library Functions 29

exp ((x FLOAT)) : FLOAT Function
The natural exponentiation function e~x.

log ((n FLOAT)) : FLOAT Function
Return the natural logarithm (base e) of n.

sin ((n FLOAT)) : FLOAT Function
Return the sine of n radians.

cos ((n FLOAT)) : FLOAT Function
Return the cosine of n radians.

tan ((n FLOAT)) : FLOAT Function
Return the tangent of n radians.

random ((n INTEGER)) : INTEGER Function
Generate a random integer in the interval [0..n-1]. n must be <= 2"15.

integer-to-string ((i INTEGER)) : STRING Function
Print i to a string and return the result. This is more efficient than using a string
stream.

string-to-integer ((string STRING)) : INTEGER Function

Convert a string representation of an integer into an integer.

float-to-string ((f FLOAT)) : STRING Function
Print f to a string and return the result. This is more efficient than using a string
stream.

string-to-float ((string STRING)) : FLOAT Function

Convert a string representation of a float into a float.

format-float ((f FLOAT) (nDecimals INTEGER)) : STRING Function
Print f in fixed-point format with nDecimals behind the decimal point and return
the result as a string.

wrap-integer ((value INTEGER)) : INTEGER-WRAPPER Function
Return a literal object whose value is the INTEGER, value.

unwrap-integer ((wrapper INTEGER-WRAPPER)) : INTEGER Function
Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

wrap-float ((value FLOAT)) : FLOAT-WRAPPER Function
Return a literal object whose value is the FLOAT value.

unwrap-float ((wrapper FLOAT-WRAPPER)) : FLOAT Function
Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

Chapter 6: Library Functions 30

6.3 Characters

character-code ((ch CHARACTER)) : INTEGER Function
Return the 8-bit ASCII code of ch as an integer.

code-character ((code INTEGER)) : CHARACTER Function
Return the character encoded by code (0 <= code <= 255).

digit-character? ((ch CHARACTER)) : BOOLEAN Function
Return TRUE if ch represents a digit.

letter-character? ((ch CHARACTER)) : BOOLEAN Function
Return TRUE if ch represents a letter.

upper-case-character? ((ch CHARACTER)) : BOOLEAN Function
Return TRUE if ch represents an upper-case character.

lower-case-character? ((ch CHARACTER)) : BOOLEAN Function
Return TRUE if ch represents a lower-case character.

white-space-character? ((ch CHARACTER)) : BOOLEAN Function
Return TRUE if ch is a white space character.

character-downcase ((ch CHARACTER)) : CHARACTER Function
If ch is lowercase, return its uppercase version, otherwise, return ch unmodified.

character-upcase ((ch CHARACTER)) : CHARACTER Function
If ch is uppercase, return its lowercase version, otherwise, return ch unmodified. If
only the first character of a sequence of characters is to be capitalized, character-
capitalize should be used instead.

character-capitalize ((ch CHARACTER)) : CHARACTER Function
Return the capitalized character for ch. This is generally the same as the uppercase
character, except for obscure non-English characters in Java. It should be used if only
the first character of a sequence of characters is to be capitalized.

character-to-string ((c CHARACTER)) : STRING Function
Convert ¢ into a one-element string and return the result.

wrap-character ((value CHARACTER)) : CHARACTER-WRAPPER Function
Return a literal object whose value is the CHARACTER, value.

unwrap-character ((wrapper CHARACTER-WRAPPER)) : CHARACTER Function
Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

31

Chapter 6: Library Functions

6.4 Strings
string-eql? ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x and y are equal strings or are both undefined. This test is substituted

automatically by the STELLA translator if eql? is applied to strings.
Function

string-equal? ((x STRING) (y STRING)) : BOOLEAN
Return true if x and y are equal strings ignoring character case or are both undefined.

Function

string-compare ((x STRING) (y STRING) (case-sensitive? BOOLEAN)) :

INTEGER
Compare x and y lexicographically, and return -1, 0, or 1, depending on whether x
is less than, equal, or greater than y. If case-sensitive? is true, then case does matter

for the comparison
Function

string< ((x STRING) (y STRING)) : BOOLEAN
Return true if x is lexicographically < y, considering case.

string<= ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically <= y, considering case.
string>= ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically >= y, considering case.
string> ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically > y, considering case.
string-less? ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically < y, ignoring case.
string-less-equal? ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically <= y, ignoring case.
string-greater-equal? ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically >= y, ignoring case.
string-greater? ((x STRING) (y STRING)) : BOOLEAN Function
Return true if x is lexicographically > y, ignoring case.
all-upper-case-string? ((s STRING)) : BOOLEAN Function
Return TRUE if all letters in s are upper case.
Function

all-lower-case-string? ((s STRING)) : BOOLEAN
Return TRUE if all letters in s are lower case.

Chapter 6: Library Functions

make-string ((size INTEGER) (initchar CHARACTER)) : STRING

Return a new string filled with size initchars.

make-mutable-string ((size INTEGER) (initchar CHARACTER)) :

MUTABLE-STRING
Return a new mutable string filled with size initchars.

make-raw-mutable-string ((size INTEGER)) : MUTABLE-STRING

Return a new uninitialized mutable string of size.

first ((self STRING)) : CHARACTER
Return the first character of self.

first ((self MUTABLE-STRING)) : CHARACTER
Return the first character of self (settable via setf).

second ((self STRING)) : CHARACTER
Return the second character of self.

second ((self MUTABLE-STRING)) : CHARACTER
Return the second character of self (settable via setf).

third ((self STRING)) : CHARACTER
Return the third character of self.

third ((self MUTABLE-STRING)) : CHARACTER
Return the third character of self (settable via setf).

fourth ((self STRING)) : CHARACTER
Return the fourth character of self.

fourth ((self MUTABLE-STRING)) : CHARACTER
Return the fourth character of self (settable via setf).

fifth ((self STRING)) : CHARACTER
Return the fifth character of self.

fifth ((self MUTABLE-STRING)) : CHARACTER
Return the fifth character of self (settable via setf).

nth ((self STRING) (position INTEGER)) : CHARACTER
Return the character in self at position.

nth ((self MUTABLE-STRING) (position INTEGER)) : CHARACTER
Return the character in self at position.

32

Function

Function

Function

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Chapter 6: Library Functions 33

rest ((self STRING)) : STRING Method
Not documented.

length ((self STRING)) : INTEGER Method
Return the length of the string self.

length ((self MUTABLE-STRING)) : INTEGER Method
Return the length of the string self.

member? ((self STRING) (char CHARACTER)) : BOOLEAN Method
Not documented.

position ((string STRING) (character CHARACTER) (start INTEGER)) : Method
INTEGER
Return the position of character within string (counting from zero); or return NULL
if character does not occur within string. If start was supplied as non-NULL, only
consider the substring starting at start, however, the returned position will always be
relative to the entire string.

string-search ((string STRING) (substring STRING) (start INTEGER)) : Function
INTEGER
Return start position of the left-most occurrence of substring in string, beginning
from start. Return NULL if it is not a substring.

copy ((string STRING)) : STRING Method
Return a copy of string.

string-upcase ((string STRING)) : STRING Function
Return an upper-case copy of string.

string-downcase ((string STRING)) : STRING Function
Return a lower-case copy of string.

string-capitalize ((string STRING)) : STRING Function
Return a capitalized version of string.

concatenate ((stringl STRING) (string2 STRING) Method
&rest (otherStrings STRING)) : STRING
Return a new string representing the concatenation of stringl, string2, and other-
Strings. The two mandatory parameters allow us to optimize the common binary
case by not relying on the somewhat less efficient variable arguments mechanism.

subsequence ((string STRING) (start INTEGER) (end INTEGER)) : STRING Method
Return a substring of string beginning at position start and ending up to but not
including position end, counting from zero. An end value of NULL stands for the rest
of the string.

Chapter 6: Library Functions

remove ((string STRING) (char CHARACTER)) : STRING
Remove all occurences of char from string.

substitute ((self STRING) (newChar CHARACTER) (oldChar CHARACTER))
: STRING
Substitute all occurences of oldChar with newChar in the string self.

substitute ((self MUTABLE-STRING) (newChar CHARACTER)
(oldChar CHARACTER)) : MUTABLE-STRING
Substitute all occurences of oldChar with newChar in the string self.

replace-substrings ((string STRING) (new STRING) (old STRING)) :
STRING
Replace all occurrences of old in string with new.

insert-string ((source STRING) (start INTEGER) (end INTEGER)

34

Method

Method

Method

Function

Function

(target MUTABLE-STRING) (target-index INTEGER) (case-conversion KEYWORD))

. INTEGER

Inserts characters from source begining at start and ending at end into target starting
at target-index. If end is null, then the entire length of the string is used. The
copy of characters is affected by the case-conversion keyword which should be one of

:UPCASE :DOWNCASE :CAPITALIZE :PRESERVE.

The final value of target-index is returned.

wrap-string ((value STRING)) : STRING-WRAPPER
Return a literal object whose value is the STRING value.

wrap-mutable-string ((value MUTABLE-STRING)) :
MUTABLE-STRING-WRAPPER
Return a literal object whose value is the MUTABLE-STRING value.

unwrap-string ((wrapper STRING-WRAPPER)) : STRING

Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

unwrap-mutable-string ((wrapper MUTABLE-STRING-WRAPPER)) :
MUTABLE-STRING

Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

string-to-mutable-string ((s STRING)) : MUTABLE-STRING

Function

Function

Function

Function

Function

Copy s into a mutable string with the same content. In Lisp and C++ this simply

copies s.

mutable-string-to-string ((s MUTABLE-STRING)) : STRING

Function

Convert s into a regular string with the same content. In Lisp and C++ this is a no-op.

Chapter 6: Library Functions 35

integer-to-string ((i INTEGER)) : STRING Function
Print i to a string and return the result. This is more efficient than using a string
stream.

string-to-integer ((string STRING)) : INTEGER Function

Convert a string representation of an integer into an integer.

float-to-string ((f FLOAT)) : STRING Function
Print f to a string and return the result. This is more efficient than using a string
stream.

string-to-float ((string STRING)) : FLOAT Function

Convert a string representation of a float into a float.

format-float ((f FLOAT) (nDecimals INTEGER)) : STRING Function
Print f in fixed-point format with nDecimals behind the decimal point and return
the result as a string.

character-to-string ((c CHARACTER)) : STRING Function
Convert ¢ into a one-element string and return the result.

stringify ((expression OBJECT)) : STRING Function
Print expression onto a string and return the result. Printing is done with *printReadably?*
set to true and with *printPretty?* set to false.

stringify-in-module ((tree OBJECT) (module MODULE)) : STRING Function
Stringify a parse tree relative to module, or *module* if no module is specified.

unstringify ((string STRING)) : OBJECT Function
Read a STELLA expression from string and return the result. This is identical to

read-s-expression-from-string.

unstringify-in-module ((string STRING) (module MODULE)) : OBJECT Function
Unstringify relative to module, or *MODULE* if no module is specified.

6.5 CONS Lists and Trees

nil : cons Variable
Not documented.

empty? ((self CONS)) : BOOLEAN Method
Return true iff self equals nil.

non-empty? ((self CONS)) : BOOLEAN Method
Return true iff self is not equal to nil.

Chapter 6: Library Functions 36

nil? ((x OBJECT)) : BOOLEAN Function
Return true iff x equals nil.

equal-cons-trees? ((treel OBJECT) (tree2 OBJECT)) : BOOLEAN Function
Return true iff the cons trees treel and tree2 are structurally equivalent. Uses an
eql? test.

object-equal? ((treel CONS) (tree2 OBJECT)) : BOOLEAN Method

Return true iff the cons trees treel and tree2 are structurally equivalent. Uses equal?
to test equality of subtrees.

cons ((value OBJECT) (rest CONS)) : CONS Function
Return a cons record that points to value and rest.

first ((self cons)) : (LIKE (ANY-VALUE SELF)) Method
Return the first element of self. The first element of self can be set with setf. Note
that (first NIL) = null.

second ((self CONS)) : (LIKE (ANY-VALUE SELF)) Method
Return the second element of self. The second element of self can be set with setf.
Note that (second NIL) = null.

third ((self CONS)) : (LIKE (ANY-VALUE SELF)) Method
Return the third element of self. The third element of self can be set with setf. Note
that (third NIL) = null.

fourth ((self cons)) : (LIKE (ANY-VALUE SELF)) Method
Return the fourth element of self. The fourth element of self can be set with setf.
Note that (fourth NIL) = null.

fifth ((self cons)) : (LIKE (ANY-VALUE SELF)) Method
Return the fifth element of self. The fifth element of self can be set with setf. Note,
that (fifth NIL) = null.

nth ((self coNs) (position INTEGER)) : (LIKE (ANY-VALUE SELF)) Method
Return the element of self at position. The nth element of self can be set with setf.
Note, that (nth NIL <pos>) = null.

nth-rest ((self CONS) (position INTEGER)) : (LIKE SELF) Method
Apply rest position times to self.

last ((self cONs)) : (LIKE (ANY-VALUE SELF)) Method
Return the last element of self.

but-last ((self CONS)) : (ITERATOR OF (LIKE (ANY-VALUE SELF))) Method
Generate all but the last element of the cons list self.

Chapter 6: Library Functions 37

last-cons ((self coNs)) : (CONS OF (LIKE (ANY-VALUE SELF))) Function
Return the last cons of self.

length ((self CONS)) : INTEGER Method
Return the length of the CONS list self.

member? ((self CONS) (object OBJECT)) : BOOLEAN Method
Return true iff object is a member of the cons list self (uses an eql? test).

memb? ((self cONS) (object OBJECT)) : BOOLEAN Method
Return true iff object is a member of the cons list self (uses an eq? test).

position ((self cONS) (object OBJECT) (start INTEGER)) : INTEGER Method
Return the position of object within the cons-list self (counting from zero); or return
null if object does not occur within self (uses an eql? test). If start was supplied as
non-‘null’; only consider the sublist starting at start, however, the returned position
will always be relative to the entire list.

reverse ((self CONS)) : (LIKE SELF) Method
Destructively reverse the members of the cons list self.

remove ((self CONS) (value OBJECT)) : (LIKE SELF) Method
Destructively remove all entries in the cons list self that match value. Unless the
remaining list is nil, insure that the cons that heads the list is unchanged.

remove-duplicates ((self CONS)) : (LIKE SELF) Method
Destructively remove duplicates from self and return the result. Removes all but the
first occurrence of items in the list. Preserves the original order of the remaining
members. Runs in linear time.

remove-if ((self CONS) (test? FUNCTION-CODE)) : (LIKE SELF) Method
Destructively removes all members of the cons list self for which test? evaluates to
true. test takes a single argument of type OBJECT and returns true or false.
Returns a cons list. In case the first element is removed, the return result should be
assigned to a variable.

substitute ((self cons) (inValue OBJECT) (outValue OBJECT)) : CONS Method
Destructively replace each appearance of outValue by inValue in the cons list self.

concatenate ((listl1 CONS) (list2 CONS) &rest (otherLists CONS)) : CONS Method
Return a cons list consisting of the concatenation of listl, list2, and otherLists. The
operation is destructive wrt all but the last list argument which is left intact. The two
mandatory parameters allow us to optimize the common binary case by not relying
on the somewhat less efficient variable arguments mechanism.

Chapter 6: Library Functions 38

append ((consListl CONS) (consList2 CONS)) : CONS Function
Return a cons list representing the concatenation of consList] and consList2. The
concatenation is NOT destructive.

prepend ((self cONs) (list] CONS)) : CONS Method
Return a cons list consisting of the concatenation of list] and self. A copy of list1 is
prepended to self. This operation results in structure sharing of self; to avoid this,
self should not be pointed to by anything other than the tail of the prepended copy.

pushq ((variable SYMBOL) (value OBJECT)) : OBJECT Macro
Push value onto the cons list variable.

pushqg-new ((variable SYMBOL) (value OBJECT)) : OBJECT Macro
Push value onto the cons list variable, if its not there already.

popq ((variable SYMBOL)) : OBJECT Macro
Pops a value from the cons list variable.

cons-list (&rest (values OBJECT)) : CONS Function
Return a cons list containing values, in order.

list* (&rest (values OBJECT)) : CONS Function
Return a list of conses that make up the list values, terminated by the last value
rather than by nil. Assumes that at least one value is passed in.

copy-cons-list ((self CONS)) : (LIKE SELF) Function
Return a copy of the cons list self.

copy-cons-tree ((self OBJECT)) : (LIKE SELF) Function
Return a copy of the cons tree self.

substitute-cons-tree ((tree OBJECT) (newValue OBJECT) Function
(oldValue OBJECT)) : OBJECT
Destructively replace each appearance of oldValue by newValue in the cons tree tree.
Return the tree. Uses an eql? test.

search-cons-tree? ((tree OBJECT) (value OBJECT)) : BOOLEAN Function
Return true iff the value value is embedded within the cons tree tree. Uses an eql?
test.

tree-size ((self OBJECT)) : INTEGER Function

Not documented.

safe-tree-size ((tree CONS)) : INTEGER STRING Function
Not documented.

Chapter 6: Library Functions 39

consify ((self CONS)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return self.

allocate-iterator ((self CONS)) : (CONS-ITERATOR OF (LIKE Method
(ANY-VALUE SELF)))
Not documented.

next? ((self CONS-ITERATOR)) : BOOLEAN Method
Not documented.

sort ((self coNs) (predicate FUNCTION-CODE)) : (CONS OF (LIKE Method
(ANY-VALUE SELF)))

Perform a stable, destructive sort of self according to predicate, and return the re-
sult. If predicate has a < semantics, the result will be in ascending order. It is not
guaranteed that self will point to the beginning of the sorted result. If predicate is
null, a suitable < predicate is chosen depending on the first element of self, and it is
assumed that all elements of self have the same type (supported element types are
GENERALIZED-SYMBOL, STRING, INTEGER, and FLOAT).

map-null-to-nil ((self coNns)) : cons Function
Return nil iff self is null or self otherwise.

printpretty? : BOOLEAN Special Variable
If true conses will be pretty printed.

printreadably? : BOOLEAN Special Variable
If true conses will be printed as readable Stella code.

printprettycode? : BOOLEAN Special Variable
When true pretty-print Stella and translated code. Since (Lisp) pretty-printing is
somewhat slow, turning this off speeds up file translation, but it also makes translated
output very unreadable.

6.6 Lists

nil-list : vLisT Variable
Not documented.

defined-list? ((self LIST)) : BOOLEAN Function
Return TRUE unless self is NULL or the NIL-LIST.

null-list? ((self LIST)) : BOOLEAN Function
Return TRUE iff self is NULL or the NIL-LIST.

Chapter 6: Library Functions 40

empty? ((self LIST)) : BOOLEAN Method
Return TRUE if the list self has no members.

non-empty? ((self LIST)) : BOOLEAN Method
Return TRUE if the list self has at least one member.

object-equal? ((x LIST) (y OBJECT)) : BOOLEAN Method
Return TRUE iff the lists x and y are structurally equivalent. Uses equal? to test
equality of elements.

list (&rest (values OBJECT)) : LIST Function
Return a list containing values, in order.

first ((self L1ST)) : (LIKE (ANY-VALUE SELF)) Method
Return the first item in the list self, or NULL if empty.

second ((self LIST)) : (LIKE (ANY-VALUE SELF)) Method
Return the second item in the list self, or NULL if empty.

third ((self L1sT)) : (LIKE (ANY-VALUE SELF)) Method
Return the third item in the list self, or NULL if empty.

fourth ((self LisT)) : (LIKE (ANY-VALUE SELF)) Method
Return the fourth item in the list self, or NULL if empty.

fifth ((self L1sT)) : (LIKE (ANY-VALUE SELF)) Method
Return the fifth item in the list self, or NULL if empty.

nth ((self L1ST) (position INTEGER)) : (LIKE (ANY-VALUE SELF)) Method
Return the nth item in the list self, or NULL if empty.

rest ((self L1ST)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return a cons list of all but the first item in the list self.

last ((self L1ST)) : (LIKE (ANY-VALUE SELF)) Method
Return the last element of self.

but-last ((self LisT)) : (ITERATOR OF (LIKE (ANY-VALUE SELF))) Method
Generate all but the last element of the list self.

length ((self LIST)) : INTEGER Method
Not documented.

member? ((self LIST) (object OBJECT)) : BOOLEAN Method
Return TRUE iff object is a member of the list self (uses an eql? test).

Chapter 6: Library Functions 41

memb? ((self LIST) (object (LIKE (ANY-VALUE SELF)))) : BOOLEAN Method
Return TRUE iff object is a member of the cons list self (uses an eq? test).

position ((self LIST) (object OBJECT) (start INTEGER)) : INTEGER Method
Return the position of object within the list self (counting from zero); or return NULL
if object does not occur within self (uses an eql? test). If start was supplied as non-
NULL, only consider the sublist starting at start, however, the returned position will
always be relative to the entire list.

insert ((self LIST) (value (LIKE (ANY-VALUE SELF)))) : Method
Add value to the front of the list self.

push ((self L1ST) (value (LIKE (ANY-VALUE SELF)))) : Method
Add value to the front of the list self.

insert-new ((self LiST) (value (LIKE (ANY-VALUE SELF)))) : Method
Add value to the front of the list self unless its already a member.

insert-last ((self L1ST) (value (LIKE (ANY-VALUE SELF)))) : Method
Insert value as the last entry in the list self.

reverse ((self LIST)) : (LIKE SELF) Method
Reverse the members of self (in place).

remove ((self LIST) (value (LIKE (ANY-VALUE SELF)))) : (LIKE SELF) Method
Destructively remove all entries in self that match value.

remove-duplicates ((self LIST)) : (LIKE SELF) Method
Destructively remove duplicates from self and return the result. Preserves the original
order of the remaining members.

remove-deleted-members ((self LIST)) : (LIKE SELF) Method
Not documented.

remove-if ((self LIST) (test? FUNCTION-CODE)) : (LIKE SELF) Method
Destructively remove all members of the list self for which test? evaluates to TRUE.
test takes a single argument of type OBJECT and returns TRUE or FALSE. Returns
self.

pop ((self L1ST)) : (LIKE (ANY-VALUE SELF)) Method
Remove and return the first element in the list self. Return NULL if the list is empty.

substitute ((self LI1ST) (inValue OBJECT) (outValue OBJECT)) : (LIKE Method
SELF)
Destructively replace each appearance of outValue by inValue in the list self.

Chapter 6: Library Functions 42

concatenate ((listl L1sT) (list2 L1ST) &rest (otherLists LIST)) : LIST Method
Copy list2 and all otherLists onto the end of listl. The operation is destructive
wrt list1, but leaves all other lists intact. The two mandatory parameters allow us
to optimize the common binary case by not relying on the somewhat less efficient
variable arguments mechanism.

prepend ((self L1ST) (list2 LIST)) : (LIKE SELF) Method
Copy list2 onto the front of the list self. The operation is destructive wrt self, but
leaves list2 intact.

copy ((self LisT)) : (LIST OF (LIKE (ANY-VALUE SELF))) Method
Return a copy of the list self. The conses in the copy are freshly allocated.

clear ((self LisT)) : Method
Make self an empty list.

consify ((self L1ST)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return a list of elements in self.

allocate-iterator ((self L1ST)) : (LIST-ITERATOR OF (LIKE (ANY-VALUE Method
SELF)))
Not documented.

next? ((self LIST-ITERATOR)) : BOOLEAN Method
Not documented.

sort ((self LIST) (predicate FUNCTION-CODE)) : (LIST OF (LIKE Method
(ANY-VALUE SELF)))
Perform a stable, destructive sort of self according to predicate, and return the result.
If predicate has a < semantics, the result will be in ascending order. If predicate is
NULL, a suitable < predicate is chosen depending on the first element of self, and it
is assumed that all elements of self have the same type (supported element types are

GENERALIZED-SYMBOL, STRING, INTEGER, and FLOAT).

map-null-to-nil-list ((self LIST)) : LIST Function
Return NIL-LIST iff self is NULL or self otherwise.

6.7 Property and Key-Value Lists

empty? ((self PROPERTY-LIST)) : BOOLEAN Method
Not documented.

non-empty? ((self PROPERTY-LIST)) : BOOLEAN Method
Not documented.

Chapter 6: Library Functions 43

object-equal? ((x PROPERTY-LIST) (y OBJECT)) : BOOLEAN Method
Return TRUE if x and y represent the same set of key/value pairs..

length ((self PROPERTY-LIST)) : INTEGER Method
Not documented.

lookup ((self PROPERTY-LIST) (key (LIKE (ANY-KEY SELF)))) : (LIKE Method
(ANY-VALUE SELF))
Not documented.

insert-at ((self PROPERTY-LIST) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Insert the entry <‘key’, value> into the property list self. If a previous entry existed
with key key, that entry is replaced.

remove-at ((self PROPERTY-LIST) (key (LIKE (ANY-KEY SELF)))) : Method
OBJECT
Remove the entry that matches the key key. Return the value of the matching entry,
or NULL if there is no matching entry. Assumes that at most one entry matches key.

copy ((self PROPERTY-LIST)) : (LIKE SELF) Method
Return a copy of the list self. The conses in the copy are freshly allocated.

clear ((self PROPERTY-LIST)) : Method
Make self an empty property list.

allocate-iterator ((self PROPERTY-LIST)) : (PROPERTY-LIST-ITERATOR Method
OF (LIKE (ANY-KEY SELF)) (LIKE (ANY-VALUE SELF)))
Not documented.

next? ((self PROPERTY-LIST-ITERATOR)) : BOOLEAN Method
Not documented.

kv-cons ((key OBJECT) (value OBJECT) (rest KV-CONS)) : KV-CONS Function
Create, fill-in, and return a new KV-CONS.

copy-kv-cons-list ((kvconslist Kv-CONS)) : KV-CONS Function
Return a copy of the cons list consList.

empty? ((self KEY-VALUE-LIST)) : BOOLEAN Method
Not documented.

non-empty? ((self KEY-VALUE-LIST)) : BOOLEAN Method
Not documented.

Chapter 6: Library Functions 44

object-equal? ((x KEY-VALUE-LIST) (y OBJECT)) : BOOLEAN Method
Return TRUE if x and y represent the same set of key/value pairs.

length ((self KEY-VALUE-LIST)) : INTEGER Method
Not documented.

lookup ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF)))) : (LIKE Method
(ANY-VALUE SELF))
Not documented.

reverse ((self KEY-VALUE-LIST)) : (LIKE SELF) Method
Destructively reverse the members of the list self.

insert-at ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Insert the entry <‘key’, value> into the association self. If a previous entry existed
with key key, that entry is replaced.

remove-at ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF)))) : Method
OBJECT
Remove the entry that matches the key key. Return the value of the matching entry,
or NULL if there is no matching entry. Assumes that at most one entry matches key.

insert-entry ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Insert an entry <‘key’,value> to self unless an identical entry already exists. This can
generate duplicate entries for key.

remove-entry ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Remove the entry that matches <‘key’,value>. Assumes that more than one entry can
match key.

push ((self KEY-VALUE-LIST) (value KV-CONS)) : Method
Make value be the new first element of self. Note that the rest slot of value should be
null, since it will be overwritten. This might duplicate an existing entry. If a previous
entry existed with the same key as value, that entry is retained, but shadowed by this
new entry.

kv-push ((self KEY-VALUE-LIST) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Add a new entry <‘key’, value> to the front of the association self. This might
duplicate an existing entry. If a previous entry existed with key key, that entry is
retained, but shadowed by this new entry.

Chapter 6: Library Functions 45

pop ((self KEY-VALUE-LIST)) : (LIKE (ANY-VALUE SELF)) Method
Remove and return the value of the first element of the kv-list self. It does NOT
return the KV-CONS object. Return null if the list is empty.

copy ((self KEY-VALUE-LIST)) : (LIKE SELF) Method
Return a copy of the kv-list self. The kv-conses in the copy are freshly allocated.

clear ((self KEY-VALUE-LIST)) : Method
Make self an empty dictionary.

consify ((self KEY-VALUE-LIST)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return a list of key-value pairs in self.

allocate-iterator ((self KEY-VALUE-LIST)) : (KV-LIST-ITERATOR OF Method
(LIKE (ANY-KEY SELF)) (LIKE (ANY-VALUE SELF)))
Not documented.

next? ((self KV-LIST-ITERATOR)) : BOOLEAN Method
Not documented.

6.8 Vectors

empty? ((self VECTOR)) : BOOLEAN Method
Return true if self has length 0.

non-empty? ((self VECTOR)) : BOOLEAN Method
Return true if self has length > 0.

object-equal? ((x VECTOR) (y OBJECT)) : BOOLEAN Method
Return TRUE iff the vectors x and y are structurally equivalent. Uses equal? to test
equality of elements.

vector (&rest (values OBJECT)) : VECTOR Function
Return a vector containing values, in order.

first ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

second ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

third ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

Chapter 6: Library Functions 46

fourth ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

fifth ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

nth ((self VECTOR) (position INTEGER)) : (LIKE (ANY-VALUE SELF)) Method
Not documented.

last ((self VECTOR)) : (LIKE (ANY-VALUE SELF)) Method
Return the last item in the vector self.

but-last ((self VECTOR)) : (ITERATOR OF (LIKE (ANY-VALUE SELF))) Method
Generate all but the last element of the vector self.

length ((self VECTOR)) : INTEGER Method
Not documented.

member? ((self VECTOR) (object OBJECT)) : BOOLEAN Method
Not documented.

position ((self VECTOR) (object OBJECT) (start INTEGER)) : INTEGER Method
Return the position of object within the vector self (counting from zero); or return
null if object does not occur within self (uses an eql? test). If start was supplied as
non-‘null’; only consider the portion starting at start, however, the returned position
will always be relative to the entire vector.

insert-at ((self VECTOR) (offset INTEGER) Method
(value (LIKE (ANY-VALUE SELF)))) :
Not documented.

copy ((self VECTOR)) : (VECTOR OF (LIKE (ANY-VALUE SELF))) Method
Return a copy of the vector self.

clear ((self VECTOR)) : Method
Not documented.

resize-vector ((self VECTOR) (size INTEGER)) : Function
Change the size of self to size. If size is smaller than the current size of self the
vector will be truncated. Otherwise, the internal array of self will be grown to size
and unused elements will be initialized to NULL.

consify ((self VECTOR)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return a list of elements in self.

Chapter 6: Library Functions 47

insert-at ((self EXTENSIBLE-VECTOR) (offset INTEGER) Method
(value (LIKE (ANY-VALUE SELF)))) :
Not documented.

insert ((self VECTOR-SEQUENCE) (value (LIKE (ANY-VALUE SELF)))) : Method
Append value to the END of the sequence self. Resize the array if necessary.

remove ((self VECTOR-SEQUENCE) (value (LIKE (ANY-VALUE SELF)))) : Method
VECTOR-SEQUENCE
Remove value from the sequence self, and left shift the values after it to close the gap.

length ((self VECTOR-SEQUENCE)) : INTEGER Method
Not documented.

6.9 Hash Tables

lookup ((self HASH-TABLE) (key (LIKE (ANY-KEY SELF)))) : (LIKE Method
(ANY-VALUE SELF))
Not documented.

insert-at ((self HASH-TABLE) (key (LIKE (ANY-KEY SELF))) Method
(value (LIKE (ANY-VALUE SELF)))) :
Not documented.

remove-at ((self HASH-TABLE) (key (LIKE (ANY-KEY SELF)))) : Method
Not documented.

lookup ((self STRING-HASH-TABLE) (key STRING)) : (LIKE (ANY-VALUE Method
SELF))
Not documented.

insert-at ((self STRING-HASH-TABLE) (key STRING) (value OBJECT)) : Method
Not documented.

remove-at ((self STRING-HASH-TABLE) (key STRING)) : Method
Not documented.

lookup ((self STRING-TO-INTEGER-HASH-TABLE) (key STRING)) : INTEGER Method
Not documented.

insert-at ((self STRING-TO-INTEGER-HASH-TABLE) (key STRING) Method
(value INTEGER)) :
Not documented.

Chapter 6: Library Functions 48

lookup ((self INTEGER-HASH-TABLE) (key INTEGER)) : (LIKE (ANY-VALUE Method
SELF))
Not documented.

insert-at ((self INTEGER-HASH-TABLE) (key INTEGER) (value OBJECT)) : Method
Not documented.

insert-at ((self FLOAT-HASH-TABLE) (key FLOAT) (value OBJECT)) : Method
Not documented.

6.10 Iterators

empty? ((self ITERATOR)) : BOOLEAN Method
Return TRUE if the sequence represented by self has no elements. Side-effect free.

member? ((self ITERATOR) (value OBJECT)) : BOOLEAN Method
Iterate over values of self, returning TRUE if one of them is eql to 'value.

length ((self ABSTRACT-ITERATOR)) : INTEGER Method
Iterate over self, and count how many items there are. Bad idea if self iterates over
an infinite collection, since in that case it will run forever.’

pop ((self ITERATOR)) : (LIKE (ANY-VALUE SELF)) Method
Return the first item of the sequence represented by self, or NULL if it is empty.
Destructively uses up the first iteration element.

advance ((self ITERATOR) (n INTEGER)) : (LIKE SELF) Method
Return self after skipping over the first n elements in the (remainder of the) iteration.

concatenate ((iteratorl ITERATOR) (iterator2 ITERATOR) Method
&rest (otherlterators ITERATOR)) : ALL-PURPOSE-ITERATOR
Return an iterator that first generates all values of iteratorl, then those of iterator2,
and then those of all otherlterators. The generated values can be filtered by supplying
a filter function to the resulting iterator.

consify ((self ITERATOR)) : (CONS OF (LIKE (ANY-VALUE SELF))) Method
Return a list of elements generated by self.

next? ((self ALL-PURPOSE-ITERATOR)) : BOOLEAN Method
Apply the stored next? function to self.

Chapter 6: Library Functions 49

6.11 Symbols

lookup-symbol ((name STRING)) : SYMBOL Function
Return the first symbol with name visible from the current module.

intern-symbol ((name STRING)) : SYMBOL Function
Return a newly-created or existing symbol with name name.

unintern-symbol ((self symMBOL)) : Function
Remove self from its home module and the symbol table.

lookup-symbol-in-module ((name STRING) (module MODULE) Function
(Iocal? BOOLEAN)) : SYMBOL
Return the first symbol with name visible from module. If local? only consider
symbols directly interned in module. If module is null, use *MODULE* instead.

intern-symbol-in-module ((name STRING) (module MODULE) Function
(Iocal? BOOLEAN)) : SYMBOL
Look for a symbol named name in module (if local? do not consider inherited mod-
ules). If none exists, intern it locally in module. Return the existing or newly-created
symbol.

intern-derived-symbol ((baseSymbol GENERALIZED-SYMBOL) Function
(newName STRING)) : SYMBOL
Return a newly-created or existing symbol with name newName which is interned in
the same module as baseSymbol.

visible-symbol? ((self SYMBOL)) : BOOLEAN Function
Return true if self is visible from the current module.

lookup-visible-symbols-in-module ((name STRING) Function
(module MODULE) (enforceShadowing? BOOLEAN)) : (CONS OF SYMBOL)
Return the list of symbols with name visible from module. More specific symbols
(relative to the module precedence order defined by visible-modules) come earlier in
the list. If module is null, start from *MODULE* instead. If enforceShadowing? is true,
do not return any symbols that are shadowed due to some :SHADOW declaration.

lookup-surrogate ((name STRING)) : SURROGATE Function
Return the first surrogate with name visible from the current module.

intern-surrogate ((name STRING)) : SURROGATE Function
Return a newly-created or existing surrogate with name name.

unintern-surrogate ((self SURROGATE)) : Function
Remove self from its home module and the surrogate table.

Chapter 6: Library Functions 50

lookup-surrogate-in-module ((name STRING) (module MODULE) Function
(Iocal? BOOLEAN)) : SURROGATE
Return the first surrogate with name visible from module. If local? only consider
surrogates directly interned in module. If module is null, use *MODULE* instead.

intern-surrogate-in-module ((name STRING) (module MODULE) Function
(Iocal? BOOLEAN)) : SURROGATE
Look for a symbol named name in module (if local? do not consider inherited mod-
ules). If none exists, intern it locally in module. Return the existing or newly-created
symbol.

intern-derived-surrogate ((baseSymbol GENERALIZED-SYMBOL) Function
(newName STRING)) : SURROGATE
Return a newly-created or existing surrogate with name newName which is interned
in the same module as baseSymbol.

visible-surrogate? ((self SURROGATE)) : BOOLEAN Function
Return true if self is visible from the current module.

lookup-visible-surrogates-in-module ((name STRING) Function
(module MODULE) (enforceShadowing? BOOLEAN)) : (CONS OF SURROGATE)
Return the list of surrogates with name visible from module. More specific surrogates
(relative to the module precedence order defined by visible-modules) come earlier
in the list. If module is null, start from *MODULE# instead. If enforceShadowing?
is true, do not return any surrogates that are shadowed due to some :SHADOW
declaration.

lookup-keyword ((name STRING)) : KEYWORD Function
Return the keyword with name if it exists.

intern-keyword ((name STRING)) : KEYWORD Function
Return a newly-created or existing keyword with name name. Storage note: a COPY
of name is stored in the keyword

gensym ((prefix STRING)) : SYMBOL Function
Return a transient symbol with a name beginning with prefix and ending with a
globally gensym’d integer.

local-gensym ((prefix STRING)) : SYMBOL Function
Not documented.

symbol-plist ((symbol SYMBOL)) : CONS Function
Return the property list of symbol. The symbol-plist of a symbol can be set with
setf. IMPORTANT: Property list are modified destructively, hence, if you supply it
as a whole make sure to always supply a modfiable copy, e.g., by using bquote.

Chapter 6: Library Functions 51

symbol-property ((symbol symMBOL) (key STANDARD-OBJECT)) : Function
OBJECT
Return the property of symbol whose key is eq? to key. Symbol properties can be
set with setf.

symbol-value ((symbol SYMBOL)) : OBJECT Function
Return the value of symbol. Note, that this value is not visible to code that references
a variable with the same name as symbol. The symbol-value is simply a special
property that can always be accessed in constant time. The symbol-value of a
symbol can be changed with setf.

symbolize ((surrogate SURROGATE)) : SYMBOL Function
Convert surrogate into a symbol with the same name and module.

6.12 Context and Modules

get-stella-context ((pathName STRING) (error? BOOLEAN)) : Function
CONTEXT
Return the context located at pathName, or null if no such context exists. If error?
is true, throw an exception if no context is found, otherwise silently return null.

clear-context ((self CONTEXT)) : Function
Destroy all objects belonging to self or any of its subcontexts.

within-context ((contextForm OBJECT) &body (body CONS)) : OBJECT Macro
Execute body within the context resulting from contextForm.

destroy-context ((self CONTEXT)) : Method
Make the translator happy.

destroy-context ((self STRING)) : Method
Destroy the context self, and recursively destroy all contexts that inherit self.

change-context ((context CONTEXT)) : CONTEXT Method
Change the current context to be the context context.

change-context ((contextName STRING)) : CONTEXT Method
Change the current context to be the context named contextName.

cc (&rest (name NAME)) : CONTEXT Command
Change the current context to the one named name. Return the value of the new
current context. If no name is supplied, return the pre-existing value of the current
context. cc is a no-op if the context reference cannot be successfully evaluated.

Chapter 6: Library Functions 52

defmodule ((name NAME) &rest (options OBJECT)) : Command
Define (or redefine) a module named name. The accepted syntax is:

(defmodule <module-name>
[:documentation <docstring>]

[:includes {<module-name> | (<module-name>*)}]

[:uses {<module-name> | (<module-name>*)}]

[:1isp-package <package-name-string>]

[: java-package <package-specification-string>]

[:cpp-namespace <namespace-name-string>]

[:java-catchall-class

[:api? {TRUE | FALSE}]

[:case-sensitive? {TRUE | FALSE}]

[:shadow (<symbol>x*)]

[:java-catchall-class <class-name-string>]

[<other-options>*])

name can be a string or a symbol.

Modules include objects from other modules via two separate mechanisms: (1) they
inherit from their parents specified via the :includes option and/or a fully qualified
module name, and (2) they inherit from used modules specified via the :uses option.
The main difference between the two mechanisms is that inheritance from parents is
transitive, while uses-links are only followed one level deep. l.e., a module A that
uses B will see all objects of B (and any of B’s parents) but not see anything from
modules used by B. Another difference is that only objects declared as public can be
inherited via uses-links (this is not yet enforced). Note that - contrary to Lisp - there
are separate name spaces for classes, functions, and variables. For example, a module
could inherit the class CONS from the STELLA module, but shadow the function of the
same name.

The above discussion of :includes and :uses semantics keyed on the inheri-
tance/visibility of symbols. The PowerLoom system makes another very important
distinction: If a module A is inherited directly or indirectly via :includes specifica-
tion(s) by a submodule B, then all definitions and facts asserted in A are visible in
B. This is not the cases for :uses; the :uses options does not impact inheritance of
propositions at all.

The list of modules specified in the :includes option plus (if supplied) the parent in
the path used for name become the new module’s parents. If no :uses option was
supplied, the new module will use the STELLA module by default, otherwise, it will
use the set of specified modules. If :case-sensitive? is supplied as TRUE, symbols
in the module will be interned case-sensitively, otherwise (the default), they will be
converted to uppercase before they get interned. Modules can shadow definitions of
functions and classes inherited from parents or used modules. Shadowing is done
automatically, but generates a warning unless the shadowed type or function name is
listed in the :shadow option of the module definition .

Examples:

(defmodule "PL-KERNEL/PL-USER"
:uses ("LOGIC" "STELLA")
:package "PL-USER")

Chapter 6: Library Functions 53

(defmodule PL-USER/GENEALOGY)

The remaining options are relevant only for modules that contain STELLA code.
Modules used only to contain knowledge base definitions and assertions have no use
for them:

The keywords :1isp-package, : java-package, and :cpp-package specify the name
of a native package or name space in which symbols of the module should be allocated
when they get translated into one of Lisp, Java, or C++. By default, Lisp symbols are
allocated in the STELLA package, and C++ names are translated without any prefixes.
The rules that the STELLA translator uses to attach translated Java objects to classes
and packages are somewhat complex. Use :java-package option to specify a list of
package names (separated by periods) that prefix the Java object in this module. Use
:java-catchall-class to specify the name of the Java class to contain all global & special
variables, parameter-less functions and functions defined on arguments that are not
classes in the current module. The default value will be the name of the module.
When set to TRUE, the :api? option tells the PowerLoom User Manual generator
that all functions defined in this module should be included in the API section. Ad-
ditionally, the Java translator makes all API functions synchronized.

get-stella-module ((pathName STRING) (error? BOOLEAN)) : MODULE Function
Return the module located at pathName, or null if no such module exists. The
search looks at ancestors and top-most (cardinal) modules. If error? is true, throw
an exception if no module is found.

find-or-create-module ((pathname STRING)) : MODULE Function
Return a module located at pathname if one exists, otherwise create one

clear-module (&rest (name NAME)) : Command
Destroy all objects belonging to module name or any of its children. If no name is
supplied, the current module will be cleared after confirming with the user. Important
modules such as STELLA are protected against accidental clearing.

destroy-module ((self MODULE)) : Function
Destroy the module self, and recursively destroy all contexts that inherit self.

destroy-context ((self MODULE)) : Method
Destroy the context self, and recursively destroy all contexts that inherit self.

visible-modules ((from MODULE)) : (ITERATOR OF MODULE) Function
Return an iterator that generates all modules visible from module from. The gener-
ated modules are generated from most- to least-specific and will start with the module
from.

within-module ((moduleForm 0BJECT) &body (body CONS)) : OBJECT Macro
Execute body within the module resulting from moduleForm. *module* is an ac-
ceptable moduleForm. It will locally rebind *module* and *context* and shield the
outer bindings from changes.

Chapter 6: Library Functions 54

in-module ((name NAME)) : MODULE Command
Change the current module to the module named name.

change-module ((module MODULE)) : MODULE Method
Change the current module to be the module module.

change-module ((moduleName STRING)) : MODULE Method
Change the current module to be the module named moduleName.

create-world ((parentContext CONTEXT) (name STRING)) : WORLD Function
Create a new world below the world or module parentContext. Optionally, specify a
name.

push-world () : WORLD Function

Spawn a new world that is a child of the current context, and change the current
context to the new world.

pop-world () : CONTEXT Function
Destroy the current world and change the current context to be its parent. Return
the current context. Nothing happens if there is no current world.

destroy-context ((self WORLD)) : Method
Destroy the context self, and recursively destroy all contexts that inherit self.

within-world ((worldForm 0BJECT) &body (body CONS)) : OBJECT Macro
Execute body within the world resulting from worldForm.

6.13 Input and Output

read-s-expression ((stream INPUT-STREAM)) : OBJECT BOOLEAN Function
Read one STELLA s-expression from stream and return the result. Return true as
the second value on EOF.

read-s-expression-from-string ((string STRING)) : OBJECT Function
Read one STELLA s-expression from string and return the result.

read-line ((inputStream INPUT-STREAM)) : STRING BOOLEAN Function

Read one line from inputStream and return the result. Return true as the second
value on EOF.

read-character ((inputStream INPUT-STREAM)) : CHARACTER Function
BOOLEAN
Read one character from inputStream and return the result. Return true as the
second value on EOF.

Chapter 6: Library Functions 55

unread-character ((ch CHARACTER) (inputStream INPUT-STREAM)) : Function
Unread ch from inputStream. Signal an error if ch was not the last character read.

y-or-n? ((message STRING)) : BOOLEAN Function
Read a line of input from STANDARD-INPUT and return true if the input was y
or false if the input was n. Loop until either y or n was entered. If message is
non-‘null” prompt with it before the input is read. See also special variable *USER-
QUERY-ACTIONx*.

yes-or-no? ((message STRING)) : BOOLEAN Function
Read a line of input from STANDARD-INPUT and return true if the input was yes
or false if the input was no. Loop until either yes or no was entered. If message is
non-‘null’ prompt with it before the input is read. See also special variable *USER-
QUERY-ACTION*.

6.14 Files

probe-file? ((fileName FILE-NAME)) : BOOLEAN Function
Return true if file fileName exists. Note that this does not necessarily mean that the
file can also be read.

file-write-date ((fileName FILE-NAME)) : CALENDAR-DATE Function
Return the time at which file fileName was last modified or NULL if that cannot be
determined.

file-length ((fileName FILE-NAME)) : INTEGER Function

Return the length of file fileName in bytes or NULL if that cannot be determined.
Note that this will currently overrun for files that are longer than what can be repre-
sented by a STELLA integer.

copy-file ((fromFile FILE-NAME) (toFile FILE-NAME)) : Function
Copy file fromFile to file toFile, clobbering any data already in toFile.

delete-file ((fileName FILE-NAME)) : Function
Delete the file fileName.

directory-file-name ((directory FILE-NAME)) : FILE-NAME Function
Return directory as a file name, i.e., without a terminating directory separator.

directory-parent-directory ((directory FILE-NAME) (level INTEGER)) Function
: FILE-NAME
Return the level-th parent directory component of directory including the final direc-
tory separator, or the empty string if directory does not have that many parents.

Chapter 6: Library Functions 56

file-name-as-directory ((file FILE-NAME)) : FILE-NAME Function
Return file interpreted as a directory, i.e., with a terminating directory separator. If
file is the empty string simply return the empty string, i.e., interpret it as the current
directory instead of the root directory.

file-name-directory ((file FILE-NAME)) : FILE-NAME Function
Return the directory component of file including the final directory separator or the
empty string if file does not include a directory.

file-name-without-directory ((file FILE-NAME)) : FILE-NAME Function
Not documented.

file-name-without-extension ((file FILE-NAME)) : FILE-NAME Function
Not documented.

file-extension ((file FILE-NAME)) : STRING Function
Not documented.

file-base-name ((file FILE-NAME)) : FILE-NAME Function
Not documented.

absolute-pathname? ((pathname STRING)) : BOOLEAN Function
Not documented.

logical-host? ((host STRING)) : BOOLEAN Function
Not documented.

logical-pathname? ((pathname STRING)) : BOOLEAN Function
Not documented.

translate-logical-pathname ((pathname STRING)) : STRING Function
Not documented.

directory-separator () : CHARACTER Function
Not documented.

directory-separator-string () : STRING Function
Not documented.

Chapter 6: Library Functions 57

6.15 Dates and Times

get-current-date-time () : INTEGER INTEGER INTEGER KEYWORD Function
INTEGER INTEGER INTEGER INTEGER
Returns the current time in UTC as multiple values of year month day day-of-week
hour minute second millisecond. Currently millisecond will always be zero (even in
Java where it is technically available).

get-local-time-zone () : FLOAT Function
Returns the current time zone offset from UTC as a float.

float.get-calendar-date 777
Not yet implemented.

float.get-time 777
Not yet implemented.

make-current-date-time () : CALENDAR-DATE Function
Create a calendar date with current time and date.

make-date-time ((year INTEGER) (month INTEGER) (day INTEGER) Function
(hour INTEGER) (minute INTEGER) (second INTEGER) (millis INTEGER)
(timezone FLOAT)) : CALENDAR-DATE
Create a calendar date with the specified components. year must be the complete
year (i.e., a year of 98 is 98 A.D in the 1st century). timezone is a real number in the
range -12.0 to +14.0 where UTC is zone 0.0; The number is the number of hours to
add to UTC to arrive at local time.

parse-date-time ((date-time-string STRING) (start INTEGER) Function
(end INTEGER) (error-on-mismatch? BOOLEAN)) : DECODED-DATE-TIME
Tries very hard to make sense out of the argument date-time-string and returns a
time structure if successful. If not, it returns null. If error-on-mismatch? is true,
parse-date-time will signal an error instead of returning null. Default values are
00:00:00 UTC on the current date

decode-calendar-date ((date CALENDAR-DATE) (timezone FLOAT)) : Method
DECODED-DATE-TIME
Returns a decoded time object for date interpreted in timezone timezone is the num-
ber of hours added to UTC to get local time. It is in the range -12.0 to +14.0 where
UTC is zone 0.0

encode-calendar-date ((time-structure DECODED-DATE-TIME)) : Method
CALENDAR-DATE
Returns a calendar date object for time-structure.

Chapter 6: Library Functions 58

calendar-date-to-string ((date CALENDAR-DATE) (timezone FLOAT)) : Function
STRING
Returns a string representation of date adjusted for timezone

string-to-calendar-date ((input STRING)) : CALENDAR-DATE Function
Returns a calendar date object representing the date and time parsed from the input
string. If no valid parse is found, null is returned.

relative-date-to-string ((date RELATIVE-DATE)) : STRING Function
Returns a string representation of date

compute-calendar-date ((julian-day INTEGER)) : INTEGER INTEGER Function
INTEGER KEYWORD
Returns the YEAR, MONTH, DAY, DAY-OF-WEEK on which the given julian-day
begins at noon.

compute-day-of-week ((yyyy INTEGER) (mm INTEGER) Function
(dd INTEGER)) : KEYWORD
Returns the day of the week for yyyy-mm-dd.

compute-day-of-week-julian ((julian-day INTEGER)) : KEYWORD Function
Returns the day of the week for julian-day

compute-julian-day ((yyyy INTEGER) (mm INTEGER) (dd INTEGER)) : Function
INTEGER
Returns the Julian day that starts at noon on yyyy-mm-dd. yyyy is the year. mm is
the month. dd is the day of month. Negative years are B.C. Remember there is no
year zero.

compute-next-moon-phase ((n INTEGER) (phase KEYWORD)) : Function
INTEGER FLOAT
Returns the Julian Day and fraction of day of the Nth occurence since January 1,
1900 of moon PHASE. PHASE is one of :NEW-MOON, :FIRST-QUARTER, :FULL-
MOON, :LAST-QUARTER

decode-time-in-millis ((time INTEGER)) : INTEGER INTEGER INTEGER Function
INTEGER
Returns multiple values of hours, minutes, seconds, milliseconds for time specified in
milliseconds.
julian-day-to-modified-julian-day ((julian-day INTEGER)) : Function
INTEGER

Returns the modified Julian day during which julian-daystarts at noon.

modified-julian-day-to-julian-day ((modified-julian-day INTEGER)) Function
: INTEGER
Returns the modified Julian day during which julian-daystarts at noon.

Chapter 6: Library Functions 59

time-add ((t1 DATE-TIME-OBJECT) (t2 DATE-TIME-OBJECT)) : Function
DATE-TIME-OBJECT
Add t1 to t2. If one of t1 or t2 is a calendar date, then the result is a calendar
date. If both tI and t2 are relative dates, then the result is a relative date. tI and
t2 cannot both be calendar dates.

time-divide ((tI RELATIVE-DATE) (t2 OBJECT)) : OBJECT Function
Divides the relative date t1 by t2. t2 must be either a relative date or a wrapped
number. If t2 is a relative date, then the return value will be a wrapped float. If t2
is a wrapped number, then the reutrn value will be a relative date.

time-multiply ((t1 OBJECT) (t2 OBJECT)) : RELATIVE-DATE Function
Multiplies a relative date by a wrapped number. One of tI or t2 must be a relative
date and the other a wrapped number.

time-subtract ((tI DATE-TIME-OBJECT) (t2 DATE-TIME-OBJECT)) : Function
DATE-TIME-OBJECT
Subtract t2 from t1. If t1 is a calendar date, then t2 can be either a calendar date (in
which case the return value is a relative date) or it can be a relative date (in which
case the return value is a calendar date). If t1 is a relative date, then t2 must also
be a relative date and a relative date is returned.

get-ticktock () : TICKTOCK Function
Return the current CPU time. If the current OS/Language combination does not sup-
port measuring of CPU time, return real time instead. Use ticktock-difference
to measure the time difference between values returned by this function. This is an
attempt to provide some platform independent support to measure (at least approx-
imately) consumed CPU time.

ticktock-difference ((tI TICKTOCK) (t2 TICKTOCK)) : FLOAT Function
The difference in two TICKTOCK time values in seconds where t1 is the earlier time.
The resolution is implementation dependent but will normally be some fractional value
of a second.

ticktock-resolution () : FLoAT Function
The minimum theoretically detectable resolution of the difference in two TICKTOCK
time values in seconds. This resolution is implementation dependent. It may also not
be realizable in practice, since the timing grain size may be larger than this resolution.

sleep ((seconds FLOAT)) : Function
The program will sleep for the indicated number of seconds. Fractional values are al-
lowed, but the results are implementation dependent: Common Lisp uses the fractions
natively, Java with a resolution of 0.001, and C++ can only use integral values.

Chapter 6: Library Functions 60

6.16 XML Support

get-xml-attributes ((form cons)) : OBJECT Macro
Returns a CONS consisting of the attributes for the XML expression form. May be
nil.

get-xml-tag ((form CONS)) : OBJECT Macro

Returns the XML tag object from the XML expression form

make-xml-element ((name STRING) (namespace-name STRING) Function
(namespace STRING)) : XML-ELEMENT
Creates and interns an XML element object name using namespace-name to refer
to namespace. If namespace is null, then the element will be interned in the null
namespace. namespace must otherwise be a URI.

make-xml-global-attribute ((name sTRING) Function
(namespace-name STRING) (namespace STRING)) : XML-GLOBAL-ATTRIBUTE
Creates and interns an XML global attribute object with name using namespace-name
to refer to namespace. namespacemust be a URI.

make-xml-local-attribute ((name STRING) (element XML-ELEMENT)) Function
: XML-LOCAL-ATTRIBUTE
Make an XML-LOCAL-ATTRIBUTE named name associated with element

print-xml-expression ((stream OUTPUT-STREAM) Function
(xml-expression CONS)) :
Prints xml-expression on stream. It is assumed that the xml-expression is a well-
formed CONS-list representation of an XML form. It expects a form like that form
returned by read-XML-expression.

Also handles a list of xml forms such as that returned by XML-expressions

read-xml-expression ((stream INPUT-STREAM) Function
(start TagName STRING)) : OBJECT BOOLEAN
Read one balanced XML expression from stream and return its s-expression represen-
tation (see xml-token-list-to-s-expression). If startTagName is non-‘null’, skip
all tags until a start tag startTagName is encountered. XML namespaces are ignored
for outside of the start tag. Return true as the second value on EOF.

CHANGE WARNING: It is anticipated that this function will change to a) Properly
take XML namespaces into account and b) require XML element objects instead of
strings as the second argument. This change will not be backwards-compatible.

reset-xml-hash-tables () : Function
Resets Hashtables used for interning XML elements and global attribute objects. This
will allow garbage collection of no-longer used objects, but will also mean that newly
parsed xml elements and global attributes will not be eq? to already existing ones
with the same name.

Chapter 6: Library Functions

xml-attribute? ((item OBJECT)) : BOOLEAN
Return true if item is an XML attribute object

xml-cdata-form? ((form OBJECT)) : BOOLEAN
Return true if form is an CONS headed by a CDATA tag

xml-cdata? ((item OBJECT)) : BOOLEAN
Return true if item is an XML CDATA tag object

xml-declaration? ((item OBJECT)) : BOOLEAN
Return true if item is an XML declaration object

xml-element? ((item OBJECT)) : BOOLEAN
Return true if item is an XML element object

xml-expressions ((stream INPUT-STREAM) (regionTag OBJECT)) :

XML-EXPRESSION-ITERATOR

61

Function

Function

Function

Function

Function

Function

Return an XML-expression-iterator (which see) reading from stream. regionTag can
be used to define delimited regions from which expressions should be considered (use
s-expression representation to specify regionTag, e.g., (KIF (:version "1.0")). The
tag can be an XML element object, a symbol, a string or a cons. If the tag is a cons

the first element can also be (name namespace) pair.

xml-tag-case ((item OBJECT) &body (clauses CONS)) : OBJECT

Macro

A case form for matching item against XML element tags. Each element of clauses
should be a clause with the form ("tagname" ...) or (("tagname" "namespace-uri")
...) The clause heads can optionally be symbols instead of strings. The key forms the
parameters to the method xml-element-match?, with a missing namespace argument

passed as NULL.

xml-token-list-to-s-expression ((tokenList STELLA-TOKEN)) :

OBJECT

Function

Convert the XML tokenList into a representative s-expression and return the result.
Every XML tag is represented as a cons-list starting with the tag name as its header,
followed by a possibly empty list of keyword value pairs representing tag attributes,
followed by a possibly empty list of content expressions which might themselves be

XML expressions. For example, the expression

 foo <b a3=v3/> bar
becomes

(a (:al "v1" :a2 "v2") "foo" (b (:a3 "v3")) "bar")

when represented as an s-expression. The tag names 7, ! and [are special and mark
processing instruction tags (7), delcaration tags (!) and CDATA and conditional tags
([). For these tags the second element in the list is the actual tag name, and the
third element is the unparsed data string following the name (including whitespace).

Chapter 6: Library Functions 62

xml-attribute-match? ((attribute XML-GLOBAL-ATTRIBUTE) Method
(name STRING) (namespace STRING) (element-name STRING)
(element-namespace STRING)) : BOOLEAN
Returns true if attribute is a global XML attribute with the name name in names-
pace namespace. Note that namespace is the full URI, not an abbreviation. Also,
namespace may be null, in which case tag must not have a namespace associated
with it. This method ignores element-name and element-namespace.

xml-attribute-match? ((attribute XML-LOCAL-ATTRIBUTE) Method
(name STRING) (namespace STRING) (element-name STRING)
(element-namespace STRING)) : BOOLEAN
Returns true if attribute is a local XML attribute with the name name inside an XML
element matching element-name in namespace element-namespace (see the method
xml-element-match?. Note that element-namespace is the full URI, not an abbre-
viation. element-namespace may be null, in which case the XML element must not
have a namespace associated with it. This method ignores namespace

xml-element-match? ((tag XML-ELEMENT) (name STRING) Method
(namespace STRING)) : BOOLEAN
Returns true if tag is an XML element with the name name in namespace namespace.
Note that namespace is the full URI, not an abbreviation. Also, namespace may be
null, in which case tag must not have a namespace associated with it.

6.17 Miscellaneous

This is a catch-all section for functions and methods that haven’t been categorized yet
into any of the previous sections. They are in random order and many of them will never
be part of the official STELLA interface. So beware!

operating-system () : KEYWORD Function
Not documented.

activate-demon ((demon DEMON)) : Function
Install demon in the location(s) specified by its internal structure.

active? ((self POLYMORPHIC-RELATION)) : BOOLEAN Method
True if self or a superslot of self is marked active.

add-hook ((hookList HOOK-LIST) (hookFunction SYMBOL)) : Function
Insert the function named hookFunction into hookList.

add-trace (&rest (keywords GENERALIZED-SYMBOL)) : LIST Command
Enable trace messages identified by any of the listed keywords. After calling (add-
trace <keyword>) code guarded by (trace-if <keyword> ...) will be executed when
it is encountered.

Chapter 6: Library Functions 63

all-classes ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
CLASS)
Iterate over all classes visible from module. If local?, return only classes interned in
module. If module is null, return all classes interned everywhere.

all-contexts () : (ITERATOR OF CONTEXT) Function
Return an iterator that generates all contexts.

all-defined? (&body (forms CONS)) : OBJECT Macro
Evaluate each of the forms in forms, and return TRUE if none of them are NULL.

all-functions ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
FUNCTION)
Iterate over all functions visible from module. If local?, return only functions bound to
symbols interned in module. If module is null, return all functions defined everywhere.

all-included-modules ((self MODULE)) : (ITERATOR OF MODULE) Function
Generate a sequence of all modules included by self, inclusive, starting from the
highest ancestor and working down to self (which is last).

all-methods ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
METHOD-SLOT)
Iterate over all methods visible from module. If local?, return only methods interned
in module. If module is null, return all methods interned everywhere.

all-modules () : (ITERATOR OF MODULE) Function
Return an iterator that generates all modules.

all-public-functions ((module MODULE) (local? BOOLEAN)) : Function
(ITERATOR OF FUNCTION)
Iterate over all functions visible from module. If local?, return only functions bound to
symbols interned in module. If module is null, return all functions defined everywhere.

all-public-methods ((module MODULE) (local? BOOLEAN)) : Function
(ITERATOR OF METHOD-SLOT)
Iterate over all public methods visible from module. If local?, return only methods
interned in module. If module is null, return all methods interned everywhere.

all-slots ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF SLOT) Function
Iterate over all slots visible from module. If local?, return only methods interned in
module. If module is null, return all methods interned everywhere.

all-subcontexts ((context CONTEXT) (traversal KEYWORD)) : Function
(ALL-PURPOSE-ITERATOR OF CONTEXT)
Return an iterator that generates all subcontexts of self (not including self) in the
order specified by traversal (one of :preorder, :inorder, or :postorder).

Chapter 6: Library Functions 64

all-surrogates ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
SURROGATE)
Iterate over all surrogates visible from module. If local?, return only surrogates
interned in module. If module is null, return all surrogates interned everywhere.

all-symbols ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
SYMBOL)
Iterate over all symbols visible from module. If local?, return only symbols interned
in module. If module is null, return all symbols interned everywhere.

all-variables ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF Function
GLOBAL-VARIABLE)
Iterate over all variables visible from module. If local?, return only variables bound to
symbols interned in module. If module is null, return all variables defined everywhere.

allocate-iterator ((self ABSTRACT-ITERATOR)) : (LIKE SELF) Method
Iterator objects return themselves when asked for an iterator (they occupy the same
position as a collection within a foreach statement).

allocation ((self STORAGE-SLOT)) : KEYWORD Method
Return the most specific :allocation facet, or :instance if all inherited values are NULL.

apply ((code FUNCTION-CODE) (arguments (CONS OF OBJECT))) : Function
OBJECT
Apply code to arguments, returning a value of type OBJECT.

apply-boolean-method ((code METHOD-CODE) Function
(arguments (CONS OF OBJECT))) : BOOLEAN
Apply code to arguments, returning a value of type BOOLEAN.

apply-float-method ((code METHOD-CODE) Function
(arguments (CONS OF OBJECT))) : FLOAT
Apply code to arguments, returning a value of type FLOAT.

apply-integer-method ((code METHOD-CODE) Function
(arguments (CONS OF OBJECT))) : INTEGER
Apply code to arguments, returning a value of type INTEGER.

apply-method ((code METHOD-CODE) (arguments (CONS OF OBJECT))) Function
: OBJECT
Apply code to arguments, returning a value of type OBJECT.

apply-string-method ((code METHOD-CODE) Function
(arguments (CONS OF OBJECT))) : STRING
Apply code to arguments, returning a value of type STRING.

Chapter 6: Library Functions 65

break-program ((message STRING)) : Function
Interrupt the program and print message. Continue after confirmation with the user.

call-clear-module (&rest (name NAME)) : Command
Destroy all objects belonging to module name or any of its children. If no name is
supplied, the current module will be cleared after confirming with the user. Important
modules such as STELLA are protected against accidental clearing.

cast ((value OBJECT) (type TYPE)) : OBJECT Function
Perform a run-time type check, and then return value.

cl-slot-value ((object OBJECT) (slotName STRING) Function
(dontConvert? BOOLEAN)) : LISP-CODE
Lookup slot slotName on object and return the lispified slot value (see lispify).
If dontConvert? is TRUE, the returned slot value will not be lispified. Generate a
warning if no such slot exists on object. In a call directly from Lisp slotName can
also be supplied as a Lisp symbol.

cl-slot-value-setter ((object OBJECT) (slotName STRING) Function
(value 1L1sP-CODE) (dontConvert? BOOLEAN)) : LISP-CODE
Lookup slot slotName on object and set its value to the stellafied value (see
stellafy). If dontConvert? is TRUE, value will not be stellafied before it gets
assigned. Generate a warning if no such slot exists on object, or if value has the
wrong type. In a call directly from Lisp slotName can also be supplied as a Lisp

symbol.

cl-translate-file ((file FILE-NAME) (relative? BOOLEAN)) : Function
Translate a Stella file to Common-Lisp. If relative?, concatenate root directory to
file.

cl-translate-system ((system-name STRING)) : Function

Translate a Stella system named system-name to Common Lisp.

cleanup-unfinalized-classes () : Function
Remove all finalized classes from *UNFINALIZED-CLASSES*, and set *NEWLY-UNFINALIZED-
CLASSES?* to false.

clear ((self sET)) : Method
Make self an empty set.

clear-recycle-list ((list RECYCLE-LIST)) : Function
Reset list to its empty state.

clear-recycle-lists () : Function
Reset all currently active recycle lists to their empty state.

Chapter 6: Library Functions 66

clear-trace () : Command
Disable all tracing previously enabled with add-trace.

close-all-files () : Function
Close all currently open file streams. Use for emergencies or for cleanup.

close-stream ((self STREAM)) : Function
Close the stream self.

coerce-&rest-to-cons ((restVariable SYMBOL)) : OBJECT Macro
Coerce the argument list variable restVariable into a CONS list containing all its
elements (uses argument list iteration to do so). If restVariable already is a CONS
due to argument listification, this is a no-op.

coerce-to-symbol ((name NAME)) : GENERALIZED-SYMBOL Function
Return the (generalized) symbol represented by name. Return null if name is unde-
fined or does not represent a string.

collect ((collectvariable symMBOL) &body (body CONS)) : OBJECT Macro
Use a VRLET to collect values. Input has the form (collect <x> in <expression>
where (<test> <x>)).

collection-valued? ((self SLOT)) : BOOLEAN Method
True if slot values are collections.

command? ((method METHOD-SLOT)) : BOOLEAN Function
Return true if method is an evaluable command.

component? ((self STORAGE-SLOT)) : BOOLEAN Method
True if fillers of this slot are components of the owner slot, and therefore should be
deleted if the owner is deleted.

compose-namestring Function
((name-components (CONS OF STRING-WRAPPER)) &rest (options OBJECT)) :
STRING

name-components is a cons to be processed into a namestring. :prefix and :suffix
are strings that will NOT be case-converted. :case is one of :UPCASE :TitleCase
;titleCaseX :downcase :Capitalize default is :TitleCase :separator is a string that
should separate word elements. It does not separate the prefix or suffix. Default is
"" :translation-table should be a STRING-HASH-TABLE hash table that strings
into their desired printed representation as a string. In general the argument will be
strings, but that is not strictly necessary.

compose-namestring-full ((strings (CONS OF STRING-WRAPPER)) Function
(prefix STRING) (suffix STRING) (outputcase KEYWORD)
(outputseparator STRING) (translationtable STRING-HASH-TABLE)
(useacronymheuristics? BOOLEAN)) : STRING
Non-keyword version of compose-namestring, which will probably be easier to use
when called from non-Lisp languages.

Chapter 6: Library Functions 67

configure-stella ((file FILE-NAME)) : Function
Perform STELLA run-time configuration. If supplied, load the configuration file file
first which should be supplied with a physical pathname.

consify ((self OBJECT)) : CONS Method
If object is a CONS, return it. Otherwise, return a singleton cons list containing it.

continuable-error (&body (body CONS)) : OBJECT Macro
Signal error message, placing non-string arguments in quotes.

copy ((self SET)) : (SET OF (LIKE (ANY-VALUE SELF))) Method
Return a copy of the set self. The conses in the copy are freshly allocated.

cpp-translate-system ((systemName STRING)) : Function
Translate the system systemName to C++.

cpptrans ((statement OBJECT)) : Command
Translate statement to C++ and print the result.

create-object ((type TYPE) &rest (initial-value-pairs OBJECT)) : Function
OBJECT

Funcallable version of the new operator. Return an instance of the class named by
type. If initial-value-pairs is supplied, it has to be a key/value list similar to what’s
accepted by new and the named slots will be initialized with the supplied values.
Similar to new, all required arguments for type must be included. Since all the slot
initialization, etc. is handled dynamically at run time, create-object is much slower
than new; therefore, it should only be used if type cannot be known at translation
time.

deactivate-demon ((demon DEMON)) : Function
Detach demon from the location(s) specified by its internal structure.

decompose-namestring ((namestring STRING) Function
&rest (options OBJECT)) : (CONS OF STRING-WRAPPER)
Keyword options: :break-on-cap one of :YES :NO :CLEVER default is :CLEVER
:break-on-number one of :YES :NO :CLEVER default is :CLEVER :break-on-
separators string default is "-_ "

DECOMPOSE-NAMESTRING returns a cons of STRING-WRAPPERS that are the
decomposition of the input STRING. The arguments are used as follows: namestring
is the input string. :break-on-cap is a keyword controlling whether changes in capital-
ization is used to indicate word boundaries. If :YES, then all capitalization changes
delineate words. If :CLEVER, then unbroken runs of capitalized letters are treated
as acronyms and remain grouped. If :NO or NULL, there is no breaking of words
based on capitalization. :break-on-number is a flag controlling whether encountering
a number indicates a word boundary. If :YES, then each run of numbers is treated
as a word separate from surrounding words. If :CLEVER, then an attempt is made

Chapter 6: Library Functions 68

to recognize ordinal numbers (ie, 101st) and treat them as separate words. If :NO
or NULL, there is no breaking of words when numbers are encountered. :break-on-
separators A string of characters which constitute word delimiters in the input word.
This is used to determine how to break the name into individual words. Defaults are
space, — and _.

decompose-namestring-full ((namestring STRING) Function
(break-on-cap KEYWORD) (break-on-number KEYWORD)
(break-on-separators STRING)) : (CONS OF STRING-WRAPPER)
Non-keyword version of decompose-namestring, which will probably be easier to use
when called from non-Lisp languages.

default-form ((self STORAGE-SLOT)) : OBJECT Method
Returns the current value of default expression when the slot has not been assigned
a value.

defdemon ((name STRING-WRAPPER) (parameterstree CONS) Macro

&body (optionsandbody CONS)) : OBJECT
Define a demon name and attach it to a class or slot.

define-demon ((name STRING) &rest (options OBJECT)) : DEMON Function
Define a class or slot demon. Options are :create, :destroy, :class, :slot, :guard?, :code,
:method, :inherit?, and :documentation.

define-logical-host-property ((host STRING) (property KEYWORD) Function
(value OBJECT)) :

Define property with value for the logical host host. As a side-effect, this also defines
host as a logical host (both property and value can be supplied as NULL). If :ROOT-
DIRECTORY is specified, all pathnames with host are assumed to be relative to that
directory (even if they are absolute) and will be rerooted upon translation. :ROOT-
DIRECTORY can be a logical or physical pathname. If :LISP-TRANSLATIONS
is specified, those will be used verbatimely as the value of (CL:logical-pathname-
translations host) if we are running in Lisp, which allows us to depend on the
native CL:translate-logical-pathname for more complex translation operations.

define-module ((name STRING) (options CONS)) : MODULE Function
Define or redefine a module named name having the options options. Return the new
module.

define-stella-class ((name TYPE) (supers (LIST OF TYPE)) Function

(slots (LIST OF SLOT)) (options KEYWORD-KEY-VALUE-LIST)) : CLASS
Return a Stella class with name name. Caution: If the class already exists, the Stella
class object gets redefined, but the native C++ class is not redefined.

Chapter 6: Library Functions 69

define-stella-method-slot ((inputname SYMBOL) (returntypes CONS) Function
(function? BOOLEAN) (inputParameters CONS)
(options KEYWORD-KEY-VALUE-LIST)) : METHOD-SLOT
Define a new Stella method object (a slot), and attach it to the class identified by
the first parameter in inputParameters.

defined? ((x NATIVE-VECTOR)) : BOOLEAN Method
Return true if x is defined (handled specially by all translators).

defmain ((varList cONs) &body (body CONS)) : OBJECT Macro

Defines a function called MAIN which will have the appropriate signature for the tar-
get translation language. The signature will be: C++: public static int main (int v1,
char** v2) {<body>} Java: public static void main (String [| v2) {<body>} Lisp: (de-
fun main (&rest args) <body>) The argument varList must have two symbols, which
will be the names for the INTEGER argument count and an array of STRINGs
with the argument values. It can also be empty to indicate that no command line
arguments will be handled. The startup function for the containing system will auto-
matically be called before body is executed unless the option :STARTUP-SYSTEM?
was supplied as FALSE. There can only be one DEFMAIN per module.

defsystem ((name symBoL) &rest (options OBJECT)) : Command
SYSTEM-DEFINITION

Define a system of files that collectively define a Stella application. Required options
are: :directory — the path from the Stella root directory to the directory containing the
system files. Can be a string or a list of strings (do not include directory separators).
:files — a list of files in the system, containing strings and lists of strings; the latter
defines exploded paths to files in subdirectories. Optional options are: :required-
systems — a list of systems (strings) that should be loaded prior to loading this system.
:cardinal-module — the name (a string) of the principal module for this system.

deleted? ((self OBJECT)) : BOOLEAN Method
Default deleted? method which always returns FALSE. Objects that inherit DYNAMIC-
SLOTS-MIXIN also inherit the dynamically-allocated slot deleted-object? which
is read /writable with specializations of this method.

describe ((name OBJECT) &rest (mode OBJECT)) : Command
Print a description of an object in :verbose, :terse, or :source modes.

describe-object ((self OBJECT) (stream OUTPUT-STREAM) Method
(mode KEYWORD)) :
Prints a description of self to stream stream. mode can be :terse, :verbose, or :source.
The :terse mode is often equivalent to the standard print function.

destroy-class ((self cLASS)) : Method
Destroy the Stella class self. Unfinalize its subclasses (if it has any).

Chapter 6: Library Functions 70

destroy-class-and-subclasses ((self cLASS)) : Function
Destroy the Stella class self and all its subclasses.

destructure-defmethod-tree ((method-tree CONSs) Function
(options-table KEY-VALUE-LIST)) : OBJECT CONS CONS
Return three parse trees representing the name, parameters, and code body of the
parse tree method-tree. Fill options-table with a dictionary of method options. Stor-
age note: Options are treated specially because the other return values are subtrees
of method-tree, while options-table is a newly-created cons tree. Note also, the pa-
rameter and body trees are destructively removed from method-tree.

dictionary ((collectiontype TYPE) Function
&rest (alternatingkeysandvalues OBJECT)) : (ABSTRACT-DICTIONARY OF
OBJECT OBJECT)
Return a dictionary containing values, in order.

direct-super-classes ((self CLASS)) : (ITERATOR OF CLASS) Method
Returns an iterator that generates all direct super classes of self.

disable-memoization () : Command
Enable memoization and use of memoized expression results.

disabled-stella-feature? ((feature KEYWORD)) : BOOLEAN Function
Return true if the STELLA feature is currently disabled.

drop-hook ((hookList HOOK-LIST) (hookFunction SYMBOL)) : Function
Remove the function named hookFunction from hookList.

drop-trace (&rest (keywords GENERALIZED-SYMBOL)) : LIST Command
Disable trace messages identified by any of the listed keywords. After calling (drop-
trace <keyword>) code guarded by (trace-if <keyword> ...) will not be executed
when it is encountered.

either ((valuel OBJECT) (value2 OBJECT)) : OBJECT Macro
If valuel is defined, return that, else return value2.

empty? ((self SET)) : BOOLEAN Method
Return true if the set self has no members.

enable-memoization () : Command
Enable memoization and use of memoized expression results.

enabled-stella-feature? ((feature KEYWORD)) : BOOLEAN Function
Return true if the STELLA feature is currently enabled.

Chapter 6: Library Functions 71

error (&body (body CONS)) : OBJECT Macro
Signal error message, placing non-string arguments in quotes.

evaluate ((expression OBJECT)) : OBJECT Function

Evaluate the expression expression and return the result. Currently, only the evalu-
ation of (possibly nested) commands and global variables is supported. The second
return value indicates the actual type of the result (which might have been wrapped),
and the third return value indicates whether an error occurred during the evaluation.
Expressions are simple to program in Common Lisp, since they are built into the
language, and relatively awkward in Java and C++. Users of either of those languages
are more likely to want to call evaluate-string.

evaluate-string ((expression STRING)) : OBJECT Function
Evaluate the expression represented by expression and return the result. This is
equivalent to (evaluate (unstringify expression)).

exception-message ((e NATIVE-EXCEPTION)) : STRING Function
Accesses the error message of the exception e.

extension ((self CLASS)) : CLASS-EXTENSION Method
Return the nearest class extension that records instances of the class self.

finalize-classes () : Function
Finalize all currently unfinalized classes.

finalize-classes-and-slots () : Function
Finalize all currently unfinalized classes and slots.

finalize-slots () : Function
Finalize all currently unfinalized slots.

first-defined (&body (forms CONS)) : OBJECT Macro
Return the result of the first form in forms whose value is defined or NULL otherwise.

flush-output ((self OUTPUT-STREAM)) : Function
Flush all buffered output of self.

format-with-padding ((input STRING) (length INTEGER) Function
(padchar CHARACTER) (align KEYWORD) (truncate? BOOLEAN)) : STRING
Formats input to be (at least) length long, using padchar to fill if necessary. align
must be one of :LEFT, :RIGHT, :CENTER and will control how input will be justified
in the resulting string. If truncate? is true, then then an overlength string will be
truncated, using the opposite of align to pick the truncation direction.

free ((self ACTIVE-OBJECT)) : Method
Remove all pointers between self and other objects, and then deallocate the storage
for self.

Chapter 6: Library Functions 72

free ((self OBJECT)) : Method
Default method. Deallocate storage for self.

free-hash-table-values ((self ABSTRACT-HASH-TABLE)) : Method
Call free on each value in the hash table self.

get-calendar-date ((date CALENDAR-DATE) (timezone FLOAT)) : Method
INTEGER INTEGER INTEGER KEYWORD
Returns multiple values of year, month, day and day of week for date in timezone.
timezone is the number of hours added to UTC to get local time. It is in the range
-12.0 to +14.0 where UTC is zone 0.0

get-global-value ((self SURROGATE)) : OBJECT Function
Return the (possibly-wrapped) value of the global variable for the surrogate self.

get-quoted-tree ((tree-name STRING) (modulename STRING)) : CONS Function
Return the quoted tree with name tree-name.

get-slot ((self STANDARD-OBJECT) (slot-name SYMBOL)) : SLOT Function
Return the slot named slot-name on the class representing the type of self.

get-stella-class ((class-name TYPE) (error? BOOLEAN)) : CLASS Method
Return a class with name class-name. If none exists, break if error?, else return null.

get-stella-class ((class-name sYMBOL) (error? BOOLEAN)) : CLASS Method
Return a class with name class-name. If non exists, break if error?, else return null.

get-stella-class ((class-name STRING) (error? BOOLEAN)) : CLASS Method
Return a class with name class-name. If none exists, break if error?, else return null.

get-time ((date CALENDAR-DATE) (timezone FLOAT)) : INTEGER INTEGER Method
INTEGER INTEGER
Returns multiple values of hours, minutes, seconds, milliseconds for the calendar date
date in timezone. timezone is the number of hours added to UTC to get local time.
It is in the range -12.0 to +14.0 where UTC is zone 0.0

global-variable-type-spec ((global GLOBAL-VARIABLE)) : TYPE-SPEC Function
Return the type spec for the global variable global.

hash-code ((self OBJECT)) : INTEGER Method
Return a hash code for self. Two objects that are eql? are guaranteed to generate the
same hash code. Two objects that are not eql? do not necessarily generate different
hash codes.

Chapter 6: Library Functions 73

hash-string ((string STRING) (seedCode INTEGER)) : INTEGER Function
Generate a hash-code for string and return it. Two strings that are equal but not
eq will generate the same code. The hash-code is based on seedCode which usually
will be 0. However, seedCode can also be used to supply the result of a previous
hash operation to achieve hashing on sequences of strings without actually having to
concatenate them.

home-module ((self OBJECT)) : MODULE Method
Return the home module of self.

if-output-language ((language KEYWORD) (thenForm OBJECT) Macro
(elseForm OBJECT)) : OBJECT
Expand to thenForm if the current translator output language equals language. Oth-
erwise, expand to elseForm. This can be used to conditionally translate Stella code.

if-stella-feature ((feature KEYWORD) (thenForm OBJECT) Macro
(elseForm OBJECT)) : OBJECT
Expand to thenForm if feature is a currently enabled STELLA environment feature.
Otherwise, expand to elseForm. This can be used to conditionally translate Stella
code.

ignore (&body (variables CONS)) : OBJECT Macro
Ignore unused variables with NoOp setq statements.

incrementally-translate ((tree OBJECT)) : OBJECT Function
Translate a single Stella expression tree and return the result. For C++ and Java print
the translation to standard output and return NIL instead.

inform (&body (body CONS)) : OBJECT Macro
Print informative message, placing non-string arguments in quotes, and terminating
with a newline.

initial-value ((self cLASS)) : OBJECT Method
Return an initial value for the class self.

initial-value ((self STORAGE-SLOT)) : OBJECT Method
Return an initial value for self, or null. The initial value can be defined by the slot
itself, inherited from an equivalent slot, or inherit from the :initial-value option for
the class representing the type of self.

initially ((self STORAGE-SLOT)) : OBJECT Method
Defines the value of a slot before it has been assigned a value.

insert ((self SET) (value (LIKE (ANY-VALUE SELF)))) : Method
Add value to the set self. First checks for duplicate.

Chapter 6: Library Functions

interpret-command-line-arguments ((count INTEGER)
(arguments (ARRAY () OF STRING))) :
Interpret any STELLA-relevant command line arguments.

isa? ((object OBJECT) (type TYPE)) : BOOLEAN

Return true iff object is an instance of the class named type.

java-translate-system ((systemName STRING)) :
Translate the system systemName to Java.

jptrans ((statement OBJECT)) :
Translate statement to C++ and print the result.

lispify ((thing UNKNOWN)) : LISP-CODE

74

Function

Function

Function

Command

Function

Convert a Stella thing as much as possible into a Common-Lisp analogue. The cur-
rently supported thing types are CONS, LIST, KEY-VALUE-LIST, ITERATOR,
SYMBOL, KEYWORD, and all wrapped and unwrapped literal types. BOOLEANSs
are translated into Lisp’s CL:T and CL:NIL logic. Unsupported types are left un-

changed.

lispify-boolean ((thing UNKNOWN)) : LISP-CODE

Lispify thing which is assumed to be a (possibly wrapped) Stella boolean.

listify ((self CONS)) : (LIST OF (LIKE (ANY-VALUE SELF)))
Return a list of elements in self.

listify ((self LiST)) : (LIST OF (LIKE (ANY-VALUE SELF)))
Return self.

listify ((self KEY-VALUE-LIST)) : (LIST OF (LIKE (ANY-VALUE SELF)))

Return a list of key-value pairs in self.

listify ((self VECTOR)) : (LIST OF (LIKE (ANY-VALUE SELF)))
Return a list of elements in self.

listify ((self ITERATOR)) : (LIST OF (LIKE (ANY-VALUE SELF)))
Return a list of elements generated by self.

load-configuration-file ((file FILE-NAME)) : CONFIGURATION-TABLE

Function

Method

Method

Method

Method

Method

Function

Read a configuration file and return its content as a configuration table. Also enter
each property read into the global system configuration table. Assumes Java-style
property file syntax. Each property name is represented as a wrapped string and

each value as a wrapped string/integer /float or boolean.

Chapter 6: Library Functions 75

load-file ((file STRING)) : Command
Read STELLA commands from file and evaluate them. The file should begin with
an in-module declaration that specifies the module within which all remaining com-
mands are to be evaluated The remaining commands are evaluated one-by-one, ap-
plying the function evaluate to each of them.

load-system ((systemName STRING) (language KEYWORD) Function
&rest (options OBJECT)) : BOOLEAN
Natively language-compile out-of-date translated files of system systemName and then
load them into the running system (this is only supported/possible for Lisp at the
moment). Return true if at least one file was compiled. The following keyword /value
options are recognized:

:force-recompilation? (default false): if true, files will be compiled whether or not
their compilations are up-to-date.

:startup? (default true): if true, the system startup function will be called once all
files have been loaded.

lookup-class ((name SYMBOL)) : CLASS Method
Return a class with name name. Scan all visible surrogates looking for one that has
a class defined for it.

lookup-class ((name STRING)) : CLASS Method
Return a class with name name. Scan all visible surrogates looking for one that has
a class defined for it.

lookup-command ((name SYMBOL)) : METHOD-SLOT Function
If name names an evaluable command return its associated command object; other-
wise, return null. Currently, commands are not polymorphic, i.e., they can only be
implemented by functions.

lookup-configuration-property ((property STRING) Function
(defaultValue WRAPPER) (configuration CONFIGURATION-TABLE)) : WRAPPER
Lookup property in configuration and return its value. Use the global system configu-
ration table if configuration is NULL. Return default Value if property is not defined.

lookup-demon ((name STRING)) : DEMON Function
Return the demon named name.

lookup-function ((functionSymbol SYMBOL)) : FUNCTION Function
Return the function defined for functionSymbol, if it exists.

lookup-function-by-name ((name STRING)) : FUNCTION Function
Return a function with name name visible from the current module. Scan all visible
symbols looking for one that has a function defined for it.

Chapter 6: Library Functions 76

lookup-global-variable ((self SURROGATE)) : GLOBAL-VARIABLE Method
Return a global variable with name self.

lookup-global-variable ((self GENERALIZED-SYMBOL)) : Method
GLOBAL-VARIABLE
Return a global variable with name self.

lookup-global-variable ((self STRING)) : GLOBAL-VARIABLE Method
Return a global variable with name self.

lookup-local-slot ((class cLASS) (slot-name SYMBOL)) : SLOT Function
Lookup a local slot with slot-name on class.

lookup-macro ((name SsYMBOL)) : METHOD-SLOT Function
If name has a macro definition, return the method object holding its expander func-
tion.

lookup-slot ((class cLASS) (slot-name SYMBOL)) : SLOT Function

Return a slot owned by the class class with name slot-name. Multiply inherited slots
are disambiguated by a left-to-right class precedence order for classes with multiple
parents (similar to CLOS).

Iptrans ((statement OBJECT)) : Command
Translate statement to Common-Lisp and print the result.

make-matching-name ((original STRING) &rest (options OBJECT)) : Function
STRING
Keyword options: :break-on-cap one of :YES :NO :CLEVER default is :CLEVER
:break-on-number one of :YES :NO :CLEVER default is :CLEVER :break-on-
separators string default is "-_ " :remove-prefix string :remove-suffix string

:case one of :UPCASE :TitleCase :titleCaseX :downcase :Capitalize :preserve default
is :TitleCase :separator string default is "" :add-prefix string :add-suffix string

MAKE-MATCHING-NAME returns a matching name (a string) for the input name
(a string). A matching name is constructed by breaking the input into words and
then applying appropriate transforms. The arguments are used as follows: original
is the input name. It is a string. :break-on-cap is a keyword controlling whether
changes in capitalization is used to indicate word boundaries. If :YES, then all cap-
italization changes delineate words. If :CLEVER, then unbroken runs of capitalized
letters are treated as acronyms and remain grouped. If :NO or NULL, there is no
breaking of words based on capitalization. :break-on-number is a flag controlling
whether encountering a number indicates a word boundary. If :YES, then each run of
numbers is treated as a word separate from surrounding words. If :CLEVER, then an
attempt is made to recognize ordinal numbers (ie, 101st) and treat them as separate
words. If :NO or NULL, there is no breaking of words when numbers are encountered.
:break-on-separators A string of characters which constitute word delimiters in the
input word. This is used to determine how to break the name into individual words.

Chapter 6: Library Functions 7

Defaults are space, — and _. :remove-prefix Specifies a prefix or suffix that is stripped
from the input :remove-suffix name before any other processing. This allows the re-
moval of any naming convention dictated prefixes or suffixes. :add-prefix Specifies a
prefix or suffix that is added to the output name :add-suffix after all other processing.
This allows the addition of any naming convention dictated prefixes or suffixes. :case
The case of the resulting name. This is applied to the name before adding prefixes
or suffixes. The two title case options differ only in how the first word of the name
is treated. :TitleCase capitalizes the first letter of the first word and also the first
letter of all other words. :TitleCaseX does not capitalizes the first letter of the first
word but capitalizes the first letter of all subsequent words. :preserve results in no
change in case. :separator This is a string specifying the word separator to use in the
returned name. An empty string (the default) means that the resulting words are
concatenated without any separation. This normally only makes sense when using
one of the title case values for the case keyword.

make-matching-name-full ((originalname STRING) Function
(breakoncap KEYWORD) (breakonnumber KEYWORD)
(breakonseparators STRING) (removeprefix STRING) (removesuffix STRING)
(addprefix STRING) (addsuffix STRING) (outputcase KEYWORD)
(outputseparator STRING)) : STRING
Non-keyword version of make-matching-name, which will probably be easier to use
when called from non-Lisp languages.

make-system ((systemName STRING) (language KEYWORD) Command
&rest (options OBJECT)) : BOOLEAN
Translate all out-of-date files of system systemName into language and then com-
pile and load them (the latter is only possible for Lisp right now). The following
keyword /value options are recognized:

:two-pass?: if true, all files will be scanned twice, once to load the signatures of
objects defined in them, and once to actually translate the definitions. Otherwise,
the translator will make one pass in the case that the system is already loaded (and
is being remade), and two passes otherwise.

:development-settings? (default false): if true translation will favor safe, read-
able and debuggable code over efficiency (according to the value of :development-
settings on the system definition). If false, efficiency will be favored instead (ac-
cording to the value of :production-settings on the system definition).

:production-settings? (default true): inverse to :development-settings?.

:force-translation? (default false): if true, files will be translated whether or not
their translations are up-to-date.

:force-recompilation? (default false): if true, translated files will be recompiled
whether or not their compilations are up-to-date (only supported in Lisp right now).
:load-system? (default true): if true, compiled files will be loaded into the current
STELLA image (only supported in Lisp right now).

:startup? (default true): if true, the system startup function will be called once all
files have been loaded.

Chapter 6: Library Functions 78

member? ((self SET) (object (LIKE (ANY-VALUE SELF)))) : BOOLEAN Method
Return true iff object is a member of the set self. Uses an eql? test.

member? ((self COLLECTION) (object OBJECT)) : BOOLEAN Method
Return true iff object is a member of the collection self.

member? ((self SEQUENCE) (value OBJECT)) : BOOLEAN Method
Return TRUE if value is a member of the sequence self.

memoize ((inputArgs cons) &body (body CONS)) : OBJECT Macro
Compute the value of an expression and memoize it relative to the values of inputArgs.
inputArgs should characterize the complete set of values upon which the computation
of the result depended. Calls to memoize should be of the form

(memoize (<arg>+) {:<option> <value>}* <expression>)
and have the status of an expression. The following options are supported:

:timestamps A single or list of keywords specifying the names of timestamps which
when bumped should invalidate all entries currently memoized in this table. :name
Names the memoization table so it can be shared by other memoization sites. By
default, a gensymed name is used. CAUTION: IT IS ASSUMED THAT ALL EN-
TRIES IN A MEMOZATION TABLE DEPEND ON THE SAME NUMBER OF
ARGUMENTS!! :max-values The maximum number of values to be memoized. Only
the :max-values most recently used values will be kept in the memoization table,
older values will be discarded and recomputed if needed. Without a :max-values
specification, the memoization table will grow indefinitely.

PERFORMANCE NOTES: For most efficient lookup, input arguments that vary the
most should be listed first. Also, arguments of type STANDARD-OBJECT (and all
its subtypes) can be memoized more efficiently than arguments of type OBJECT or
(wrapped) literals (with the exception of BOOLEANS).

multiple-parents? ((class CLASS)) : BOOLEAN Method
Return true if class has more than one direct superclass.

multiple-parents? ((module MODULE)) : BOOLEAN Method
Return TRUE if module has more than one parent.

name-to-string ((name OBJECT)) : STRING Function
Return the string represented by name. Return null if name is undefined or does
not represent a string.

no-duplicates? ((self COLLECTION)) : BOOLEAN Method
Return true if the collection self forbids duplicate values.

non-empty? ((self SET)) : BOOLEAN Method
Return true if the set self has at least one member.

Chapter 6: Library Functions 79

nth ((self NATIVE-VECTOR) (position INTEGER)) : (LIKE (ANY-VALUE Method
SELF))
Return the element in self at position.

object-hash-code ((self OBJECT)) : INTEGER Function
Return a hash code for self. Two objects that are eq? are guaranteed to generate the
same hash code. Two objects that are not eq? do not necessarily generate different
hash codes. Similar to hash-code but always hashes on the address of self even if it
is a wrapper.

only-if ((test OBJECT) (expression OBJECT)) : OBJECT Macro
y P
If test is TRUE, return the result of evaluating expression.

open-network-stream ((host STRING) (port INTEGER)) : Function
INPUT-STREAM OUTPUT-STREAM
Open a TCP/IP network stream to host at port and return the result as an in-
put/output stream pair.

ordered? ((self COLLECTION)) : BOOLEAN Method
Return true if the collection self is ordered.

parameters ((self CLASS)) : (LIST OF SYMBOL) Method
Returns the list of parameters names of self.

pick-hash-table-size-prime ((minSize INTEGER)) : INTEGER Function
Return a hash table prime of at least minSize.

primary-type ((self OBJECT)) : TYPE Method
Returns the primary type of self. Gets defined automatically for every non-abstract
subclass of OBJECT.

primitive? ((self RELATION)) : BOOLEAN Method
Return true if self is not a defined relation.

print (&body (body CONS)) : OBJECT Macro
Print arguments to the standard output stream.

print-exception-context ((e NATIVE-EXCEPTION) Function
(stream OUTPUT-STREAM)) :
Prints a system dependent information about the context of the specified exception.
For example, in Java it prints a stack trace. In Lisp, it is vendor dependent.

print-recycle-lists () : Function
Print the current state of all recycle lists.

Chapter 6: Library Functions 80

print-stella-features () : Command
Print the list of enabled and disabled STELLA features.

print-unbound-surrogates (&rest (args OBJECT)) : Command
Print all unbound surrogates visible from the module named by the first argument (a
symbol or string). Look at all modules if no module name or null was supplied. If the
second argument is true, only consider surrogates interned in the specified module.

print-undefined-methods ((module MODULE) (local? BOOLEAN)) : Function
Print all declared but not yet defined functions and methods in module. If local? is
true, do not consider any parent modules of module. If module is NULL, look at all
modules in the system. This is handy to pinpoint forward declarations that haven’t
been followed up by actual definitions.

print-undefined-super-classes ((class NAME)) : Command
Print all undefined or bad (indirect) super classes of class.

private-class-methods ((class CLASS)) : (ITERATOR OF Function
METHOD-SLOT)
Iterate over all private methods attached to class.

private-class-storage-slots ((class cLASS)) : (ITERATOR OF Function
STORAGE-SLOT)
Iterate over all private storage-slots attached to class.

private? ((self RELATION)) : BOOLEAN Method
Return true if self is not public.

ptrans ((statement OBJECT)) : Command
Translate statement to Common-Lisp and print the result.

public-class-methods ((class CLASS)) : (ITERATOR OF METHOD-SLOT) Function
Iterate over all private methods attached to class.

public-class-storage-slots ((class CLASS)) : (ITERATOR OF Function
STORAGE-SLOT)
Iterate over all public storage-slots attached to class.

public-slots ((self cLASS)) : (ITERATOR OF SLOT) Method
Return an iterator over public slots of self.

public-slots ((self OBJECT)) : (ITERATOR OF SLOT) Method
Return an iterator over public slots of self.

public? ((self SLOT)) : BOOLEAN Method
True if self or one it its ancestors is marked public.

Chapter 6: Library Functions 81

pushf ((place cons) (value OBJECT)) : OBJECT Macro
Push value onto the cons list place.

reader ((self STORAGE-SLOT)) : SYMBOL Method
Name of a method called to read the value of the slot self.

remove ((self SET) (value (LIKE (ANY-VALUE SELF)))) : SET Method
Remove all entries in self that match value.

remove-duplicates ((self COLLECTION)) : (LIKE SELF) Method
Return self with duplicates removed. Preserves the original order of the remaining
members.

required-slots ((self cLASS)) : (LIST OF SYMBOL) Method

Returns a list of names of required slots for self.

required? ((self STORAGE-SLOT)) : BOOLEAN Method
True if a value must be assigned to this slot at creation time.

reset-stella-features () : Command
Reset STELLA features to their default settings.

reverse-interval ((lowerbound INTEGER) (upperbound INTEGER)) : Function
REVERSE-INTEGER-INTERVAL-ITERATOR
Create a reverse interval object.

run-hooks ((hooklist HOOK-LIST) (argument OBJECT)) : Function
Run all hook functions in hooklist, applying each one to argument.

running-as-lisp? () : BOOLEAN Function
Return true if the executable code is a Common Lisp application.

safe-lookup-slot ((class CLASS) (slot-name SYMBOL)) : SLOT Function
Alias for lookup-slot. Kept for backwards compatibility.

safety ((level INTEGER-WRAPPER) (test OBJECT) &body (body CONS)) : Macro
OBJECT
Signal warning message, placing non-string arguments in quotes.

search-for-object ((self OBJECT) (typeref OBJECT)) : OBJECT Function
If self is a string or a symbol, search for an object named self of type type. Otherwise,
if self is an object, return it.

seed-random-number-generator () : Function
Seeds the random number generator with the current time.

Chapter 6: Library Functions 82

sequence ((collectiontype TYPE) &rest (values OBJECT)) : (SEQUENCE Function
OF OBJECT)
Return a sequence containing values, in order.

set-call-log-break-point ((count INTEGER)) : Command
Set a call log break point to count. Execution will be interrupted right at the entry
of the countth logged function call.

set-configuration-property ((property STRING) (value WRAPPER) Function
(configuration CONFIGURATION-TABLE)) : WRAPPER
Set property in configuration to value and return it. Use the global system configu-
ration table if configuration is NULL.

set-global-value ((self SURROGATE) (value OBJECT)) : OBJECT Function
Set the value of the global variable for the surrogate self to value.

set-optimization-levels ((safety INTEGER) (debug INTEGER) Function
(speed INTEGER) (space INTEGER)) :
Set optimization levels for the qualities safety, debug, speed, and space.

set-stella-feature (&rest (features KEYWORD)) : Command
Enable all listed STELLA features.

set-translator-output-language ((new-language KEYWORD)) : Command
KEYWORD
Set output language to new-language. Return previous language.

setq? ((variable SYMBOL) (expression CONS)) : OBJECT Macro

Assign variable the result of evaluating expression, and return TRUE if expression is
not NULL else return FALSE.

shadowed-symbol? ((symbol GENERALIZED-SYMBOL)) : BOOLEAN Function
Return true if symbol is shadowed in its home module.

signal ((type symBoL) &body (body CONS)) : OBJECT Macro
Signal error message, placing non-string arguments in quotes.

signal-read-error (&body (body CONS)) : OBJECT Macro
Specialized version of signal that throws a READ-EXCEPTION.

start-function-call-logging ((fileName STRING)) : Command
Start function call logging to fileName.

stella-collection? ((self OBJECT)) : BOOLEAN Function
Return true if self is a native collection.

Chapter 6: Library Functions 83

stella-object? ((self OBJECT)) : BOOLEAN Function
Return true if self is a member of the STELLA class OBJECT.

stella-version-string () : STRING Function
Return a string identifying the current version of STELLA.

stellafy ((thing LISP-CODE) (targetType TYPE)) : OBJECT Function
Partial inverse to lispify. Convert the Lisp object thing into a Stella analogue of
type targetType. Note: See also stellify. it is similar, but guesses targetType on
its own, and makes somewhat different translations.

stellify ((self OBJECT)) : OBJECT Function
Convert a Lisp object into a STELLA object.

stop-function-call-logging () : Command
Stop function call logging and close the current log file.

subclass-of? ((subClass CLASS) (superClass CLASS)) : BOOLEAN Function
Return true if subClass is a subclass of superClass.

subtype-of? ((sub-type TYPE) (super-type TYPE)) : BOOLEAN Function
Return true iff the class named sub-type is a subclass of the class named super-type.

super-classes ((self cLASS)) : (ITERATOR OF CLASS) Method
Returns an iterator that generates all super classes of self. Non-reflexive.

sweep ((self OBJECT)) : Method
Default method. Sweep up all self-type objects.

system-default-value ((self STORAGE-SLOT)) : OBJECT Method
Return a default value expression, or if self has dynamic storage, an initial value
expression.

system-default-value ((self SLOT)) : OBJECT Method
Return a default value expression, or if self has dynamic storage, an initial value
expression.

system-loaded? ((name STRING)) : BOOLEAN Function

Return true if system name has been loaded.

terminate-program () : Function
Terminate and exit the program with normal exit code.

toggle-output-language () : KEYWORD Function
Switch between Common Lisp and C++ as output languages.

Chapter 6: Library Functions 84

translate-system ((systemName STRING) (outputLanguage KEYWORD) Function
&rest (options OBJECT)) : BOOLEAN
Translate all of the STELLA source files in system systemName into outputLanguage.
The following keyword/value options are recognized:

:two-pass? (default false): if true, all files will be scanned twice, once to load the
signatures of objects defined in them, and once to actually translate the definitions.

:force-translation? (default false): if true, files will be translated whether or not
their translations are up-to-date.

:development-settings? (default false): if true translation will favor safe, read-
able and debuggable code over efficiency (according to the value of :development-
settings on the system definition). If false, efficiency will be favored instead (ac-
cording to the value of :production-settings on the system definition).

:production-settings? (default true): inverse to :development-settings?.

translate-to-common-lisp? () : BOOLEAN Function
Return true if current output language is Common-Lisp.

translate-to-cpp? () : BOOLEAN Function
Return true if current output language is C++

translate-to-java? () : BOOLEAN Function
Return true if current output language is Java

try-to-evaluate ((tree OBJECT)) : OBJECT Function
Variant of evaluate that only evaluates tree if it represents an evaluable expression.
If it does not, tree is returned unmodified. This can be used to implement commands
with mixed argument evaluation strategies.

two-argument-least-common-superclass ((classl CLASS) Function
(class2 CLASS)) : CLASS
Return the most specific class that is a superclass of both classl and class2. If there
is more than one, arbitrarily pick one. If there is none, return null.

two-argument-least-common-supertype ((typel TYPE-SPEC) Function
(type2 TYPE-SPEC)) : TYPE-SPEC
Return the most specific type that is a supertype of both typel and type2. If there
is more than one, arbitrarily pick one. If there is none, return @VOID. If one or both
types are parametric, also try to generalize parameter types if necessary.

type ((self sLOT)) : TYPE Method
The type of a storage slot is its base type.

type-specifier ((self SLOT)) : TYPE-SPEC Method
If self has a complex type return its type specifier, otherwise, return type of self.

Chapter 6: Library Functions 85

type-to-symbol ((type TYPE)) : SYMBOL Function
Convert type into a symbol with the same name and module.

type-to-wrapped-type ((self TYPE)) : TYPE Method
Return the wrapped type for the type self, or self if it is not a bare literal type.

unbound-surrogates ((module MODULE) (local? BOOLEAN)) : Function
(ITERATOR OF SURROGATE)
Iterate over all unbound surrogates visible from module. Look at all modules if
module is null. If local?, only consider surrogates interned in module.

unescape-html-string ((input STRING)) : STRING Function
Replaces HTML escape sequences such as & with their associated characters.

unset-stella-feature (&rest (features KEYWORD)) : Command
Disable all listed STELLA features.

unstringify-stella-source ((source STRING) (module MODULE)) : Function
OBJECT
Unstringify a STELLA source string relative to module, or *MODULE* if no module is
specified. This function allocates transient objects as opposed to unstringify-in-
module or the regular unstringify.

unwrap-boolean ((wrapper BOOLEAN-WRAPPER)) : BOOLEAN Function
Unwrap wrapper and return its values as a regular BOOLEAN. Map NULL onto
FALSE.

unwrap-function-code ((wrapper FUNCTION-CODE-WRAPPER)) : Function

FUNCTION-CODE
Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

unwrap-method-code ((wrapper METHOD-CODE-WRAPPER)) : Function
METHOD-CODE
Unwrap wrapper and return the result. Return NULL if wrapper is NULL.

warn (&body (body CONS)) : OBJECT Macro
Signal warning message, placing non-string arguments in quotes.

with-permanent-objects (&body (body CONS)) : OBJECT Macro
Allocate permanent (as opposed to transient) objects within the scope of this dec-
laration.

with-system-definition ((systemnameexpression OBJECT) Macro

&body (body CONS)) : OBJECT
Set *currentSystemDefinition* to the system definition named system. Set *cur-
rentSystemDefinitionSubdirectory*® to match. Execute body within that scope.

Chapter 6: Library Functions 86

with-transient-objects (&body (body CONS)) : OBJECT Macro
Allocate transient (as opposed to permanent) objects within the scope of this dec-
laration. CAUTION: The default assumption is the allocation of permanent objects.
The scope of with-transient-objects should be as small as possible, and the user
has to make sure that code that wasn’t explicitly written to account for transient
objects will continue to work correctly.

wrap-boolean ((value BOOLEAN)) : BOOLEAN-WRAPPER Function
Return a literal object whose value is the BOOLEAN value.

wrap-function-code ((value FUNCTION-CODE)) : Function
FUNCTION-CODE-WRAPPER
Return a literal object whose value is the FUNCTION-CODE value.

wrap-method-code ((value METHOD-CODE)) : Function
METHOD-CODE-WRAPPER
Return a literal object whose value is the METHOD-CODE value.

wrapped-type-to-type ((self TYPE)) : TYPE Function
Return the unwrapped type for the wrapped type self, or self if it is not a wrapped
type.

wrapper-value-type ((self WRAPPER)) : TYPE Function

Return the type of the value stored in the wrapper self.

writer ((self STORAGE-SLOT)) : SYMBOL Method
Name of a method called to write the value of the slot self.

yield-define-stella-class ((class CLASS)) : CONS Function
Return a cons tree that (when evaluated) constructs a Stella class object.

Function Index 87

Function Index

* all-contexts oL 63
K 27 all-defined?.............cooieiiii 03
all-functions 63
all-included-modules....................... 63
- all-lower-case-string? 31
RPN g7 atlmmethods..............oo 03
e o7 all-modules 63
all-public-functions....................... 63
all-public-methods......................... 63
/ all-slots ...t 63
S py BLLEDCOREOXES oo -
all-surrogatesc.iiiiiiiain.. 64
all-symbolsoiiiiiiii 64
— all-upper-case-string? 31
. all-variables, 64
e 27 allocate-iterator 39, 42, 43, 45, G4
allocation 64
+ APPENd . .o 38
APPLY e e 64
o 27 apply-b00lean-method. 64
e 27 apply—f10at-method\ \ooeoe 64
apply-integer-method....................... 64
> apply-method 64
apply-string-method........................ 64
> 28
> 28 B
< break-program................., 65
but-last............. 36, 40, 46
S 27
o 27 C
1 calendar-date-to-string 58
call-clear-module.......................... 65
1= 27 CASE vttt e e 9
b 27 CAST o ettt e 65
CC et 51
A ceiling. ... 28
change-context 51
DS 28 change-modulec..oiiiiiai.... 54
absolute-pathname?......................... 56 character-capitalize....................... 30
activate—demonoeiin... 62 character-codec...oiiiiiiii... 30
active?. 62 character-downcase......................... 30
add-hook............. 62 character-to-string 30, 35
add-trace i 62 character-upcase................oovuneen... 30
advance...............iiiiiii 48 choose.......... ... i 9

all-ClasSSesSttt 63 cl-slot-valuecurrireuiinnnnnnn. 65

Function Index

cl-slot-value-setter....................... 65
cl-translate-file.......................... 65
cl-translate-system........................ 65
cleanup-unfinalized-classes............... 65
clearl 42, 43, 45, 46, 65
clear-context 51
clear-module 53
clear-recycle-list......................... 65
clear-recycle-lists........................ 65
clear-traceoiiiiiiiiiiii 66
close-all-files............c.covuvinninninn. 66
close-stream.................. ... 66
code-character 30
coerce-&rest-to-cons....................... 66
coerce-to-symbol........................... 66
colleCt... ... 66
collection-valued?......................... 66
command?. 66
component? 66
compose-namestring......................... 66
compose-namestring-full 66
compute-calendar-date 58
compute-day-of-week........................ 58
compute-day-of-week-julian................ 58
compute-julian-day......................... 58
compute-next-moon-phase 58
concatenate 33, 37, 42, 48
CoONd ... 9
configure-stella........................... 67
COIIS .« ot et et et e e e 36
cons-list 38
consify.................... 39, 42, 45, 46, 48, 67
continuable-error.......................... 67
COPY wvvvveeevnnennn.... 33,42, 43, 45, 46, 67
copy-cons-list 38
COPY—CONS—treecooiuuimiiniannnn... 38
copy-file 55
copy-kv-cons-list.......................... 43
€O ottt 29
cpp-translate-system....................... 67
(0] o) o v =Y « =S 67
create-object 67

create-world 54

88
D
deactivate-demon........................... 67
decode-calendar-date....................... 57
decode-time-in-millis 58
decompose-namestring....................... 67
decompose-namestring-full 68
default-form............... 68
defdemon............. 68
define-demon 68
define-logical-host-property.............. 68
define-module 68
define-stella-class..............c...oun.. 68
define-stella-method-slot 69
defined-1list?.......... 39
defined?.........., 25, 26, 69
defmain........... 69
defmodule 52
defsystem 69
delete-file ...t .. 55
deleted?..... ... it 69
describe........ il 69
describe-object 69
destroy—classoiiiiii 69
destroy-class—-and-subclasses.............. 70
destroy-context 51, 53, 54
destroy-module 53
destructure-defmethod-tree................ 70
dictionary 70
digit-character?........................... 30
direct-super-classes....................... 70
directory-file-name........................ 55
directory-parent-directory................ 55
directory-separator........................ 56
directory-separator-string................ 56
disable-memoization........................ 70
disabled-stella-feature? 70
Arop-hoOKoii i 70
Arop—traceoiiiiii 70
E
either.... 70
empty? 35, 40, 42, 43, 45, 48, 70
enable-memoization......................... 70
enabled-stella-feature? 70
encode-calendar-date....................... 57

Function Index

QT 26
eql? . . 26
equal-cons-trees?............... 36
equal?. 26
= o e o 71
evaluate............ i 71
evaluate-string............... 71
BVENT ..t 28
exception-message............... 71
XD e e et 29
extension il 71

F

fifth. 32, 36, 40, 46
file-base-name, 56
file-extension............., 56
file-length 55
file-name-as-directory 56
file-name-directory........................ 56
file-name-without-directory............... 56
file-name-without-extension............... 56
file-write-date........., 55
finalize-classes..............uiiiinn.. 71
finalize-classes-and-slots................ 71
finalize-slots.......... 71
find-or-create-module 53
first. ... 32, 36, 40, 45
first-defined 71
float-to-string......................... 29, 35
float.get-calendar-date 57
float.get-time............ 57
F100T . .o 28
flush-output 71
format-float............ 29, 35
format-with-padding........................ 71
fourth 32, 36, 40, 46
free 71, 72
free-hash-table-values 72

G

BONSYIM. o\ ettt et et 50
get-calendar-date.......................... 72
get-current-date-time 57
get-global-value........................... 72

1 vd

get-local-time-zone........................ 57

89
get-quoted-tree........... 72
get-slot....... 72
get-stella-class...................ooou.... 72
get-stella-context......................... 51
get-stella-module.......................... 53
get-ticktockl 59
get-time..... 72
get-xml-attributes......................... 60
get-xml-tag 60
global-variable-type-spec 72
H
hash-code 72
hash-string, 3
home-module 73
I
1 8
if-output-language......................... 73
if-stella-feature.......................... 73
Ignore. 73
in-module 54
incrementally-translate 73
Inform...... ...t 73
initial-value...............ooiiiiiiiiia.. 73
initially ..ot 73
insert......... il 41, 47, 73
insert-at..................... 43, 44, 46, 47, 48
insert-entry 44
insert-last 41
insert-mew i 41
insert-string............ L 34
integer-to-string 29, 35
intern-derived-surrogate 50
intern-derived-symbol 49
intern-keyword 50
intern-surrogate........................... 49
intern-surrogate-in-module................ 50
intern-symbol 49
intern-symbol-in-module 49
interpret-command-line-arguments.......... 74
18T 74

Function Index

J

java-translate-system 74
jptrans............. 74
julian-day-to-modified-julian-day......... 58

last .o 36, 40, 46
1ast—COnSoviii i 37
length.............. 33, 37, 40, 43, 44, 46, 47, 48
letter-character?.......................... 30
Lispify. ... 74
lispify-boolean............................ 74
List ..o 40
Tistk. .o 38
listify....oooo 74
load-configuration-file 74
load-file i 75
load-system, 75
1ocal=gensSymovviieieie e 50
10g . 29
logical-host?, 56
logical-pathname?.......................... 56
1oOKUDP © . ovvie e 43, 44, 47, 48
100KUP—ClaSS ..o tvveee e 75
lookup-command L., 75
lookup-configuration-property............. 5
1ooKUP—demonovitie e 75
lookup-function............................ 75
lookup-function-by-name 5
lookup-global-variable 76
lookup-keyword, 50
lookup-local-slot.......................... 76
10OKUP—MACTO .. o e oeteeee e 76
lookup-slot, 76
lookup-surrogate.................c.oooi.... 49
lookup-surrogate-in-module 50
lookup-symbol, 49
lookup-symbol-in-module 49
lookup-visible-surrogates—-in-module 50

lookup-visible-symbols-in-module.......... 49

90
lower-case-character? 30
Iptrans. ...t 76
M
make-current-date-time 57
make-date-time 57
make-matching-name......................... 76
make-matching-name-full 7
make-mutable-string........................ 32
make-raw-mutable-string 32
make-string 32
make-systeml 7T
make-xml-element 60
make-xml-global-attribute 60
make-xml-local-attribute 60
map-null-to-nil............................ 39
map-null-to-nil-list....................... 42
1 E= 28
memb? ... 37, 41
member?.................... 33, 37, 40, 46, 48, 78
MEMOIZE. ...t 78
MIN ..o 28
MOd ..ot 28
modified-julian-day-to-julian-day......... 58
multiple-parents?...............c.ooiin... 78
mutable-string-to-string 34
N
name-to-string............................. 78
next? 39, 42, 43, 45, 48
nil?. .. 36
no-duplicates?..............., 78
non-empty? 35, 40, 42, 43, 45, 78
nth............... 32, 36, 40, 46, 79
nth-rest......... i 36
null-1ist? 39
null?. ... 25
O
object-equal?............. 26, 36, 40, 43, 44, 45
object-hash-code..................... 79
odd? ... 28
only-if 79
open-network-stream........................ 79

Function Index

operating-system........................... 62
ordered?......... 79
P

parametersi i 79
parse-date-time............. 57
pick-hash-table-size-prime................ 79
PlUuS? .. 28
POP e et 41, 45, 48
pop-world 54
POP -« v e ettt 38
position......................... 33,37, 41,46
pPrependt 38, 42
primary-type 79
primitive? 79
print....... .. 79
print-exception-context 79
print-recycle-lists........................ 79
print-stella-features 80
print-unbound-surrogates 80
print-undefined-methods 80
print-undefined-super-classes............. 80
print-xml-expression....................... 60
private-class-methods 80
private-class-storage-slots............... 80
private?.......... . 80
probe-file? 55
Ptrans........ ... 80
public-class-methods....................... 80
public-class-storage-slots................ 80
public-slots 80
public?. 80
Push 41, 44
push-world D4
pushf 81
PUSHQ . oot 38
PUShHQ MeWt 38
R

TANAOM. . .ot e ettt e e 29
read-character 54
read-line i 54
read-s-expression.......................... 54
read-s-expression-from-string............. 54
read-xml-expression........................ 60

91
reader. 81
relative-date-to-string 58
TEMOVE . v oveeeeeeeeeeeeaen 34, 37, 41, 47, 81
remove—at...............iiiiii., 43, 44, 47
remove-deleted-members 41
remove-duplicates................... 37, 41, 81
TEeMOVe—€NtIY . ..ottt 44
remove-if 37, 41
replace-substrings......................... 34
required-slotsiiii.... 81
required? 81
reset-stella-features 81
reset-xml-hash-tables 60
resize-vector i 46
TEST ottt 33, 40
TEVELSE ..ottt eeteee e 37,41, 44
reverse-interval 81
TOUNA . . oottt 28
run-hooks 81
running-as-1isp?......... 81
S
safe-lookup-slot........................... 81
safe-tree-size................ 38
safety. ... 81
search-cons-tree?.......................... 38
search-for-object.......................... 81
second 32, 36, 40, 45
seed-random-number-generator 81
SEQUENCE . . oo\ttt ittt 82
set-call-log-break-point 82
set-configuration-property................ 82
set-global-value........................... 82
set-optimization-levels 82
set-stella-feature......................... 82
set-translator-output-language............ 82
SetQT . o 82
shadowed-symbol?........................... 82
signal........... i 82
signal-read-error.......................... 82
SIN ..o 29
SleeP . ottt 59
SOTE Lottt 39, 42
SATL .o 28
start-function-call-logging............... 82
stella-collection?......................... 82

Function Index

stella-object?........, 83
stella-version-string 83
stellafy........ooiiiiii i 83
stellify..... ... 83
stop-function-call-logging 83
string-capitalize.......................... 33
string-compare 31
string-downcase.................o i, 33
string-eql? ... 31
string-equal?................ 31
string-greater-equal? 31
string-greater?................, 31
string-less-equal?......................... 31
string-less?l 31
string-search.............................. 33
string-to-calendar-date 58
string-to-float......................... 29, 35
string-to-integer 29, 35
string-to-mutable-string 34
string-upcase 33
string>. ... 31
string>=...... ... 31
string<........... .. 31
string<=....... 31
stringify 35
stringify-in-module........................ 35
subclass-of? 83
subsequence 33
substitute.......... L.l 34, 37, 41
substitute-cons-tree....................... 38
subtype-of? 83
SUPEr-clasSesiiiiiiii. 83
BWEED .« vttt 83
symbol-plist, 50
Symbol-property 51
symbol-valueiiii... 51
symbolize 51
system-default-value....................... 83
system-loaded? 83

T

- P 29
terminate-program.......................... 83
third...... 32, 36, 40, 45
ticktock-difference............ 59
ticktock-resolution........................ 59

92
time-add.......... 59
time-divide 59
time-multiply L. 59
time-subtractl 59
toggle-output-language 83
translate-logical-pathname................ 56
translate-system.................. 84
translate-to-common-1isp? 84
translate-to—cpp? ..., 84
translate-to-java?............ 84
tree-size il 38
try-to-evaluate.............. 84
two-argument-least-common-superclass 84
two-argument-least-common-supertype 84
YD e vt 84
type-specifier..............ol 84
type-to-symbol 85
type-to-wrapped-type....................... 85
typecase............ ... 10
U
unbound-surrogates......................... 85
unescape-html-string....................... 85
unintern-surrogate......................... 49
unintern-symbol 49
UNLESS ..ot 9
unread-character........................... 55
unset-stella-feature....................... 85
unstringify 3D
unstringify-in-module 35
unstringify-stella-source................. 85
unwrap-boolean............... 85
unwrap-character........................... 30
unwrap-float 29
unwrap-function-code.................. 85
unwrap-integer 29
unwrap-method-code......................... 85
unwrap-mutable-string 34
unwrap-string............ o 34
upper-case-character? 30
\Va
VECTOT . ottt e 45
visible-modules............................ 53

visible-surrogate?......................... 50

Function Index

visible-symbol?.............., 49

L'« 85
Whel 8
white-space-character? 30
with-permanent-objects 85
with-system-definition 85
with-transient-objects 86
within-context............................. 51
within-module.............................. 53
within-world 54
wrap-boolean 86
wrap-character 30
wrap—float 29
wrap-function-code......................... 86
wrap-integer 29
wrap-method-code 86
wrap-mutable-string........................ 34
wrap-string 34
wrapped-type-to-type....................... 86
wrapper-value-type......................... 86

Writer 86

93
X
xml-attribute-match?....................... 62
xml-attribute? 61
xml-cdata-form?......., 61
xml-cdata? ... 61
xml-declaration?...................i.... 61
xml-element-match?......................... 62
xml-element? 61
xml-expressions.............. 61
XM1-tag—Case ...t 61
xml-token-list-to-s-expression............ 61
Y
e e 55
FESTOT=NOT . ottt e 55
yield-define-stella-class................. 86
Z
ZETOT 28

Variable Index

Variable Index

*

printpretty? 39
printprettycode?......................... 39
printreadably®........................... 39

94
o e P 35
nil-list............ i 39
o 27
TIrUE . . 25

Concept Index

Concept Index

(Index is nonexistent)

95

Table of Contents

1 Introduction............................... 1
1.1 Credits and History i 2

2 Installation...................... ..., 3
2.1 System Requirements................ 3

2.2 Unpacking the Sources............ ... 4

2.3 Lisp Installation........... 4

2.4 C++1Installation..... ... 5

2.5 Javalnstallation 5

2.6 X/Emacs Setup........ ... 6

2.7 Removing Unneeded Files........... 6

3 The STELLA Language 7
3.1 Language Overview.ooiiiineeiiiiiiinnn... 7

3.2 Basic Data Types (tbw) 8

3.3 Control Structure (thbe).............. ... L 8

3.3.1 Conditionals 8

3.4 Functions (thw)...... 11

3.5 Classes (tbw) ... 11

3.6 Methods (thw)........ ... 11

3.7 Macros (thw) ... 11

3.8 Modules (thw) ... 11

4 Programming in STELLA 12
4.1 Hello World in STELLA 12

4.1.1 Hello World in Lisp................. ... 12

4.1.2 HelloWorldin C++....... 14

4.1.3 HelloWorldinJava............................ 15

4.2 Incrementally Developing STELLA Code................. 17

4.3 Performance Hints 21

4.3.1 Lisp Performance Hints 22

5 Library Classes (tbw)oovuu.. 24

6 Library Functions......................... 25
6.1 Basic Constants and Predicates 25
6.2 Numbers 27
6.3 Characters.oui 30
6.4 SEIINGS « o oo 31
6.5 CONS Lists and Treest .. 35
6.6 ListsS ..o 39
6.7 Property and Key-Value Lists........................... 42
6.8 VeCtors.o 45
6.9 Hash Tables i 47
6.10 Tterators.co i 48
6.11 Symbols. ... 49
6.12 Context and Modules............... 51
6.13 Input and Output............... 54
6.14 Files . ..o 55
6.15 Datesand Times...........co .. 57
6.16 XML Support..... ... 60
6.17 Miscellaneous 62
Function Indexciiiiinnnnnn. 87
Variable Indexc. .. 94

Concept Index...........coiiiiiinnnennnn, 95

ii

	Introduction
	Credits and History

	Installation
	System Requirements
	Unpacking the Sources
	Lisp Installation
	C++ Installation
	Java Installation
	X/Emacs Setup
	Removing Unneeded Files

	The STELLA Language
	Language Overview
	Basic Data Types (tbw)
	Control Structure (tbc)
	Conditionals

	Functions (tbw)
	Classes (tbw)
	Methods (tbw)
	Macros (tbw)
	Modules (tbw)

	Programming in STELLA
	Hello World in STELLA
	Hello World in Lisp
	Hello World in C++
	Hello World in Java

	Incrementally Developing STELLA Code
	Performance Hints
	Lisp Performance Hints

	Library Classes (tbw)
	Library Functions
	Basic Constants and Predicates
	Numbers
	Characters
	Strings
	CONS Lists and Trees
	Lists
	Property and Key-Value Lists
	Vectors
	Hash Tables
	Iterators
	Symbols
	Context and Modules
	Input and Output
	Files
	Dates and Times
	XML Support
	Miscellaneous

	Function Index
	Variable Index
	Concept Index

